Стратосфера и другие сферы. Земная атмосфера

Атмосфера (от. греч. ατμός - «пар» и σφαῖρα - «сфера») - газовая оболочка небесного тела, удерживаемая около него гравитацией. Атмосфера - газообразная оболочка планеты, состоящая из смеси различных газов, водных паров и пыли. Через атмосферу осуществляется обмен вещества Земли с Космосом. Земля получает космическую пыль и метеоритный материал, теряет самые легкие газы: водород и гелий. Атмосфера Земли насквозь пронизывается мощной радиацией Солнца, определяющей тепловой режим поверхности планеты, вызывающей диссоциацию молекул атмосферных газов и ионизацию атомов.

Атмосфера Земли содержит кислород, используемый большинством живых организмов для дыхания, и диоксид углерода, потребляемый растениями, водорослями и цианобактериями в процессе фотосинтеза. Атмосфера также является защитным слоем планеты, защищая её обитателей от солнечного ультрафиолетового излучения.

Атмосфера есть у всех массивных тел - планет земного типа, газовых гигантов.

Состав атмосферы

Атмосфера - это смесь газов, состоящая из азота (78,08 %), кислорода (20,95 %), углекислого газа (0,03 %), аргона (0,93 %), небольшого количества гелия, неона, ксенона, криптона (0,01 %), 0,038 % двуокиси углерода, и небольшое количество водорода, гелия, других благородных газов и загрязнителей.

Современный состав воздуха Земли установился более сотни миллионов лет назад, однако резко возросшая производственная деятельность человека все же привела к его изменению. В настоящее время отмечается увеличение содержания СО 2 примерно на 10-12 %.Входящие в состав атмосферы газы выполняют различные функциональные роли. Однако основное значение этих газов определяется прежде всего тем, что они очень сильно поглощают лучистую энергию и тем самым оказывают существенное влияние на температурный режим поверхности Земли и атмосферы.

Начальный состав атмосферы планеты обычно зависит от химических и температурных свойств солнца в период формирования планет и последующего выхода внешних газов. Затем состав газовой оболочки эволюционирует под действием различных факторов.

Атмосфера Венеры и Марса в основном состоят из двуокиси углерода с небольшими добавлениями азота, аргона, кислорода и других газов. Земная атмосфера в большой степени является продуктом живущих в ней организмов. Низкотемпературные газовые гиганты - Юпитер, Сатурн, Уран и Нептун - могут удерживать в основном газы с низкой молекулярной массой - водород и гелий. Высокотемпературные газовые гиганты, такие как Осирис или 51 Пегаса b, наоборот, не могут её удержать и молекулы их атмосферы рассеиваются в пространстве. Этот процесс протекает медленно, постоянно.

Азот, самый распространенный газ в атмосфере, химически мало активен.

Кислород , в отличие от азота, химически очень активный элемент. Специфическая функция кислорода - окисление органического вещества гетеротрофных организмов, горных пород и недоокисленных газов, выбрасываемых в атмосферу вулканами. Без кислорода не было бы разложения мертвого органического вещества.

Структура атмосферы

Структура атмосферы складывается из двух частей: внутренней- тропосферы, стратосферы, мезосферы и термосферы, или ионосферы, и внешней - магнитосферы (экзосферы).

1)Тропосфера – это нижняя часть атмосферы, в которой сосредоточено 3\4 т.е. ~ 80% всей земной атмосферы. Её высота определяется интенсивностью вертикальных (восходящих или нисходящих) потоков воздуха, вызванных нагреванием земной поверхности и океана, поэтому толщина тропосферы на экваторе составляет 16 – 18 км, в умеренных широтах 10-11 км, а на полюсах – до 8 км. Температура воздуха в тропосфере на высоте понижается на 0,6ºС на каждые 100м и колеблется от +40 до - 50ºС.

2)Стратосфера находится выше тропосферы и имеет высоту до 50км от поверхности планеты. Температура на высоте до 30км постоянная -50ºС. Затем она начинает повышаться и на высоте 50 км достигает +10ºС.

Верхней границей биосферы являются озоновый экран.

Озоновый экран – это слой атмосферы в пределах стратосферы, расположенный на разной высоте от поверхности Земли и имеющей максимальную плотность озона на высоте 20-26 км.

Высота озонового слоя у полюсов оценивается в 7 - 8 км, у экватора в 17-18км, а максимальная высота присутствия озона – 45-50 км. Выше озонового экрана жизнь невозможна из-за жёсткого ультрафиолетового излучения Солнца. Если спрессовать все молекулы озона, то получится слой ~ 3мм вокруг планеты.

3)Мезосфера – верхняя граница этого слоя располагается до высоты 80км. Главная её особенность – резкое понижение температуры -90ºС у её верхней границы. Здесь фиксируется серебристые облака, состоящие из ледяных кристаллов.

4)Ионосфера (термосфера)- располагается до высоты 800 км и для неё характерно значительное повышение температуры:

150км температура +240ºС,

200км температура +500ºС,

600км температура +1500ºС.

Под действием ультрафиолетового излучения Солнца газы находятся в ионизированном состоянии. С ионизацией связано свечение газов и возникновение полярных сияний.

Ионосфера обладает способностью многократного отражения радиоволн, что обеспечивает дальнюю радиосвязь на планете.

5)Экзосфера – располагается выше 800км и простирается до 3000км. Здесь температура >2000ºС. Скорость движения газов приближается к критической ~ 11,2 км/сек. Господствуют атомы водорода и гелия, которые образуют вокруг Земли светящуюся корону, простирающуюся до высоты 20000км.

Функций атмосферы

1) Терморегулирующая – погода и климат на Земле зависит от распределения тепла, давления.

2) Жизнеобеспечивающая.

3) В тропосфере происходит глобальные вертикальные и горизонтальные перемещения воздушных масс определяющий круговорот воды, теплообмен.

4) Практически все поверхности геологические процессы обусловлены взаимодействием атмосферы, литосферы и гидросферы.

5) Защитная – атмосфера защищает землю от космоса, солнечной радиации и метеоритной пыли.

Функции атмосферы . Без атмосферы жизнь на Земле была бы невозможна. Человек ежедневно потребляет 12-15 кг. воздуха, вдыхая каждую минуту от 5 до 100л, что значительно превосходит среднесуточную потребность в пище и воде. Кроме того, атмосфера надежно оберегает человека от опасностей, угрожающих ему из космоса: не пропускает метеориты, космические излучения. Без пищи человек может прожить пять недель, без воды - пять дней, без воздуха - пять минут. Нормальная жизнедеятельность людей требует не только воздуха, но и определенной его чистоты. От качества воздуха воздуха зависят здоровье людей, состояние растительного и животного мира, прочность и долговечность конструкций зданий, сооружений. Загрязненный воздух губителен для вод, суши, морей, почв. Атмосфера определяет световой и регулирует тепловой режимы земли, способствует перераспределению тепла на земном шаре. Газовая оболочка предохраняет Землю от чрезмерного остывания и нагревания. Если бы наша планета не была бы окружена воздушной оболочкой, то в течение одних суток амплитуда колебаний температуры достигла бы 200 С. Атмосфера спасает все живущее на Земле от губительных ультрафиолетовых, рентгеновских и космических лучей. Велико значение атмосферы в распределении света. Ее воздух разбивает солнечные лучи на миллион мелких лучей, рассеивает их и создает равномерное освещение. Атмосфера служит проводником звуков.

Энциклопедичный YouTube

    1 / 5

    ✪ Земля космический корабль (14 Серия) - Атмосфера

    ✪ Почему атмосферу не втянуло в космический вакуум?

    ✪ Вход в атмосферу Земли корабля "Союз ТМА-8"

    ✪ Атмосфера строение, значение, изучение

    ✪ О. С. Угольников "Верхняя атмосфера. Встреча Земли и космоса"

    Субтитры

Граница атмосферы

Атмосферой принято считать ту область вокруг Земли, в которой газовая среда вращается вместе с Землёй как единое целое . Атмосфера переходит в межпланетное пространство постепенно, в экзосфере , начинающейся на высоте 500-1000 км от поверхности Земли .

По определению, предложенному Международной авиационной федерацией , граница атмосферы и космоса проводится по линии Кармана , расположенной на высоте около 100 км, выше которой авиационные полёты становятся полностью невозможными. NASA использует в качестве границы атмосферы отметку в 122 километра (400 000 футов ), где «шаттлы » переключаются с маневрирования с помощью двигателей на аэродинамическое маневрирование .

Физические свойства

Кроме указанных в таблице газов, в атмосфере содержатся Cl 2 , SO 2 , NH 3 , СО , O 3 , NO 2 , углеводороды , HCl , , HBr , , пары , I 2 , Br 2 , а также и многие другие газы в незначительных количествах. В тропосфере постоянно находится большое количество взвешенных твёрдых и жидких частиц (аэрозоль). Самым редким газом в Земной атмосфере является радон (Rn).

Строение атмосферы

Пограничный слой атмосферы

Нижний слой тропосферы (1-2 км толщиной), в котором состояние и свойства поверхности Земли непосредственно влияют на динамику атмосферы.

Тропосфера

Её верхняя граница находится на высоте 8-10 км в полярных, 10-12 км в умеренных и 16-18 км в тропических широтах; зимой ниже, чем летом.
Нижний, основной слой атмосферы содержит более 80 % всей массы атмосферного воздуха и около 90 % всего имеющегося в атмосфере водяного пара. В тропосфере сильно развиты турбулентность и конвекция , возникают облака , развиваются циклоны и антициклоны . Температура убывает с ростом высоты со средним вертикальным градиентом 0,65°/100 метров.

Тропопауза

Переходный слой от тропосферы к стратосфере, слой атмосферы, в котором прекращается снижение температуры с высотой.

Стратосфера

Слой атмосферы, располагающийся на высоте от 11 до 50 км. Характерно незначительное изменение температуры в слое 11-25 км (нижний слой стратосферы) и повышение её в слое 25-40 км от −56,5 до +0,8 ° (верхний слой стратосферы или область инверсии). Достигнув на высоте около 40 км значения около 273 К (почти 0 °C), температура остаётся постоянной до высоты около 55 км. Эта область постоянной температуры называется стратопаузой и является границей между стратосферой и мезосферой .

Стратопауза

Пограничный слой атмосферы между стратосферой и мезосферой. В вертикальном распределении температуры имеет место максимум (около 0 °C).

Мезосфера

Термосфера

Верхний предел - около 800 км. Температура растёт до высот 200-300 км, где достигает значений порядка 1500 К, после чего остаётся почти постоянной до больших высот. Под действием солнечной радиации и космического излучения происходит ионизация воздуха («полярные сияния ») - основные области ионосферы лежат внутри термосферы. На высотах свыше 300 км преобладает атомарный кислород. Верхний предел термосферы в значительной степени определяется текущей активностью Солнца . В периоды низкой активности - например, в 2008-2009 годах - происходит заметное уменьшение размеров этого слоя .

Термопауза

Область атмосферы, прилегающая сверху к термосфере. В этой области поглощение солнечного излучения незначительно и температура фактически не меняется с высотой.

Экзосфера (сфера рассеяния)

До высоты 100 км атмосфера представляет собой гомогенную хорошо перемешанную смесь газов. В более высоких слоях распределение газов по высоте зависит от их молекулярных масс, концентрация более тяжёлых газов убывает быстрее по мере удаления от поверхности Земли. Вследствие уменьшения плотности газов температура понижается от 0 °C в стратосфере до −110 °C в мезосфере. Однако кинетическая энергия отдельных частиц на высотах 200-250 км соответствует температуре ~150 °C. Выше 200 км наблюдаются значительные флуктуации температуры и плотности газов во времени и пространстве.

