Таблица всех кислот. Классификация, получение и свойства кислот. Взаимодействие кислот с основными и амфотерными оксидами
Названия некоторых неорганических кислот и солей
Формулы кислот | Названия кислот | Названия соответствующих солей |
HClO 4 | хлорная | перхлораты |
HClO 3 | хлорноватая | хлораты |
HClO 2 | хлористая | хлориты |
HClO | хлорноватистая | гипохлориты |
H 5 IO 6 | иодная | периодаты |
HIO 3 | иодноватая | иодаты |
H 2 SO 4 | серная | сульфаты |
H 2 SO 3 | сернистая | сульфиты |
H 2 S 2 O 3 | тиосерная | тиосульфаты |
H 2 S 4 O 6 | тетратионовая | тетратионаты |
H NO 3 | азотная | нитраты |
H NO 2 | азотистая | нитриты |
H 3 PO 4 | ортофосфорная | ортофосфаты |
H PO 3 | метафосфорная | метафосфаты |
H 3 PO 3 | фосфористая | фосфиты |
H 3 PO 2 | фосфорноватистая | гипофосфиты |
H 2 CO 3 | угольная | карбонаты |
H 2 SiO 3 | кремниевая | силикаты |
HMnO 4 | марганцовая | перманганаты |
H 2 MnO 4 | марганцовистая | манганаты |
H 2 CrO 4 | хромовая | хроматы |
H 2 Cr 2 O 7 | дихромовая | дихроматы |
HF | фтороводородная (плавиковая) | фториды |
HCl | хлороводородная (соляная) | хлориды |
HBr | бромоводородная | бромиды |
HI | иодоводородная | иодиды |
H 2 S | сероводородная | сульфиды |
HCN | циановодородная | цианиды |
HOCN | циановая | цианаты |
Напомню кратко на конкретных примерах, как следует правильно называть соли.
Пример 1 . Соль K 2 SO 4 образована остатком серной кислоты (SO 4) и металлом К. Соли серной кислоты называются сульфатами. K 2 SO 4 - сульфат калия.
Пример 2 . FeCl 3 - в состав соли входит железо и остаток соляной кислоты (Cl). Название соли: хлорид железа (III). Обратите внимание: в данном случае мы не только должны назвать металл, но и указать его валентность (III). В прошлом примере в этом не было необходимости, т. к. валентность натрия постоянна.
Важно: в названии соли следует указывать валентность металла только в том случае, если данный металл имеет переменную валентность!
Пример 3 . Ba(ClO) 2 - в состав соли входит барий и остаток хлорноватистой кислоты (ClO). Название соли: гипохлорит бария. Валентность металла Ва во всех его соединениях равна двум, указывать ее не нужно.
Пример 4 . (NH 4) 2 Cr 2 O 7 . Группа NH 4 называется аммоний, валентность этой группы постоянна. Название соли: дихромат (бихромат) аммония.
В приведенных выше примерах нам встретились только т. н. средние или нормальные соли. Кислые, основные, двойные и комплексные соли, соли органических кислот здесь обсуждаться не будут.
Называются вещества, диссоциирующие в растворах с образованием ионов водорода.
Кислоты классифицируются по их силе, по основности и по наличию или отсутствию кислорода в составе кислоты.
По силе кислоты делятся на сильные и слабые. Важнейшие сильные кислоты - азотная HNO 3 , серная H 2 SO 4 , и соляная HCl .
По наличию кислорода различают кислородсодержащие кислоты (HNO 3 , H 3 PO 4 и т.п.) и бескислородные кислоты (HCl , H 2 S , HCN и т.п.).
По основности , т.е. по числу атомов водорода в молекуле кислоты, способных замещаться атомами металла с образованием соли, кислоты подразделяются на одноосновные (например, HNO 3 , HCl ), двухосновные (H 2 S , H 2 SO 4 ), трехосновные (H 3 PO 4 ) и т. д.
Названия бескислородных кислот производятся от названия неметалла с прибавлением окончания -водородная: HCl - хлороводородная кислота, H 2 S е - селеноводородная кислота, HCN - циановодородная кислота.
Названия кислородсодержащих кислот также образуются от русского названия соответствующего элемента с добавлением слова «кислота». При этом название кислоты, в которой элемент находится в высшей степени окисления , оканчивается на «ная» или «овая», например, H 2 SO 4 - серная кислота, HClO 4 - хлорная кислота, H 3 AsO 4 - мышьяковая кислота. С понижением степени окисления кислотообразующего элемента окончания изменяются в следующей последовательности: «оватая» (HClO 3 - хлорноватая кислота), «истая» (HClO 2 - хлористая кислота), «оватистая» (H О Cl - хлорноватистая кислота). Если элемент образует кислоты, находясь только в двух степенях окисления, то название кислоты, отвечающее низшей степени окисления элемента, получает окончание «истая» (HNO 3 - азотная кислота, HNO 2 - азотистая кислота).