На высоте около 2000-3500 км экзосфера постепенно переходит в так называемый ближнекосмический вакуум , который заполнен редкими частицами межпланетного газа, главным образом атомами водорода. Но этот газ представляет собой лишь часть межпланетного вещества. Другую часть составляют пылевидные час­тицы кометного и метеорного происхождения. Кроме чрезвычайно разрежённых пылевидных частиц, в это пространство проникает электромагнитная и корпускулярная радиация солнечного и галактического происхождения.

Обзор

На долю тропосферы приходится около 80 % массы атмосферы, на долю стратосферы - около 20 %; масса мезосферы - не более 0,3 %, термосферы - менее 0,05 % от общей массы атмосферы.

На основании электрических свойств в атмосфере выделяют нейтросферу и ионосферу .

В зависимости от состава газа в атмосфере выделяют гомосферу и гетеросферу . Гетеросфера - это область, где гравитация оказывает влияние на разделение газов, так как их перемешивание на такой высоте незначительно. Отсюда следует переменный состав гетеросферы. Ниже её лежит хорошо перемешанная, однородная по составу часть атмосферы, называемая гомосфера . Граница между этими слоями называется турбопаузой , она лежит на высоте около 120 км.

Другие свойства атмосферы и воздействие на человеческий организм

Уже на высоте 5 км над уровнем моря у нетренированного человека появляется кислородное голодание и без адаптации работоспособность человека значительно снижается. Здесь кончается физиологическая зона атмосферы. Дыхание человека становится невозможным на высоте 9 км, хотя примерно до 115 км атмосфера содержит кислород.

Атмосфера снабжает нас необходимым для дыхания кислородом. Однако вследствие падения общего давления атмосферы по мере подъёма на высоту соответственно снижается и парциальное давление кислорода.

История образования атмосферы

Согласно наиболее распространённой теории, атмосфера Земли на протяжении истории последней перебыла в трёх различных составах. Первоначально она состояла из лёгких газов (водорода и гелия), захваченных из межпланетного пространства. Это так называемая первичная атмосфера . На следующем этапе активная вулканическая деятельность привела к насыщению атмосферы и другими газами, кроме водорода (углекислым газом, аммиаком , водяным паром). Так образовалась вторичная атмосфера . Эта атмосфера была восстановительной. Далее процесс образования атмосферы определялся следующими факторами:

  • утечка легких газов (водорода и гелия) в межпланетное пространство ;
  • химические реакции, происходящие в атмосфере под влиянием ультрафиолетового излучения, грозовых разрядов и некоторых других факторов.

Постепенно эти факторы привели к образованию третичной атмосферы , характеризующейся гораздо меньшим содержанием водорода и гораздо большим - азота и углекислого газа (образованы в результате химических реакций из аммиака и углеводородов).

Азот

Образование большого количества азота N 2 обусловлено окислением аммиачно-водородной атмосферы молекулярным кислородом О 2 , который стал поступать с поверхности планеты в результате фотосинтеза, начиная с 3 млрд лет назад. Также азот N 2 выделяется в атмосферу в результате денитрификации нитратов и других азотосодержащих соединений. Азот окисляется озоном до NO в верхних слоях атмосферы.

Азот N 2 вступает в реакции лишь в специфических условиях (например, при разряде молнии). Окисление молекулярного азота озоном при электрических разрядах в малых количествах используется в промышленном изготовлении азотных удобрений. Окислять его с малыми энергозатратами и переводить в биологически активную форму могут цианобактерии (сине-зелёные водоросли) и клубеньковые бактерии, формирующие ризобиальный симбиоз с бобовыми растениями, которые могут быть эффективными сидератами - растениями, которые не истощают, а обогащают почву естественными удобрениями.

Кислород

Состав атмосферы начал радикально меняться с появлением на Земле живых организмов , в результате фотосинтеза , сопровождающегося выделением кислорода и поглощением углекислого газа. Первоначально кислород расходовался на окисление восстановленных соединений - аммиака, углеводородов, закисной формы железа , содержавшейся в океанах и другом. По окончании данного этапа содержание кислорода в атмосфере стало расти. Постепенно образовалась современная атмосфера, обладающая окислительными свойствами. Поскольку это вызвало серьёзные и резкие изменения многих процессов, протекающих в атмосфере , литосфере и биосфере , это событие получило название Кислородная катастрофа .

Благородные газы

Загрязнение атмосферы

В последнее время на эволюцию атмосферы стал оказывать влияние человек. Результатом человеческой деятельности стал постоянный рост содержания в атмосфере углекислого газа из-за сжигания углеводородного топлива, накопленного в предыдущие геологические эпохи. Громадные количества СО 2 потребляются при фотосинтезе и поглощаются мировым океаном . Этот газ поступает в атмосферу благодаря разложению карбонатных горных пород и органических веществ растительного и животного происхождения, а также вследствие вулканизма и производственной деятельности человека. За последние 100 лет содержание СО 2 в атмосфере возросло на 10 %, причём основная часть (360 млрд тонн) поступила в результате сжигания топлива. Если темпы роста сжигания топлива сохранятся, то в ближайшие 200-300 лет количество СО 2 в атмосфере удвоится и может привести к глобальным изменениям климата .

Сжигание топлива - основной источник и загрязняющих газов (СО , , SO 2). Диоксид серы окисляется кислородом воздуха до SO 3 , а оксид азота до NO 2 в верхних слоях атмосферы, которые в свою очередь взаимодействуют с парами воды, а образующиеся при этом серная кислота Н 2 SO 4 и азотная кислота НNO 3 выпадают на поверхность Земли в виде так называемых кислотных дождей. Использование

Окружающий мир образован из трех очень разных частей: земли, воды и воздуха. Каждая из них по-своему уникальна и интересна. Сейчас речь пойдет только о последней из них. Что такое атмосфера? Как она возникла? Из чего состоит и на какие части делится? Все эти вопросы чрезвычайно интересны.

Само название «атмосфера» образовано из двух слов греческого происхождения, в переводе на русский они означают «пар» и «шар». А если посмотреть точное определение, то можно прочитать следующее: «Атмосфера - это воздушная оболочка планеты Земля, которая несется вместе с ней в космическом пространстве». Она развивалась параллельно геологическим и геохимическим процессам, которые происходили на планете. И сегодня от нее зависят все процессы, протекающие в живых организмах. Без атмосферы планета стала бы безжизненной пустыней, подобной Луне.

Из чего она состоит?

Вопросом о том, что такое атмосфера и какие элементы в нее входят, заинтересовал людей уже давно. Основные составляющие этой оболочки были известны уже в 1774 году. Их установил Антуан Лавуазье. Он обнаружил, что состав атмосферы большей частью образован из азота и кислорода. С течением времени ее составляющие уточнялись. И теперь известно, что в ней находятся еще многие другие газы, а также вода и пыль.

Рассмотрим более подробно то, из чего состоит атмосфера Земли возле ее поверхности. Самый распространенный газ - азот. Его содержится немного больше 78 процентов. Но, несмотря на такое большое количество, в воздухе азот практически не активен.

Следующий по количеству и очень важный по значению элемент - кислород. Этого газа содержится почти 21%, и он как раз проявляет очень высокую активность. Его специфическая функция состоит в окислении мертвого органического вещества, которое в результате этой реакции разлагается.

Газы с низким содержанием, но важным значением

Третий газ, который входит в состав атмосферы, - аргон. Его чуть-чуть меньше, чем один процент. После него идут углекислый газ с неоном, гелий с метаном, криптон с водородом, ксенон, озон и даже аммиак. Но их содержится настолько мало, что процентное содержание таких компонентов равняется сотым, тысячным и миллионным частям. Из них только углекислый газ играет существенную роль, поскольку он является строительным материалом, который необходим растениям для фотосинтеза. Другая его важная функция состоит в том, чтобы не пропускать радиацию и поглощать часть солнечного тепла.

Еще один малочисленный, но важный газ - озон существует для удержания ультрафиолетового излучения, идущего от Солнца. Благодаря этому свойству все живое на планете надежно защищено. С другой стороны, озон влияет на температуру стратосферы. Из-за того, что он поглощает это излучение, происходит нагревание воздуха.

Постоянство количественного состава атмосферы поддерживается безостановочным перемешиванием. Ее слои перемещаются как по горизонтали, так и по вертикали. Поэтому в любом месте земного шара достаточно кислорода и нет избытка углекислого газа.

Что еще присутствует в воздухе?

Следует отметить, что в воздушном пространстве можно обнаружить пар и пыль. Последняя состоит из пыльцы и частичек почвы, в городе к ним присоединяются примеси твердых выбросов из выхлопных газов.

А вот воды в атмосфере много. При определенных условиях она конденсируется, и появляются облака и туман. По сути это одно и то же, только первые появляются высоко над поверхностью Земли, а последний стелется по ней. Облака принимают разнообразную форму. Этот процесс зависит от высоты над Землей.

Если они образовались в 2 км над сушей, то их называют слоистыми. Именно из них проливается на землю дождь или падает снег. Над ними до высоты 8 км формируются кучевые облака. Они всегда самые красивые и живописные. Именно их рассматривают и гадают, на что они похожи. Если такие образования появятся на следующих 10 км, они будут очень легкими и воздушными. Их название перистые.

На какие слои делится атмосфера?

Хотя они и имеют сильно отличающиеся друг от друга температуры, очень сложно сказать, на какой конкретной высоте начинается один слой и заканчивается другой. Это деление весьма условное и носит приблизительный характер. Однако слои атмосферы все же существуют и выполняют свои функции.

Самая нижняя часть воздушной оболочки названа тропосферой. Ее толщина увеличивается при перемещении от полюсов к экватору с 8 до18 км. Это самая теплая часть атмосферы, поскольку воздух в ней нагревается от земной поверхности. Большая часть водяного пара сосредоточена в тропосфере, поэтому в ней образуются тучи, выпадают осадки, гремят грозы и дуют ветра.

Следующий слой имеет толщину около 40 км и называется стратосферой. Если наблюдатель переместится в эту часть воздуха, то обнаружит, что небо стало фиолетовым. Это объясняется малой плотностью вещества, которое практически не рассеивает солнечные лучи. Именно в этом слое летают реактивные самолеты. Для них там открыты все просторы, поскольку практически нет облаков. Внутри стратосферы имеется слой, состоящий из большого количества озона.

После нее идут стратопауза и мезосфера. Последняя имеет толщину около 30 км. Она характеризуется резким понижением плотности воздуха и его температуры. Небо для наблюдателя видится в черном цвете. Здесь можно даже днем наблюдать звезды.

Слои, в которых практически нет воздуха

Продолжает строение атмосферы слой под названием термосфера - самая протяженная из всех остальных, ее толщина достигает 400 км. Этот слой отличается огромной температурой, которая может достигать 1700 °C.

Последние две сферы часто объединяют в одну и называют его ионосферой. Это связано с тем, что в них протекают реакции с выделением ионов. Именно эти слои позволяют наблюдать такое явление природы, как северное сияние.

Следующие 50 км от Земли отведены экзосфере. Это внешняя оболочка атмосферы. В ней происходит рассеивание частиц воздуха в космос. В этом слое обычно перемещаются спутники погоды.

Атмосфера Земли заканчивается магнитосферой. Именно она приютила большинство искусственных спутников планеты.

После всего сказанного, не должно остаться вопросов о том, что такое атмосфера. Если возникли сомнения в ее необходимости, то их легко развеять.

Значение атмосферы

Главная функция атмосферы заключается в защите поверхности планеты от перегрева в дневное время и чрезмерного остывания ночью. Следующее важное значение этой оболочки, которое никто не будет оспаривать, в том, чтобы снабжать кислородом всех живых существ. Без этого они задохнулись бы.

Большинство метеоритов сгорают в верхних слоях, так и не долетев до поверхности Земли. И люди могут любоваться летящими огнями, принимая их за падающие звезды. Без атмосферы вся Земля была бы усеяна кратерами. А о защите от солнечного излучения уже говорилось выше.

Как влияет человек на атмосферу?

Очень негативно. Это связано с разрастающейся деятельностью людей. Основная доля всех отрицательных моментов приходится на промышленность и транспорт. Кстати, именно автомобили выделяют почти 60% всех загрязняющих веществ, которые проникают в слои атмосферы. Оставшиеся сорок делят между собой энергетика и промышленность, а также отрасли по уничтожению отходов.

Список вредных веществ, которые ежедневно пополняют состав воздуха, очень длинный. Из-за транспорта в атмосфере оказываются: азот и сера, углерод, синец и сажа, а также сильный канцероген, вызывающий рак кожи - бензопирен.

На долю промышленности приходятся такие химические элементы: сернистый газ, углеводород и сероводород, аммиак и фенол, хлор и фтор. Если процесс будет продолжаться, то скоро ответы на вопросы: «Что такое атмосфера? Из чего она состоит?» будут совсем другими.

Атмосфера представляет собой смесь различных газов. Она простирается от поверхности Земли на высоту до 900 км, защищая планету от вредного спектра солнечного излучения, и содержит газы, необходимые для всего живого на планете. Атмосфера задерживает солнечное тепло, нагревая около земной поверхности и создавая благоприятный климат.

Состав атмосферы

Атмосфера Земли состоит в основном из двух газов - азота (78%) и кислорода (21%). Кроме того, она содержит примеси углекислого и других газов. в атмосфере существует в виде пара, капель влаги в облаках и кристалликов льда.

Слои атмосферы

Атмосфера состоит из многих слоев, между которыми нет четких границ. Температуры разных слоев заметно отличаются друг от друга.

Безвоздушная магнитосфера. Здесь летает большинство спутников Земли за пределами земной атмосферы. Экзосфера (450-500 км от поверхности). Почти не содержит газов. Некоторые спутники погоды совершают полеты в экзосфере. Термосфера (80-450 км) характеризуется высокими температурами, достигающими в верхнем слое 1700°С. Мезосфера (50-80 км). В этой сфере температура падает по мере увеличения высоты. Именно здесь сгорает большинство метеоритов (осколков космических пород), попадающих в атмосферу. Стратосфера (15-50 км). Содержит озоновый спой, т. е. слой озона, поглощающего ультрафиолетовое излучение Солнца. Это приводит к повышению температуры около поверхности Земли. Здесь обычно летают реактивные самолеты, так как видимость в этом слое очень хорошая и почти нет помех, вызванных погодными условиями. Тропосфера. Высота варьируется от 8 до 15 км от земной поверхности. Именно здесь формируется погода планеты, так как в этом слое содержится больше всего водяных паров, пыли и возникают ветры. Температура понижается по мере удаления от земной поверхности.

Атмосферное давление

Хотя мы и не ощущаем этого, слои атмосферы оказывают давление на поверхность Земли. Наиболее высокое около поверхности, а при удалении от неё оно постепенно снижается. Оно зависит от перепада температур суши и океана, и поэтому в районах, находящихся на одинаковой высоте над уровнем моря нередко бывает разное давление. Низкое давление приносит сырую погоду, а при высоком обычно устанавливаете ясная погода.

Движение воздушных масс в атмосфере

И давления заставляют в нижних слоях атмосферы перемешаться. Так возникают ветры, дующие из областей высокого давления в области низкого. Во многих регионах возникают и местные ветры, вызванные перепадами температур суши и моря. Горы также оказывают существенное влияние на направление ветров.

Парниковый эффект

Углекислый газ и другие газы, входящие в состав земной атмосферы, задерживают солнечное тепло. Этот процесс принято называть парниковым эффектом, так как он во многом напоминает циркуляцию тепла в парниках. Парниковый эффект влечет за собой глобальное потепление на планете. В областях высокого давления - антициклонах - устанавливается ясная солнечная . В областях низкого давления - циклонах - обычно стоит неустойчивая погода. Тепло и световая , поступающие в атмосферу. Газы задерживают тепло, отражающееся от земной поверхности, вызывая тем самым повышение температуры на Земле.

В стратосфере существует особый озоновый слой. Озон задерживает большую часть ультрафиолетового излучения Солнца, защищая от него Землю и все живое на ней. Ученые установили, что причиной разрушения озонового слоя являются особые хлорофторуглекислые газы, содержащиеся в некоторых аэрозолях и холодильном оборудовании. Над Арктикой и Антарктидой в озоновом слое были обнаружены огромные дыры, способствующие увеличению количества ультрафиолетового излучения, воздействующего на поверхность Земли.

Озон образуется в нижних слоях атмосферы в результате между солнечным излучением и различными выхлопными дымами и газами. Обычно он рассеивается по атмосфере, но, если под слоем теплого воздуха образуется замкнутый слой холодного, озон концентрируется и возникает смог. К сожалению, это не может восполнять потери озона в озоновых дырах.

На фотоснимке со спутника хорошо видна дыра в озоновом слое над Антарктикой. Размеры дыры меняются, но ученые считают, что она постоянно увеличивается. Предпринимаются попытки снизить уровень выхлопных газов в атмосфере. Следует уменьшать загрязнение воздуха и применять в городах бездымные виды топлива. Смог вызывает раздражение глаз и удушье у многих людей.

Возникновение и эволюция атмосферы Земли

Современная атмосфера Земли представляет собой результат длительного эволюционного развития. Она возникла в результате совместных действий геологических факторов и жизнедеятельности организмов. В течение всей геологической истории земная атмосфера пережила несколько глубоких перестроек. На основе геологических данных и теоретических (предпосылок первозданная атмосфера молодой Земли, существовавшая около 4 млрд. лет тому назад, могла состоять из смеси инертных и благородных газов с небольшим добавлением пассивного азота (Н. А. Ясаманов, 1985; А. С. Монин, 1987; О. Г. Сорохтин, С. А. Ушаков, 1991, 1993). В настоящее время взгляд на состав и строение ранней атмосферы несколько видоизменился. Первичная атмосфера (протоатмосфера) на самой ранней протопланетной стадии., т.е. старше чем 4,2 млрд. лет, могла состоять из смеси метана, аммиака и углекислого газа. В результате дегазации мантии и протекающих на земной поверхности активных процессов выветривания в атмосферу стали поступать пары воды, соединения углерода в виде СO 2 и СО, серы и ее соединений, а также сильных галогенных кислот - НСI, НF, НI и борной кислоты, которые дополнялись находившимися в атмосфере метаном, аммиаком, водородом, аргоном и некоторыми другими благородными газами. Эта первичная атмосфера была чрезвычайно тонкой. Поэтому температура у земной поверхности была близкой к температуре лучистого равновесия (А. С. Монин, 1977).

С течением времени газовый состав первичной атмосферы под влиянием процессов выветривания горных пород, выступавших на земной поверхности, жизнедеятельности цианобактерий и сине-зеленых водорослей, вулканических процессов и действия солнечных лучей стал трансформироваться. Привело это к разложению метана на и углекислоту, аммиака - на азот и водород; во вторичной атмосфере стали накапливаться углекислый газ, который медленно опускался к земной поверхности, и азот. Благодаря жизнедеятельности сине-зеленых водорослей в процессе фотосинтеза стал вырабатываться кислород, который, однако, в начале в основном расходовался на «окисление атмосферных газов, а затем и горных пород. При этом аммиак, окислившийся до молекулярного азота, стал интенсивно накапливаться в атмосфере. Как предполагается, значительная чаешь азота современной атмосферы является реликтовой. Метан и оксид углерода окислялись до углекислоты. Сера и сероводород окислялись до SO 2 и SO 3 , которые вследствие своей высокой подвижности и легкости быстро удалились из атмосферы. Таким образом, атмосфера из восстановительной, какой она была в архее и раннем протерозое, постепенно превращалась в окислительную.

Углекислый газ поступал в атмосферу как вследствие окисления метана, так и в результате дегазации мантии и выветривания горных пород. В том случае, если бы весь углекислый газ, выделившийся за всю историю Земли, сохранился в атмосфере, его парциальное давление в настоящее время могло стать таким же, как на Венере (О. Сорохтин, С. А. Ушаков, 1991). Но на Земле действовал обратный процесс. Значительная часть углекислого газа из атмосферы растворялась в гидросфере, в которой он использовался гидробионтами для построения своей раковины и биогенным путем превращался в карбонаты. В дальнейшем из них были сформированы мощнейшие толщи хемогенных и органогенных карбонатов.

Кислород в атмосферу поступал из трех источников. В течение длительного времени, начиная с момента возникновения Земли, он выделялся в процессе дегазации мантии и в основном расходовался на окислительные процессы, Другим источником кислорода была фотодиссоциация паров воды жестким ультрафиолетовым солнечным излучением. Появлений; свободного кислорода в атмосфере привело к гибели большинства прокариот, которые обитали в восстановительных условиях. Прокариотные организмы сменили места своего обитания. Они ушли с поверхности Земли в ее глубины и области, где еще сохранялись восстановительные условия. Им на смену пришли эукариоты, которые стали энергично перерабатывать углекислоту в кислород.

В течение архея и значительной части протерозоя практически весь кислород, возникающий как: абиогенным, так и биогенным путем, в основном расходовался на окисление железа и серы. Уже к концу протерозоя все металлическое двухвалентное железо, находившееся на земной поверхностей или окислилось, или переместилось в земное ядро. Это привело к тому, что парциальное давление кислорода в раннепротерозойской атмосфере изменилось.

В середине протерозоя концентрация кислорода в атмосфере достигала точки Юри и составляла 0,01% современного уровня. Начиная с этого времени кислород стал накапливаться в атмосфере и, вероятно, уже в конце рифея его содержание достигло точки Пастера (0,1% современного уровня). Возможно, в вендском периоде возник озоновый слой и Ь этого времени уже никогда не исчезал.

Появление свободного кислорода в земной атмосфере стимулировало эволюцию жизни и привело к возникновению новых форм с более совершенным метаболизмом. Если ранее эукариотные одноклеточные водоросли и цианеи, появившиеся в начале протерозоя, требовали содержания кислорода в воде всего 10 -3 его современной концентрации, то с возникновением бесскелетных Metazoa в конце раннего венда, т. е. около 650 млн. лет тому назад, концентрация кислорода в атмосфере должна была бы быть значительно выше. Ведь Metazoa использовали кислородное дыхание и для этого требовалось, чтобы парциальное давление кислорода достигло критического уровня - точки Пастера. В этом случае анаэробный процесс брожения сменился энергетически более перспективным и прогрессивным кислородным метаболизмом.

После этого дальнейшее накопление кислорода в земной атмосфере происходило довольно быстро. Прогрессивное увеличение объема сине-зеленых водорослей способствовало достижению в атмосфере необходимого для жизнеобеспечения животного мира уровня кислорода. Определенная стабилизация содержания кислорода в атмосфере произошла с того момента, когда растения вышли на сушу, - примерно 450 млн. лет назад. Выход растений на сушу, происшедший в силурийском периоде, привел к окончательной стабилизации уровня кислорода в атмосфере. Начиная с этого времени его концентрация стала колебаться в довольно узких пределах, никогда не всходивших за рамки существования жизни. Полностью концентрация кислорода в атмосфере стабилизировалась со времени появления цветковых растений. Это событие произошло в середине мелового периода, т.е. около 100 млн. лет тому назад.

Основная масса азота сформировалась на ранних стадиях развития Земли, главным образом за счет разложения аммиака. С появлением организмов начался процесс связывания атмосферного азота в органическое вещество и захоронения его в морских осадках. После выхода организмов на сушу азот стал захоронятся и в континентальных осадках. Особенно усилились процессы переработки свободного азота с появлением наземных растений.

На рубеже криптозоя и фанерозоя, т. е. около 650 млн. лет тому назад, содержание углекислого газа в атмосфере снизилось до десятых долей процентов, а содержания, близкого к современному уровню, он достиг лишь совсем недавно, примерно 10-20 млн. лет тому назад.

Таким образом, газовый состав атмосферы не только предоставлял организмам жизненное пространство, но и определял особенности их жизнедеятельности, способствовал расселению и эволюции. Возникающие сбои в распределении благоприятного для организмов газового состава атмосферы как из-за космических, так и планетарных причин приводили к массовым вымираниям органического мира, которые неоднократно происходили в течение криптозоя и на определенных рубежах фанерозойской истории.

Этносферные функции атмосферы

Атмосфера Земли обеспечивает необходимым веществом, энергией и определяет направленность и скорость метаболических процессов. Газовый состав современной атмосферы является оптимальным для существования и развития жизни. Будучи областью формирования погоды и климата, атмосфера должна создавать комфортные условия для жизнедеятельности людей, животных и растительности. Отклонения в ту или другую сторону в качестве атмосферного воздуха и погодных условиях создают экстремальные условия для жизнедеятельности животного и растительного мира, в том числе и для человека.

Атмосфера Земли не только обеспечивает условия существования человечества, являясь основным фактором эволюции этносферы. Она в то же время оказывается энергетическим и сырьевым ресурсом производства. В целом атмосфера - это фактор, сохраняющий здоровье человека, а некоторые области в силу физико-географических условий и качества атмосферного воздуха служат рекреационными территориями и являются областями, предназначенными для санаторно-курортного лечения и отдыха людей. Таким образом, атмосфера является фактором эстетического и эмоционального воздействия.

Этносферные и техносферные функции атмосферы, определенные совсем недавно (Е. Д. Никитин, Н. А. Ясаманов, 2001), нуждаются в самостоятельном и углубленном исследовании. Так, весьма актуальным является изучение энергетических атмосферных функций как с точки зрения возникновения и действия процессов, наносящих ущерб окружающей среде, так и с точки зрения воздействия на здоровье и благосостояние людей. В данном случае речь идет об энергии циклонов и антициклонов, атмосферных вихрей, атмосферном давлении и других экстремальных атмосферных явлениях, эффективное использование которых будет способствовать успешному решению проблемы получения не загрязняющих окружающую среду альтернативных источников энергии. Ведь воздушная среда, особенно та ее часть, которая располагается над Мировым океаном, является областью выделения колоссального объема свободной энергии.

Например, установлено, что тропические циклоны средней силы только за сутки выделяют энергию, эквивалентную энергии 500 тыс. атомных бомб, сброшенных на Хиросиму и Нагасаки. За 10 дней существования такого циклона высвобождается энергия, достаточная для удовлетворения всех энергетических потребностей такой страны, как США, в течение 600 лет.

В последние годы было опубликовано большое количество работ ученых естественнонаучного профиля, в той или иной мере касающихся разных сторон деятельности и влияния атмосферы на земные процессы, что свидетельствует об активизации междисциплинарных взаимодействий в современном естествознании. При этом проявляется интегрирующая роль определенных его направлений, среди которых надо отметить функционально-экологическое направление в геоэкологии.

Данное направление стимулирует анализ и теоретическое обобщение по экологическим функциям и планетарной роли различных геосфер, а это, в свою очередь, является важной предпосылкой для разработки методологии и научных основ целостного изучения нашей планеты, рационального использования и охраны ее природных ресурсов.

Атмосфера Земли состоит из нескольких слоев: тропосферы, стратосферы, мезосферы, термосферы, ионосферы и экзосферы. В верхней части тропосферы и нижней части стратосферы располагается слой, обогащенный озоном, именуемый озоновым экраном. Установлены определенные (суточные, сезонные, годовые и т. д.) закономерности в распределении озона. Со времени своего возникновения атмосфера влияет на течение планетарных процессов. Первичный состав атмосферы был совершенно иным, чем в настоящее время, но с течением времени неуклонно росли доля и роль молекулярного азота, около 650 млн. лет назад появился свободный кислород, количество которого непрерывно повышалось, но соответственно снижалась концентрация углекислого газа. Высокая подвижность атмосферы, ее газовый состав и наличие аэрозолей обусловливают ее выдающуюся роль и активное участие в разнообразных геологических и биосферных процессах. Велика роль атмосферы в перераспределении солнечной энергии и развитии катастрофических стихийных явлений и бедствий. Негативное воздействие на органический мир и природные системы оказывают атмосферные вихри - смерчи (торнадо), ураганы, тайфуны, циклоны и другие явления. Основными источниками загрязнений наряду с природными факторами выступают различные формы хозяйственной деятельности человека. Антропогенные воздействия на атмосферу выражаются не только в появлении различных аэрозолей и парниковых газов, но ив увеличении количества водяных паров, и проявляются в виде смогов и кислотных дождей. Парниковые газы меняют температурный режим земной поверхности, выбросы некоторых газов уменьшают объем озонового экрана и способствуют возникновению озоновых дыр. Велика этносферная роль атмосферы Земли.

Роль атмосферы в природных процессах

Приземная атмосфера в своего промежуточного состояния между литосферой и космическим пространством и своего газового состава создает условия для жизнедеятельности организмов. Вместе с тем от количества, характера и периодичности атмосферных осадков, от частот и силы ветров и особенно от температуры воздуха зависят выветривание и интенсивность разрушения горных пород, перенос и аккумуляция обломочного материала. Атмосфера выступает центральным компонентом климатической системы. Температура и влажность воздуха, облачность и осадки, ветер - все это характеризует погоду, т. е. непрерывно меняющееся состояние атмосферы. Одновременно эти же компоненты характеризуют и климат, т. е. усредненный многолетний режим погоды.

Состав газов, наличие облачности и различных примесей, которые называются аэрозольными частицами (пепел, пыль, частички водяного пара), определяют особенности прохождения солнечной радиации сквозь атмосферу и препятствуют уходу теплового излучения Земли в космическое пространство.

Атмосфера Земли очень подвижна. Возникающие в ней процессы и изменения ее газового состава, толщины, облачности, прозрачности и наличие в ней тех или иных аэрозольных частиц воздействуют как на погоду, так и на климат.

Действие и направленность природных, процессов, а также жизнь и деятельность на Земле определяются солнечной радиацией. Она дает 99,98% теплоты, поступающей на земную поверхность. Ежегодно это составляет 134*1019 ккал. Такое количество теплоты можно получить при сжигании 200 млрд. т. каменного угля. Запасов водорода, создающего этот поток термоядерной энергии в массе Солнца, хватит, по крайней мере, еще на 10 млрд. лет, т. е. на период в два раза больший, чем существуют само и наша планета.

Около 1/3 общего количества солнечной энергии, поступающей на верхнюю границу атмосферы, отражается обратно в мировое пространство, 13% поглощается озоновым слоем (в том числе почти вся ультрафиолетовая радиация),. 7% - остальной атмосферой и лишь 44% достигает земной поверхности. Суммарная солнечная радиация, достигающая Земли за сутки, равна энергии, которую человечество получило в результате сжигания всех видов топлива за последнее тысячелетие.

Количество и характер распределения солнечной радиации на земной поверхности находятся в тесной зависимости от облачности и прозрачности атмосферы. На величину рассеянной радиации влияют высота Солнца над горизонтом, прозрачность атмосферы, содержание в ней водяных паров, пыли, общее количество углекислоты и т. д.

Максимальное количество рассеянной радиации попадает в полярные районы. Чем ниже Солнце над горизонтом, тем меньше теплоты поступает на данный участок местности.

Большое значение имеют прозрачность атмосферы и облачность. В пасмурный летний день обычно холоднее, чем в ясный, так как дневная облачность препятствует нагреванию земной поверхности.

Большую роль в распределении теплоты играет запыленность атмосферы. Находящиеся в ней тонкодисперсные твердые частицы пыли и пепла, влияющие на ее прозрачность, отрицательно сказываются на распределении солнечной радиации, большая часть которой отражается. Тонкодисперсные частицы попадают в атмосферу двумя путями: это или пепел, выбрасываемый во время вулканических извержений, или пыль пустынь, переносимая ветрами из аридных тропических и субтропических областей. Особенно много такой пыли образуется в период засух, когда потоками теплого воздуха она выносится в верхние слои атмосферы и способна находиться там продолжительное время. После извержения вулкана Кракатау в 1883 г. пыль, выброшенная на десятки километров в атмосферу, находилась в стратосфере около 3 лет. В результате извержения в 1985 г. вулкана Эль-Чичон (Мексика) пыль достигла Европы, и поэтому произошло некоторое понижение приземных температур.

Атмосфера Земли содержит переменное количество водяного пара. В абсолютном исчислении по массе или объему его количество составляет от 2 до 5%.

Водяной пар, как и углекислота, усиливает парниковый эффект. В возникающих в атмосфере облаках и туманах протекают своеобразные физико-химические процессы.

Первоисточником водяного пара в атмосферу является поверхность Мирового океана. С него ежегодно испаряется слой воды толщиной от 95 до 110 см. Часть влаги возвращается в океан после конденсации, а другая воздушными потоками направляется в сторону материков. В областях переменно-влажного климата осадки увлажняют почву, а во влажных создают запасы грунтовых вод. Таким образом, атмосфера является аккумулятором влажности и резервуаром осадков. и туманы, формирующиеся в атмосфере, обеспечивают влагой почвенный покров и тем самым играют определяющую роль в развитии животного и растительного мира.

Атмосферная влага распределяется по земной поверхности благодаря подвижности атмосферы. Ей присуща весьма сложная система ветров и распределения давления. В связи с тем что атмосфера находится в непрерывном движении, характер и масштабы распределения ветровых потоков и давления все время меняются. Масштабы циркуляции изменяются от микрометеорологических, размером всего в несколько сотен метров, до глобального - в несколько десятков тысяч километров. Огромные атмосферные вихри участвуют в создании систем крупномасштабных воздушных течений и определяют общую циркуляцию атмосферы. Кроме того, они являются источниками катастрофических атмосферных явлений.

От атмосферного давления зависит распределение погодных и климатических условий и функционирование живого вещества. В том случае, если атмосферное давление колеблется в небольших пределах, оно не играет решающей роли в самочувствии людей и поведении животных и не отражается на физиологических функциях растений. С изменением давления, как правило, связаны фронтальные явления и изменения погоды.

Фундаментальное значение имеет атмосферное давление для формирования ветра, который, являясь рельефообразующим фактором, сильнейшим образом воздействует на животный и растительный мир.

Ветер способен подавить рост растений и в то же время способствует переносу семян. Велика роль ветра в формировании погодных и климатических условий. Выступает он и в качестве регулятора морских течений. Ветер как один из экзогенных факторов способствует эрозии и дефляции выветрелого материала на большие расстояния.

Эколого-геологическая роль атмосферных процессов

Уменьшение прозрачности атмосферы за счет появления в ней аэрозольных частиц и твердой пыли влияет на распределение солнечной радиации, увеличивая альбедо или отражательную способность. К такому же результату приводят и разнообразные химические реакции, вызывающие разложение озона и генерацию «перламутровых» облаков, состоящих из водяного пара. Глобальное изменение отражательной способности, так же как изменения газового состава атмосферы, главным образом парниковых газов, являются причиной климатических изменений.

Неравномерное нагревание, вызывающее различия в атмосферном давлении над разными участками земной поверхности, приводит к атмосферной циркуляции, которая является отличительной чертой тропосферы. При возникновении разности в давлении воздух устремляется из областей повышенного давления в область пониженных давлений. Эти перемещения воздушных масс вместе с влажностью и температурой определяют основные эколого-геологические особенности атмосферных процессов.

В зависимости от скорости ветер производит на земной поверхности различную геологическую работу. При скорости 10 м/с он качает толстые ветви деревьев, поднимает и переносит пыль и мелкий песок; со скоростью 20 м/с ломает ветви деревьев, переносит песок и гравий; со скоростью 30 м/с (буря) срывает крыши домов, вырывает с корнем деревья, ломает столбы, передвигает гальку и переносит мелкий щебень, а ураганный ветер со скоростью 40 м/с разрушает дома, ломает и сносит столбы линий электропередач, вырывает с корнем крупные деревья.

Большое негативное экологическое воздействие с катастрофическими последствиями оказывают шквальные бури и смерчи (торнадо) - атмосферные вихри, возникающие в теплое время года на мощных атмосферных фронтах, имеющие скорость до 100 м/с. Шквалы - это горизонтальные вихри с ураганной скоростью ветра (до 60-80 м/с). Они часто сопровождаются мощными ливнями и грозами продолжительностью от нескольких минут до получаса. Шквалы охватывают территории шириной до 50 км и проходят расстояние в 200-250 км. Шквальная буря в Москве и Подмосковье в 1998 г. повредила крыши многих домов и повалила деревья.

Смерчи, называемые в Северной Америке торнадо, представляют собой мощные воронкообразные атмосферные вихри, часто связанные с грозовыми облаками. Это суживающиеся в середине столбы воздуха диаметром от нескольких десятков до сотен метров. Смерч имеет вид воронки, очень похожей на хобот слона, спускающейся с облаков или поднимающейся с поверхности земли. Обладая сильной разреженностью и высокой скоростью вращения, смерч проходит путь до нескольких сотен километров, втягивая в себя пыль, воду из водоемов и различные предметы. Мощные смерчи сопровождаются грозой, дождем и обладают большой разрушительной силой.

Смерчи редко возникают в приполярных или экваториальных областях, где постоянно холодно или жарко. Мало смерчей в открытом океане. Смерчи происходят в Европе, Японии, Австралии, США, а в России особенно часты в Центрально-Черноземном районе, в Московской, Ярославской, Нижегородской и Ивановской областях.

Смерчи поднимают и перемещают автомобили, дома, вагоны, мосты. Особенно разрушительные смерчи (торнадо) наблюдаются в США. Ежегодно отмечается от 450 до 1500 торнадо с числом жертв в среднем около 100 человек. Смерчи относятся к быстродействующим катастрофическим атмосферным процессам. Они формируются всего за 20-30 мин, а время их существования 30 мин. Поэтому предсказать время и место возникновения смерчей практически невозможно.

Другими разрушительными, но действующими продолжительное время атмосферными вихрями являются циклоны. Они образуются из-за перепада давления, которое в определенных условиях способствует возникновению кругового движения воздушных потоков. Атмосферные вихри зарождаются вокруг мощных восходящих потоков влажного теплого воздуха и с большой скоростью вращаются по часовой стрелке в южном полушарии и против часовой - в северном. Циклоны в отличие от смерчей зарождаются над океанами и производят свои разрушительные действия над материками. Основными разрушительными факторами являются сильные ветры, интенсивные осадки в виде снегопада, ливней, града и нагонные наводнения. Ветры со скоростями 19 - 30 м/с образуют бурю, 30 - 35 м/с - шторм, а более 35 м/с - ураган.

Тропические циклоны - ураганы и тайфуны - имеют среднюю ширину в несколько сот километров. Скорость ветра внутри циклона достигает ураганной силы. Длятся тропические циклоны от нескольких дней до нескольких недель, перемещаясь со скоростью от 50 до 200 км/ч. Циклоны средних широт имеют больший диаметр. Поперечные размеры их составляют от тысячи до нескольких тысяч километров, скорость ветра штормовая. Движутся в северном полушарии с запада и сопровождаются градом и снегопадом, имеющими катастрофический характер. По числу жертв и наносимому ущербу циклоны и связанные с ними ураганы и тайфуны являются самыми крупными после наводнений атмосферными стихийными явлениями. В густонаселенных районах Азии число жертв во время ураганов измеряется тысячами. В 1991 г. в Бангладеш во время урагана, который вызвал образование морских волн высотой 6 м, погибло 125 тыс. человек. Большой ущерб наносят тайфуны территории США. При этом гибнут десятки и сотни людей. В Западной Европе ураганы приносят меньший ущерб.

Катастрофическим атмосферным явлением считаются грозы. Они возникают при очень быстром поднятии теплого влажного воздуха. На границе тропического и субтропического поясов грозы происходят по 90-100 дней в году, в умеренном поясе по 10-30 дней. В нашей стране наибольшее количество гроз случается на Северном Кавказе.

Грозы обычно продолжаются менее часа. Особую опасность представляют интенсивные ливни, градобития, удары молнии, порывы ветра, вертикальные потоки воздуха. Опасность градобития определяется размерами градин. На Северном Кавказе масса градин однажды достигала 0,5 кг, а в Индии отмечены градины массой 7 кг. Наиболее градоопасные районы у нас в стране находятся на Северном Кавказе. В июле 1992 г. град повредил в аэропорту «Минеральные Воды» 18 самолетов.

К опасным атмосферным явлениям относятся молнии. Они убивают людей, скот, вызывают пожары, повреждают электросеть. От гроз и их последствий ежегодно в мире гибнет около 10 000 человек. Причем в некоторых районах Африки, во Франции и США число жертв от молний больше, чем от других стихийных явлений. Ежегодный экономический ущерб от гроз в США составляет не менее 700 млн. долларов.

Засухи характерны для пустынных, степных и лесостепных регионов. Недостаток атмосферных осадков вызывает иссушение почвы, понижение уровня подземных вод и в водоемах до полного их высыхания. Дефицит влаги приводит к гибели растительности и посевов. Особенно сильными бывают засухи в Африке, на Ближнем и Среднем Востоке, в Центральной Азии и на юге Северной Америки.

Засухи изменяют условия жизнедеятельности человека, оказывают неблагоприятное воздействие на природную среду через такие процессы, как осолонение почвы, суховеи, пыльные бури, эрозия почвы и лесные пожары. Особенно сильными пожары бывают во время засухи в таежных районах, тропических и субтропических лесах и саваннах.

Засухи относятся к кратковременным процессам, которые продолжаются в течение одного сезона. В том случае, когда засухи длятся более двух сезонов, возникает угроза голода и массовой смертности. Обычно действие засухи распространяется на территорию одной или нескольких стран. Особенно часто продолжительные засухи с трагическими последствиями возникают в Сахельской области Африки.

Большой ущерб приносят такие атмосферные явления, как снегопады, кратковременные ливневые дожди и продолжительные затяжные дожди. Снегопады вызывают массовые сходы лавин в горах, а быстрое таяние выпавшего снега и ливневые продолжительные дожди приводят к наводнениям. Огромная масса воды, падающая на земную поверхность, особенно в безлесных районах, вызывает сильную эрозию почвенного покрова. Происходит интенсивный рост овражно-балочных систем. Наводнения возникают в результате крупных паводков в период обильного выпадения атмосферных осадков или половодья после внезапно наступившего потепления или весеннего таяния снега и, следовательно, по происхождению относятся к атмосферным явлениям (они рассматриваются в главе, посвященной экологической роли гидросферы).

Антропогенные изменения атмосферы

В настоящее время имеется множество различных источников антропогенного характера, вызывающих загрязнение атмосферы и приводящих к серьезным нарушениям экологического равновесия. По своим масштабам наибольшее воздействие на атмосферу оказывают два источника: транспорт и промышленность. В среднем на долю транспорта приходится около 60% общего количества атмосферных загрязнений, промышленности - 15, тепловой энергетики - 15, технологий уничтожения бытовых и промышленных отходов - 10%.

Транспорт в зависимости от используемого топлива и типов окислителей выбрасывает в атмосферу оксиды азота, серы, оксиды и диоксиды углерода, свинца и его соединений, сажу, бензопирен (вещество из группы полициклических ароматических углеводородов, которое является сильным канцерогеном, вызывающим рак кожи).

Промышленность выбрасывает в атмосферу сернистый газ, оксиды и диоксиды углерода, углеводороды, аммиак, сероводород, серную кислоту, фенол, хлор, фтор и другие соединения и химические . Но главенствующее положение среди выбросов (до 85%) занимает пыль.

В результате загрязнения меняется прозрачность атмосферы, в ней возникают аэрозоли, смог и кислотные дожди.

Аэрозоли представляют собой дисперсные системы, состоящие из частиц твердого тела или капель жидкости, находящихся во взвешенном состоянии в газовой среде. Размер частиц дисперсной фазы обычно составляет 10 -3 -10 -7 см. В зависимости от состава дисперсной фазы аэрозоли подразделяют на две группы. К одной относят аэрозоли, состоящие из твердых частиц, диспергированных в газообразной среде, ко второй - аэрозоли, являющиеся смесью газообразных и жидких фаз. Первые называют дымами, а вторые - туманами. В процессе их образования большую роль играют центры конденсации. В качестве ядер конденсации выступают вулканический пепел, космическая пыль, продукты промышленных выбросов, различные бактерии и др. Число возможных источников ядер концентрации непрерывно растет. Так, например, при уничтожении огнем сухой травы на площади 4000 м 2 образуется в среднем 11*10 22 ядер аэрозолей.

Аэрозоли начали образовываться с момента возникновения нашей планеты и влияли на природные условия. Однако их количество и действия, уравновешиваясь с общим круговоротом веществ в природе, не вызывали глубоких экологических изменений. Антропогенные факторы их образования сдвинули это равновесие в сторону значительных биосферных перегрузок. Особенно сильно эта особенность проявляется с тех пор, как человечество стало использовать специально создаваемые аэрозоли как в виде отравляющих веществ, так и для защиты растений.

Наиболее опасными для растительного покрова являются аэрозоли сернистого газа, фтористого водорода и азота. При соприкосновении с влажной поверхностью листа они образуют кислоты, губительно воздействующие на живые . Кислотные туманы попадают вместе с вдыхаемым воздухом в дыхательные органы животных и человека, агрессивно воздействуют на слизистые оболочки. Одни из них разлагают живую ткань, а радиоактивные аэрозоли вызывают онкологические заболевания. Среди радиоактивных изотопов особую опасность представляет Sг 90 не только своей канцерогенностью, но и как аналог кальция, замещающий его в костях организмов, вызывая их разложение.

Во время ядерных взрывов в атмосфере образуются радиоактивные аэрозольные облака. Мелкие частицы радиусом 1 - 10 мкм попадают не только в верхние слои тропосферы, но и в стратосферу, в которой они способны находиться длительное время. Аэрозольные облака образуются также во время работы реакторов промышленных установок, производящих ядерное топливо, а также в результате аварий на АЭС.

Смог представляет собой смесь аэрозолей с жидкой и твердой дисперсными фазами, которые образуют туманную завесу над промышленными районами и крупными городами.

Различают три вида смога: ледяной, влажный и сухой. Ледяной смог назван аляскинским. Это сочетание газообразных загрязнителей с добавлением пылеватых частиц и кристалликов льда, которые возникают при замерзании капель тумана и пара отопительных систем.

Влажный смог, или смог лондонского типа, иногда называется зимним. Он представляет собой смесь газообразных загрязнителей (в основном сернистого ангидрита), пылеватых частиц и капель тумана. Метеорологической предпосылкой для появления зимнего смога является безветренная погода, при которой слой теплого воздуха располагается над приземным слоем холодного воздуха (ниже 700 м). При этом отсутствует не только горизонтальный, но и вертикальный обмен. Загрязняющие вещества, обычно рассеивающиеся в высоких слоях, в данном случае накапливаются в приземном слое.

Сухой смог возникает в летнее время, и его нередко называют смогом лос-анджелесского типа. Он представляет собой смесь озона, угарного газа, оксидов азота и паров кислот. Образуется такой смог в результате разложения загрязняющих веществ солнечной радиацией, особенно ультрафиолетовой ее частью. Метеорологической предпосылкой является атмосферная инверсия, выражающаяся в появлении слоя холодного воздуха над теплым. Обычно поднимаемые теплыми потоками воздуха газы и твердые частицы затем рассеиваются в верхних холодных слоях, но в данном случае накапливаются в инверсионном слое. В процессе фотолиза диоксиды азота, образованные при сгорании топлива в двигателях автомобилей, распадаются:

NO 2 → NO + О

Затем происходит синтез озона:

O + O 2 + M → O 3 + M

NO + О → NO 2

Процессы фотодиссоциации сопровождаются желто-зеленым свечением.

Кроме того, происходят реакции по типу: SO 3 + Н 2 0 -> Н 2 SO 4 , т. е. образуется сильная серная кислота.

С изменением метеорологических условий (появление ветра или изменение влажности) холодный воздух рассеивается и смог исчезает.

Наличие канцерогенных веществ в смоге приводит к нарушению дыхания, раздражению слизистых оболочек, расстройству кровообращения, возникновению астматических удуший и нередко к смерти. Особенно опасен смог для малолетних детей.

Кислотные дожди представляют собой атмосферные осадки, подкисленные растворенными в них промышленными выбросами оксидов серы, азота и паров хлорной кислоты и хлора. В процессе сжигания угля, и газа большая часть находящейся в ней серы как в виде оксида, так в соединениях с железом, в частности в пирите, пирротине, халькопирите и т. д., превращается в оксид серы, который вместе с диоксидом углерода выбрасывается в атмосферу. При соединении атмосферного азота и технических выбросов с кислородом образуются различные оксиды азота, причем объем образовавшихся оксидов азота зависит от температуры горения. Основная масса оксидов азота возникает во время эксплуатации автотранспорта и тепловозов, а меньшая часть приходится на энергетику и промышленные предприятия. Оксиды серы и азота - главные кислотообразователи. При реакции с атмосферным кислородом и находящимися в нем парами воды образуются серная и азотная кислоты.

Известно, что щелочно-кислотный баланс среды определяется величиной рН. Нейтральная среда имеет величину рН, равную 7, кислая - 0, а щелочная - 14. В современную эпоху величина рН дождевой воды составляет 5,6, хотя в недавнем прошлом она была нейтральной. Уменьшение значения рН на единицу соответствует десятикратному повышению кислотности и, следовательно, в настоящее время практически повсеместно выпадают дожди с повышенной кислотностью. Максимальная кислотность дождей, зарегистрированная в Западной Европе, составляла 4-3,5 рН. При этом надо учесть, что величина рН, равная 4-4,5, смертельна для большинства рыб.

Кислотные дожди оказывают агрессивное воздействие на растительный покров Земли, на промышленные и жилые здания и способствуют существенному ускорению выветривания обнаженных горных пород. Повышение кислотности препятствует саморегуляции нейтрализации почв, в которых растворяются питательные вещества. В свою очередь, это приводит к резкому снижению урожайности и вызывает деградацию растительного покрова. Кислотность почв способствует освобождению находящихся в связанном состоянии тяжелых , которые постепенно усваиваются растениями, вызывая у них серьезные повреждения тканей и проникая в пищевые цепочки человека.

Изменение щелочно-кислотного потенциала морских вод, особенно в мелководьях, ведет к прекращению размножения многих беспозвоночных, вызывает гибель рыб и нарушает экологическое равновесие в океанах.

В результате кислотных дождей под угрозой гибели находятся лесные массивы Западной Европы, Прибалтики, Карелии, Урала, Сибири и Канады.

АТМОСФЕРА Земли (греческий atmos пар + sphaira шар) - газовая оболочка, окружающая Землю. Масса атмосферы составляет около 5,15·10 15 Биологическое значение атмосферы огромно. В атмосфере осуществляется массо-энергообмен между живой и неживой природой, между растительным и животным миром. Азот атмосферы усваивают микроорганизмы; из углекислого газа и воды за счет энергии Солнца растения синтезируют органические вещества и выделяют кислород. Наличие атмосферы обеспечивает сохранение на Земле воды, также являющейся важным условием существования живых организмов.

Исследования, проведенные с помощью высотных геофизических ракет, искусственных спутников Земли и межпланетных автоматических станций, установили, что земная атмосфера простирается на тысячи километров. Границы атмосферы непостоянны, на них влияют гравитационное поле Луны и давление потока солнечных лучей. Над экватором в области земной тени атмосфера достигает высот около 10 000км, а над полюсами границы ее удалены от поверхности земли на 3000 км. Основная масса атмосферы (80-90%) находится в пределах высот до 12-16 км, что объясняется экспоненциальным (нелинейным) характером уменьшения плотности (разрежением) ее газовой среды по мере увеличения высоты над уровнем моря.

Существование большинства живых организмов в естественных условиях возможно в еще более узких границах атмосферы, до 7-8 км, где имеет место необходимое для активного протекания биологических процессов сочетание таких атмосферных факторов, как газовый состав, температура, давление, влажность. Гигиеническое значение имеют также движение и ионизация воздуха, атмосферные осадки, электрическое состояние атмосферы.

Газовый состав

Атмосфера представляет собой физическую смесь газов (табл. 1), преимущественно азота и кислорода (78,08 и 20,95 об. %). Соотношение газов атмосферы практически одинаково до высот 80-100 км. Постоянство основной части газового состава атмосеры обусловливается относительным уравновешиванием процессов газообмена между живой и неживой природой и непрерывным перемешиванием масс воздуха в горизонтальном и вертикальном направлениях.

Таблица 1. ХАРАКТЕРИСТИКА ХИМИЧЕСКОГО СОСТАВА СУХОГО АТМОСФЕРНОГО ВОЗДУХА У ЗЕМНОЙ ПОВЕРХНОСТИ

Состав газовый

Объемная концентрация, %

Кислород

Углекислый газ

Закись азота

Двуокись серы

От 0 до 0,0001

От 0 до 0,000007 летом, от 0 до 0,000002 зимой

Двуокись азота

От 0 до 0,000002

Окись углерода

На высотах более 100 км происходит изменение процентного содержания отдельных газов, связанное с их диффузным расслоением под влиянием гравитации и температуры. Кроме того, под действием коротковолновой части ультрафиолетовых и рентгеновских лучей на высоте 100 км и более происходит диссоциация молекул кислорода, азота и углекислого газа на атомы. На больших высотах эти газы находятся в виде сильно ионизированных атомов.

Содержание углекислого газа в атмосфере различных районов Земли менее постоянно, что связано отчасти с неравномерным рассредоточением крупных промышленных предприятий, загрязняющих воздух, а также неравномерностью распределения на Земле растительности, водных бассейнов, поглощающих углекислый газ. Также изменчиво в атмосфере и содержание аэрозолей (см.) - взвешенных в воздухе частиц размером от нескольких миллимикрон до нескольких десятков микрон, - образующихся в результате вулканических извержений, мощных искусственных взрывов, загрязнений индустриальными предприятиями. Концентрация аэрозолей быстро убывает с высотой.

Самая непостоянная и важная из переменных компонентов атмосферы - водяной пар, концентрация которого у земной поверхности может колебаться от 3% (в тропиках) до 2×10 -10 % (в Антарктиде). Чем выше температура воздуха, тем больше влаги при прочих равных условиях может находиться в атмосфере и наоборот. Основная масса паров воды сосредоточена в атмосфере до высот 8-10 км. Содержание водяного пара в атмосфере зависит от сочетанного влияния процессов испарения, конденсации и горизонтального переноса. На больших высотах в связи с понижением температуры и конденсации паров воздух практически сухой.

Атмосфера Земли, помимо молекулярного и атомарного кислорода, содержит в незначительном количестве и озон (см.), концентрация которого весьма непостоянна и меняется в зависимости от высоты и времени года. Больше всего озона содержится в области полюсов к концу полярной ночи на высоте 15-30 км с резким убыванием вверх и вниз. Озон возникает в результате фотохимического действия на кислород ультрафиолетовой солнечной радиации преимущественно на высотах 20-50 км. Двухатомные молекулы кислорода частично распадаются при этом на атомы и, присоединяясь к неразложенным молекулам, образуют трехатомные молекулы озона (полимерная, аллотропная форма кислорода).

Наличие в атмосфере группы так называемых инертных газов (гелия, неона, аргона, криптона, ксенона) связано с непрерывным протеканием процессов естественного радиоактивного распада.

Биологическое значение газов атмосферы очень велико. Для большинства многоклеточных организмов определенное содержание молекулярного кислорода в газовой или водной среде является непременным фактором их существования, обусловливающим при дыхании высвобождение энергии из органических веществ, созданных первоначально в ходе фотосинтеза. Не случайно, что верхние границы биосферы (часть поверхности земного шара и нижняя часть атмосферы, где существует жизнь) определяются наличием достаточного количества кислорода. В процессе эволюции организмы приспособились к определенному уровню содержания кислорода в атмосфере; изменение содержания кислорода в сторону уменьшения или увеличения оказывает неблагоприятный эффект (см. Высотная болезнь , Гипероксия , Гипоксия).

Выраженным биологическим действием обладает и озон-аллотропная форма кислорода. При концентрациях, не превышающих 0,0001 мг/л, что характерно для курортных местностей и морских побережий, озон оказывает целебное действие - стимулирует дыхание и сердечно-сосудистую деятельность, улучшает сон. С увеличением концентрации озона проявляется его токсическое действие: раздражение глаз, некротическое воспаление слизистых оболочек дыхательных путей, обострение легочных заболеваний, вегетативные неврозы. Вступая в соединение с гемоглобином, озон образует метгемоглобин, что приводит к нарушению дыхательной функции крови; затрудняется перенос кислорода из легких к тканям, развиваются явления удушья. Сходное неблагоприятное влияние на организм оказывает и атомарный кислород. Озон играет значительную роль в создании термических режимов различных слоев атмосферы вследствие чрезвычайно сильного поглощения солнечной радиации и земного излучения. Наиболее интенсивно озон поглощает ультрафиолетовые и инфракрасные лучи. Солнечные лучи с длиной волны меньше 300 нм почти полностью поглощаются атмосферным озоном. Таким образом, Земля окружена своеобразным «озоновым экраном», защищающим многие организмы от губительного действия ультрафиолетового излучения Солнца, Азот атмосферного воздуха имеет важное биологическое значение прежде всего как источник так наз. фиксированного азота - ресурса растительной (а в конечном счете и животной) пищи. Физиологическая значимость азота определяется его участием в создании необходимого для жизненных процессов уровня атмосферного давления. При определенных условиях изменения давления азот играет основную роль в развитии ряда нарушений в организме (см. Декомпрессионная болезнь). Предположения о том, что азот ослабляет токсическое действие на организм кислорода и усваивается из атмосферы не только микроорганизмами, но и высшими животными, являются спорными.

Инертные газы атмосферы (ксенон, криптон, аргон, неон, гелий) при создаваемом ими в обычных условиях парциальном давлении могут быть отнесены к числу биологически индифферентных газов. При значительном повышении парциального давления эти газы оказывают наркотическое действие.

Наличие углекислого газа в атмосфере обеспечивает накопление солнечной энергии в биосфере за счет фотосинтеза сложных соединений углерода, которые в процессе жизни непрерывно возникают, изменяются и разлагаются. Эта динамическая система поддерживается в результате деятельности водорослей и наземных растений, улавливающих энергию солнечного света и использующих ее для превращения углекислого газа (см.) и воды в разнообразные органические соединения с выделением кислорода. Протяженность биосферы вверх ограничена частично и тем, что на высотах более 6-7 км хлорофиллсодержащие растения не могут жить из-за низкого парциального давления углекислого газа. Углекислый газ является весьма активным и в физиологическом отношении, так как играет важную роль в регуляции обменных процессов, деятельности центральной нервной системы, дыхания, кровообращения, кислородного режима организма. Однако эта регуляция опосредована влиянием углекислого газа, образуемого самим организмом, а не поступающего из атмосферы. В тканях и крови животных и человека парциальное давление углекислого газа примерно в 200 раз превышает величину его давления в атмосфере. И лишь при значительном увеличении содержания углекислого газа в атмосфере (более 0,6-1%) наблюдаются нарушения в организме, обозначаемые термином гиперкапния (см.). Полное устранение углекислого газа из вдыхаемого воздуха не может непосредственно оказать неблагоприятного влияния на организм человека и животных.

Углекислый газ играет определенную роль в поглощении длинноволнового излучения и поддержании «оранжерейного эффекта», повышающего температуру у поверхности Земли. Изучается также проблема влияния на термические и другие режимы атмосферы углекислого газа, поступающего в громадных количествах в воздух как отход промышленности.

Водяные пары атмосферы (влажность воздуха) также оказывают влияние на организм человека, в частности на теплообмен с окружающей средой.

В результате конденсации водяного пара в атмосфере образуются облака и выпадают атмосферные осадки (дождь, град, снег). Водяные пары, рассеивая солнечное излучение, участвуют в создании теплового режима Земли и нижних слоев атмосферы, в формировании метеорологических условий.

Атмосферное давление

Атмосферное давление (барометрическое) - давление, оказываемое атмосферой под влиянием гравитации на поверхность Земли. Величина этого давления в каждой точке атмосферы равна весу вышележащего столба воздуха с единичным основанием, простирающегося над местом измерения до границ атмосферы. Измеряют атмосферное давление барометром (см.) и выражают в миллибарах, в ньютонах на квадратный метр или высотой столба ртути в барометре в миллиметрах, приведенной к 0° и нормальной величине ускорения силы тяжести. В табл. 2 приведены наиболее употребительные единицы измерения атмосферного давления.

Изменение давления происходит вследствие неравномерного нагревания масс воздуха, расположенных над сушей и водой в различных географических широтах. При повышении температуры плотность воздуха и создаваемое им давление уменьшаются. Огромное скопление быстродвижущегося воздуха с пониженным давлением (с уменьшением давления от периферии к центру вихря) называют циклоном, с повышенным давлением (с повышением давления к центру вихря) - антициклоном. Для прогноза погоды важны непериодические изменения атмосферного давления, происходящие в движущихся обширных массах и связанные с возникновением, развитием и разрушением антициклонов и циклонов. Особенно большие изменения атмосферного давления связаны с быстрым перемещением тропических циклонов. При этом атмосферное давление может изменяться на 30-40 мбар за сутки.

Падение атмосферного давления в миллибарах на расстоянии, равном 100 км, называется горизонтальным барометрическим градиентом. Обычно величины горизонтального барометрического градиента составляют 1-3 мбар, но в тропических циклонах иногда возрастают до десятков миллибар на 100 км.

С подъемом на высоту атмосферное давление понижается в логарифмической зависимости: вначале очень резко, а затем все менее заметно (рис. 1). Поэтому кривая изменения барометрического давления носит экспоненциальный характер.

Убывание давления на единицу расстояния по вертикали называется вертикальным барометрическим градиентом. Часто пользуются обратной ему величиной - барометрической ступенью.

Так как барометрическое давление есть сумма парциальных давлений газов, образующих воздух, то очевидно, что с подъемом на высоту наряду с уменьшением общего давления атмосферы снижается и парциальное давление газов, составляющих воздух. Величина парциального давления любого газа в атмосфере вычисляется по формуле

где Р х - парциальное давление газа, Ρ z - атмосферное давление на высоте Ζ, Х% - процентное содержание газа, парциальное давление которого следует определить.

Рис. 1. Изменение барометрического давления в зависимости от высоты над уровнем моря.

Рис. 2. Изменение парциального давления кислорода в альвеолярном воздухе и насыщения артериальной крови кислородом в зависимости от изменения высоты при дыхании воздухом и кислородом. Дыхание кислородом начинается с высоты 8,5 км (эксперимент в барокамере).

Рис. 3. Сравнительные кривые средних величин активного сознания у человека в минутах на разных высотах после быстрого подъема при дыхании воздухом (I) я кислородом (II). На высотах более 15 км активное сознание нарушается одинаково при дыхании кислородом и воздухом. На высотах до 15 км дыхание кислородом значительно продлевает период активного сознания (эксперимент в барокамере).

Поскольку процентный состав газов атмосферы относительно постоянен, то для определения парциального давления любого газа требуется лишь знать общее барометрическое давление на данной высоте (рис. 1 и табл. 3).

Таблица 3. ТАБЛИЦА СТАНДАРТНОЙ АТМОСФЕРЫ (ГОСТ 4401-64) 1

Геометрическая высота (м)

Температура

Барометрическое давление

Парциальное давление кислорода (мм рт. ст.)

мм рт. ст.

1 Дана в сокращенном виде и дополнена графой «Парциальное давление кислорода» .

При определении парциального давления газа во влажном воздухе нужно вычесть из величины барометрического давления давление (упругость) насыщенных паров.

Формула для определения парциального давления газа во влажном воздухе будет несколько иной, чем для сухого воздуха:

где рH 2 O - упругость водяных паров. При t° 37° упругость насыщенного водяного пара равна 47 мм рт. ст. Эта величина используется при вычислении парциальных давлений газов альвеолярного воздуха в наземных и высотных условиях.

Влияние на организм повышенного и пониженного давления. Изменения барометрического давления в сторону повышения или понижения оказывают разнообразное действие на организм животных и человека. Влияние повышенного давления связано с механическим и проникающим физико-химическим действием газовой среды (так наз. компрессионный и проникающий эффекты).

Компрессионный эффект проявляется: общим объемным сжатием, обусловленным равномерным повышением сил механического давления на органы и ткани; механонаркозом, обусловленным равномерной объемной компрессией при очень высоком барометрическом давлении; местным неравномерным давлением на ткани, которые ограничивают газосодержащие полости при нарушенной связи наружного воздуха с воздухом, находящимся в полости, например, среднего уха, придаточных полостях носа (см. Баротравма); увеличением плотности газа в системе внешнего дыхания, что вызывает возрастание сопротивления дыхательным движениям, особенно при форсированном дыхании (физическая нагрузка, гиперкапния).

Проникающий эффект может привести к токсическому действию кислорода и индифферентных газов, повышение содержания которых в крови и тканях вызывает наркотическую реакцию, первые признаки к-рой при использовании азото-кислородной смеси у человека возникают при давлении 4-8 ата. Увеличение парциального давления кислорода вначале снижает уровень функционирования сердечно-сосудистой и дыхательной систем вследствие выключения регулирующего влияния физиологической гипоксемии. При увеличении парциального давления кислорода в легких более 0,8-1 ата проявляется его токсическое действие (поражение легочной ткани, судороги, коллапс).

Проникающий и компрессионный эффекты повышенного давления газовой среды используются в клинической медицине при лечении различных болезней с общим и местным нарушением кислородного обеспечения (см. Баротерапия , Кислородная терапия).

Понижение давления оказывает на организм еще более выраженное действие. В условиях крайне разреженной атмосферы основным патогенетическим фактором, приводящим за несколько секунд к потере сознания, а за 4-5 мин.- к гибели, является уменьшение парциального давления кислорода во вдыхаемом воздухе, а затем в альвеолярном воздухе, крови и тканях (рис. 2 и 3). Умеренная гипоксия вызывает развитие приспособительных реакций системы дыхания и гемодинамики, направленных на поддержание кислородного снабжения в первую очередь жизненно важных органов (мозга, сердца). При выраженном недостатке кислорода угнетаются окислительные процессы (за счет дыхательных ферментов), нарушаются аэробные процессы выработки энергии в митохондриях. Это приводит вначале к расстройству функций жизненно важных органов, а затем к необратимым структурным повреждениям и гибели организма. Развитие приспособительных и патологических реакций, изменение функционального состояния организма и работоспособности человека при понижении атмосферного давления определяется степенью и скоростью уменьшения парциального давления кислорода во вдыхаемом воздухе, длительностью пребывания на высоте, интенсивностью выполняемой работы, исходным состоянием организма (см. Высотная болезнь).

Понижение давления на высотах (даже при исключении недостатка кислорода) вызывает в организме серьезные нарушения, объединяемые понятием «декомпрессионные расстройства», к которым относятся: высотный метеоризм, баротит и баросинусит, высотная декомпрессионная болезнь и высотная тканевая эмфизема.

Высотный метеоризм развивается вследствие расширения газов в желудочно-кишечном тракте при уменьшении барометрического давления на брюшную стенку при подъеме на высоты от 7-12 км и более. Определенное значение имеет и выход газов, растворенных в кишечном содержимом.

Расширение газов приводит к растяжению желудка и кишечника, поднятию диафрагмы, изменению положения сердца, раздражению рецепторного аппарата этих органов и возникновению патологических рефлексов, нарушающих дыхание и кровообращение. Нередко возникают резкие боли в области живота. Сходные явления иногда возникают и у водолазов при подъеме с глубины на поверхность.

Механизм развития баротита и баросинусита, проявляющихся чувством заложенности и боли соответственно в среднем ухе или придаточных полостях носа, подобен развитию высотного метеоризма.

Снижение давления, помимо расширения газов, содержащихся в полостях тела, обусловливает также и выход газов из жидкостей и тканей, в которых они были растворены в условиях давления на уровне моря или на глубине, и образование пузырьков газа в организме.

Этот процесс выхода растворенных газов (прежде всего азота) вызывает развитие декомпрессионной болезни (см.).

Рис. 4. Зависимость температуры кипения воды от высоты над уровнем моря и барометрического давления. Цифры давления расположены под соответствующими цифрами высоты.

При уменьшении атмосферного давления понижается температура кипения жидкостей (рис. 4). На высоте более 19 км, где барометрическое давление равно (или меньше) упругости насыщенных паров при температуре тела (37°), может произойти «закипание» межтканевой и межклеточной жидкости организма, в результате чего в крупных венах, в полости плевры, желудка, перикарда, в рыхлой жировой клетчатке, то есть в участках с низким гидростатическим и внутритканевым давлением, образуются пузыри водяного пара, развивается высотная тканевая эмфизема. Высотное «кипение» не затрагивает клеточные структуры, локализуясь только в межклеточной жидкости и крови.

Массивные пузыри пара могут блокировать работу сердца и циркуляцию крови и нарушать работу жизненно важных систем и органов. Это является серьезным осложнением острого кислородного голодания, развивающегося на больших высотах. Профилактика высотной тканевой эмфиземы может быть обеспечена созданием внешнего противодавления на тело высотным снаряжением.

Сам процесс понижения барометрического давления (декомпрессия) при определенных параметрах может стать повреждающим фактором. В зависимости от скорости декомпрессию разделяют на плавную (медленную) и взрывную. Последняя протекает за время менее 1 секунды и сопровождается сильным хлопком (как при выстреле), образованием тумана (конденсация паров воды из-за охлаждения расширяющегося воздуха). Обычно взрывная декомпрессия происходит на высотах при разрушении остекления герметичной кабины или скафандра с избыточным давлением.

При взрывной декомпрессии прежде всего страдают легкие. Быстрое нарастание внутрилегочного избыточного давления (более чем на 80 мм рт. ст.) приводит к значительному растяжению легочной ткани, что может вызвать разрыв легких (при их расширении в 2,3 раза). Взрывная декомпрессия может вызвать повреждение и желудочно-кишечного тракта. Величина возникающего избыточного давления в легких будет во многом зависеть от скорости истечения из них воздуха в процессе декомпрессии и объема воздуха в легких. Особенно опасно, если верхние дыхательные пути в момент декомпрессии окажутся закрытыми (при глотании, задержке дыхания) или декомпрессия совпадет с фазой глубокого вдоха, когда легкие наполняются большим количеством воздуха.

Температура атмосферы

Температура атмосферы с увеличением высоты вначале понижается (в среднем от 15° у земли до -56,5° на высоте 11-18 км). Вертикальный температурный градиент в этой зоне атмосферы составляет около 0,6° на каждые 100 м; он изменяется в течение суток и года (табл. 4).

Таблица 4. ИЗМЕНЕНИЯ ВЕРТИКАЛЬНОГО ТЕМПЕРАТУРНОГО ГРАДИЕНТА НАД СРЕДНЕЙ ПОЛОСОЙ ТЕРРИТОРИИ СССР

Рис. 5. Изменение температуры атмосферы на различных высотах. Границы сфер обозначены пунктиром.

На высотах 11 - 25 км температура становится постоянной и составляет -56,5°; затем температура начинает повышаться, достигая на высоте 40 км 30-40°, на высоте 50-60 км 70° (рис. 5), что связано с интенсивным поглощением озоном солнечной радиации. С высоты 60- 80 км температура воздуха вновь несколько снижается (до 60°), а затем прогрессивно повышается и составляет на высоте 120 км 270°, на 220 км 800°, на высоте 300 км 1500°, а

на границе с космическим пространством - больше 3000°. Следует заметить, что вследствие большой разреженности и малой плотности газов на этих высотах их теплоемкость и способность к нагреванию более холодных тел очень незначительна. В этих условиях передача тепла от одного тела к другому происходит только посредством лучеиспускания. Все рассматриваемые изменения температуры в атмосфере связаны с поглощением воздушными массами тепловой энергии Солнца - прямой и отраженной.

В нижней части атмосферы у поверхности Земли распределение температуры зависит от притока солнечной радиации и поэтому имеет в основном широтный характер, то есть линии равной температуры - изотермы - параллельны широтам. Так как атмосфера в нижних слоях нагревается от земной поверхности, то на горизонтальное изменение температуры сильно влияет распределение материков и океанов, термические свойства которых различны. Обычно в справочниках указывается температура, измеренная при сетевых метеорологических наблюдениях термометром, установленным на высоте 2 м над поверхностью почвы. Наиболее высокие температуры (до 58е) наблюдаются в пустынях Ирана, а в СССР - на юге Туркменистана (до 50°), наиболее низкие (до -87°) в Антарктиде, а в СССР - в районах Верхоянска и Оймякона (до -68°). Зимой вертикальный температурный градиент в отдельных случаях вместо 0,6° может превышать 1° на 100 м или даже принимать отрицательное значение. Днем в теплое время года он может быть равен многим десяткам градусов на 100 м. Различают также горизонтальный градиент температуры, который обычно относят к расстоянию 100 км по нормали к изотерме. Величина горизонтального градиента температуры - десятые доли градуса на 100 км, а во фронтальных зонах он может превышать 10° на 100 м.

Организм человека способен поддерживать тепловой гомеостаз (см.) в довольно узких пределах колебаний температуры наружного воздуха - от 15 до 45°. Существенные различия температуры атмосферы у Земли и на высотах требуют применения специальных защитных технических средств для обеспечения теплового баланса между организмом человека и внешней средой в высотных и космических полетах.

Характерные изменения параметров атмосферы (температуры, давления, химического состава, электрического состояния) позволяют условно разделить атмосферу на зоны, или слои. Тропосфера - ближайший слой к Земле, верхняя граница которого простирается на экваторе до 17-18 км, на полюсах - до 7-8 км, в средних широтах - до 12-16 км. Для тропосферы характерно экспоненциальное падение давления, наличие постоянного вертикального температурного градиента, горизонтальные и вертикальные перемещения воздушных масс, значительные изменения влажности воздуха. В тропосфере находится основная масса атмосферы, а также значительная часть биосферы; здесь возникают все основные виды облаков, формируются воздушные массы и фронты, развиваются циклоны и антициклоны. В тропосфере из-за отражения снежным покровом Земли солнечных лучей и охлаждения приземных слоев воздуха имеет место так называемая инверсия, то есть возрастание температуры в атмосфере снизу вверх вместо обычного убывания.

В теплое время года в тропосфере происходит постоянное турбулентное (беспорядочное, хаотичное) перемешивание воздушных масс и перенос тепла потоками воздуха (конвекция). Конвекция уничтожает туманы и уменьшает запыленность нижнего слоя атмосферы.

Вторым слоем атмосферы является стратосфера .

Она начинается от тропосферы узкой зоной (1-3 км) с постоянной температурой (тропопауза) и простирается до высот около 80 км. Особенностью стратосферы является прогрессирующая разреженность воздуха, исключительно высокая интенсивность ультрафиолетового излучения, отсутствие водяных паров, наличие большого количества озона и постепенное повышение температуры. Высокое содержание озона обусловливает ряд оптических явлений (миражи), вызывает отражение звуков и оказывает существенное влияние на интенсивность и спектральный состав электромагнитных излучений. В стратосфере происходит постоянное перемешивание воздуха, поэтому состав его аналогичен воздуху тропосферы, хотя плотность его у верхних границ стратосферы крайне мала. Преобладающие ветры в стратосфере - западные, а в верхней зоне наблюдается переход к восточным ветрам.

Третьим слоем атмосферы является ионосфера , которая начинается от стратосферы и простирается до высот 600-800 км.

Отличительные признаки ионосферы - крайняя разреженность газовой среды, высокая концентрация молекулярных и атомарных ионов и свободных электронов, а также высокая температура. Ионосфера оказывает влияние на распространение радиоволн, обусловливая их преломление, отражение и поглощение.

Основным источником ионизации высоких слоев атмосферы является ультрафиолетовое излучение Солнца. При этом из атомов газов выбиваются электроны, атомы превращаются в положительные ионы, а выбитые электроны остаются свободными или захватываются нейтральными молекулами с образованием отрицательных ионов. На ионизацию ионосферы оказывают влияние метеоры, корпускулярное, рентгеновское и гамма-излучение Солнца, а также сейсмические процессы Земли (землетрясения, вулканические извержения, мощные взрывы), которые генерируют акустические волны в ионосфере, усиливающие амплитуду и скорость колебаний частиц атмосферы и способствующие ионизации газовых молекул и атомов (см. Аэроионизация).

Электрическая проводимость в ионосфере, связанная с высокой концентрацией ионов и электронов, очень велика. Повышенная электропроводимость ионосферы играет важную роль в отражении радиоволн и возникновении полярных сияний.

Ионосфера - это область полетов искусственных спутников Земли и межконтинентальных баллистических ракет. В настоящее время космическая медицина изучает возможные влияния на организм человека условий полета в этой части атмосферы.

Четвертый, внешний слой атмосферы - экзосфера . Отсюда атмосферные газы рассеиваются в мировое пространство за счет диссипации (преодоления молекулами сил земного тяготения). Затем происходит постепенный переход от атмосферы к межпланетному космическому пространству. От последнего экзосфера отличается наличием большого количества свободных электронов, образующих 2-й и 3-й радиационные пояса Земли.

Разделение атмосферы на 4 слоя весьма условно. Так, по электрическим параметрам всю толщу атмосферы делят на 2 слоя: нейтросферу, в которой преобладают нейтральные частицы, и ионосферу. По температуре различают тропосферу, стратосферу, мезосферу и термосферу, разделенные соответственно тропо-, страто- и мезопаузами. Слой атмосферы, расположенный между 15 и 70 км и характеризующийся высоким содержанием озона, называют озоносферой.

Для практических целей удобно пользоваться Международной стандартной атмосферой (MCA), для к-рой принимают следующие условия: давление на уровне моря при t° 15° равно 1013 мбар (1,013 X 10 5 нм 2 , или 760 мм рт. ст.); температура уменьшается на 6,5° на 1 км до уровня 11 км (условная стратосфера), а затем остается постоянной. В СССР принята стандартная атмосфера ГОСТ 4401 - 64 (табл. 3).

Осадки. Поскольку основная масса водяного пара атмосферы сосредоточена в тропосфере, то и процессы фазовых переходов воды, обусловливающие осадки, протекают преимущественно в тропосфере. Тропосферные облака обычно закрывают около 50% всей земной поверхности, тогда как облака в стратосфере (на высотах 20-30 км) и вблизи мезопаузы, получившие название соответственно перламутровых и серебристых, наблюдаются сравнительно редко. В результате конденсации водяного пара в тропосфере образуются облака и выпадают осадки.

По характеру выпадения осадки разделяются на 3 типа: обложные, ливневые, моросящие. Количество осадков определяется толщиной слоя выпавшей воды в миллиметрах; измерение осадков производят дождемерами и осадкомерами. Интенсивность осадков выражается в миллиметрах в 1 минуту.

Распределение осадков в отдельные сезоны и дни, а также по территории крайне неравномерно, что обусловлено циркуляцией атмосферы и влиянием поверхности Земли. Так, на Гавайских островах в среднем за год выпадает 12 000мм, а в наиболее сухих областях Перу и Сахары осадки не превышают 250 мм, а иногда не выпадают по нескольку лет. В годовой динамике выпадения осадков различают следующие типы: экваториальный - с максимумом выпадения после весеннего и осеннего равноденствия; тропический - с максимумом осадков летом; муссонный - с очень резко выраженным пиком летом и сухой зимой; субтропический - с максимумом осадков зимой и сухим летом; континентальный умеренных широт - с максимумом выпадения осадков летом; морской умеренных широт - с максимумом осадков зимой.

Весь атмосферно-физический комплекс климатометеорологических факторов, составляющий погоду, широко используется для укрепления здоровья, закаливания и в лечебных целях (см. Климатотерапия). Наряду с этим установлено, что резкие колебания этих атмосферных факторов могут отрицательно влиять на физиологические процессы в организме, вызывая развитие различных патологических состояний и обострение болезней, получивших название метеотропных реакций (см. Климатопатология). Особое значение в этом отношении имеют частые длительные возмущения атмосферы и резкие скачкообразные колебания метеофакторов.

Метеотропные реакции наблюдаются чаще у людей, страдающих заболеваниями сердечно-сосудистой системы, полиартритами, бронхиальной астмой, язвенной болезнью, заболеваниями кожи.

Библиография: Белинский В. А. и Побияхо В. А. Аэрология, Л., 1962, библиогр.; Биосфера и ее ресурсы, под ред. В. А. Ковды, М., 1971; Данилов А. Д. Химия ионосферы, Л., 1967; Колобков Н. В. Атмосфера и ее жизнь, М., 1968; Калитин H.H. Основы физики атмосферы в применении к медицине, Л., 1935; Матвеев Л. Т. Основы общей метеорологии, Физика атмосферы, Л., 1965, библиогр.; Минх А. А. Ионизация воздуха и ее гигиеническое значение, М., 1963, библиогр.; он же, Методы гигиенических исследований, М., 1971, библиогр.; Тверской П. Н. Курс метеорологии, Л., 1962; Уманский С. П. Человек в космосе, М., 1970; Хвостиков И. А. Высокие слои атмосферы, Л., 1964; X р г и а н A. X. Физика атмосферы, Л., 1969, библиогр.; Хромов С. П. Метеорология и климатология для географических факультетов, Л., 1968.

Влияние на организм повышенного и пониженного давления - Армстронг Г. Авиационная медицина, пер. с англ., М., 1954, библиогр.; Зальцман Г.Л. Физиологические основы пребывания человека в условиях повышенного давления газов среды, Л., 1961, библиогр.; Иванов Д. И. и Хромушкин А. И. Системы жизнеобеспечения человека при высотных и космических полетах, М., 1968, библиогр.; Исаков П. К. и др. Теория и практика авиационной медицины, М., 1971, библиогр.; Коваленко Е. А. и Черняков И. Н. Кислород тканей при экстремальных факторах полета, М., 1972, библиогр.; Майлс С. Подводная медицина, пер. с англ., М., 1971, библиогр.; Busby D. Е. Space clinical medicine, Dordrecht, 1968.

И. H. Черняков, M. Т. Дмитриев, С. И. Непомнящий.