Таблица - Важнейшие кислоты и их соли
Кислота |
Названия соответствующих нормальных солей |
|
Название |
Формула |
|
Азотная |
HNO 3 |
Нитраты |
Азотистая |
HNO 2 |
Нитриты |
Борная (ортоборная) |
H 3 BO 3 |
Бораты (ортобораты) |
Бромоводородная |
Бромиды |
|
Иодоводородная |
Иодиды |
|
Кремниевая |
H 2 SiO 3 |
Силикаты |
Марганцовая |
HMnO 4 |
Перманганаты |
Метафосфорная |
HPO 3 |
Метафосфаты |
Мышьяковая |
H 3 AsO 4 |
Арсенаты |
Мышьяковистая |
H 3 AsO 3 |
Арсениты |
Ортофосфорная |
H 3 PO 4 |
Ортофосфаты (фосфаты) |
Дифосфорная (пирофосфорная) |
H 4 P 2 O 7 |
Дифосфаты (пирофосфаты) |
Дихромовая |
H 2 Cr 2 O 7 |
Дихроматы |
Серная |
H 2 SO 4 |
Сульфаты |
Сернистая |
H 2 SO 3 |
Сульфиты |
Угольная |
H 2 CO 3 |
Карбонаты |
Фосфористая |
H 3 PO 3 |
Фосфиты |
Фтороводородная (плавиковая) |
Фториды |
|
Хлороводородная (соляная) |
Хлориды |
|
Хлорная |
HClO 4 |
Перхлораты |
Хлорноватая |
HClO 3 |
Хлораты |
Хлорноватистая |
HClO |
Гипохлориты |
Хромовая |
H 2 CrO 4 |
Хроматы |
Циановодородная (синильная) |
Цианиды |
Получение кислот
1. Бескислородные кислоты могут быть получены при непосредственном соединении неметаллов с водородом:
H 2 + Cl 2 → 2HCl,
H 2 + S H 2 S.
2. Кислородсодержащие кислоты нередко могут быть получены при непосредственном соединении кислотных оксидов с водой:
SO 3 + H 2 O = H 2 SO 4 ,
CO 2 + H 2 O = H 2 CO 3 ,
P 2 O 5 + H 2 O = 2 HPO 3 .
3. Как бескислородные, так и кислородсодержащие кислоты можно получить по реакциям обмена между солями и другими кислотами:
BaBr 2 + H 2 SO 4 = BaSO 4 + 2HBr,
CuSO 4 + H 2 S = H 2 SO 4 + CuS,
CaCO 3 + 2HBr = CaBr 2 + CO 2 + H 2 O.
4. В ряде случаев для получения кислот могут быть использованы окислительно-восстановительные реакции:
H 2 O 2 + SO 2 = H 2 SO 4 ,
3P + 5HNO 3 + 2H 2 O = 3H 3 PO 4 + 5NO .
Химические свойства кислот
1. Наиболее характерное химическое свойство кислот - их способность реагировать с основаниями (а также с основными и амфотерными оксидами) с образованием солей, например:
H 2 SO 4 + 2NaOH = Na 2 SO 4 + 2H 2 O,
2HNO 3 + FeO = Fe(NO 3) 2 + H 2 O,
2 HCl + ZnO = ZnCl 2 + H 2 O .
2. Способность взаимодействовать с некоторыми металлами, стоящими в ряду напряжения до водорода, с выделением водорода:
Zn + 2HCl = ZnCl 2 + H 2 ,
2Al + 6HCl = 2AlCl 3 + 3H 2 .
3. С солями, если образуется малорастворимая соль или летучее вещество:
H 2 SO 4 + BaCl 2 = BaSO 4 ↓ + 2HCl,
2HCl + Na 2 CO 3 = 2NaCl + H 2 O + CO 2 ,
2KHCO 3 + H 2 SO 4 = K 2 SO 4 +2SO 2 + 2H 2 O.
Заметим, что многоосновные кислоты диссоциируют ступенчато, причем легкость диссоциации по каждой из ступеней падает, поэтому для многоосновных кислот вместо средних солей часто образуются кислые (в случае избытка реагирующей кислоты):
Na 2 S + H 3 PO 4 = Na 2 HPO 4 + H 2 S ,
NaOH + H 3 PO 4 = NaH 2 PO 4 + H 2 O.
4. Частным случаем кислотно-основного взаимодействия являются реакции кислот с индикаторами, приводящие к изменению окраски, что издавна используется для качественного обнаружения кислот в растворах. Так, лакмус изменяет цвет в кислой среде на красный.
5. При нагревании кислородсодержащие кислоты разлагаются на оксид и воду (лучше в присутствии водоотнимающего P 2 O 5 ):
H 2 SO 4 = H 2 O + SO 3 ,
H 2 SiO 3 = H 2 O + SiO 2 .
М.В. Андрюxoва, Л.Н. Бopoдина
Сложные вещества, состоящие из атомов водорода и кислотного остатка, называются минеральными или неорганическими кислотами. Кислотным остатком являются оксиды и неметаллы, соединённые с водородом. Главное свойство кислот - способность образовывать соли.
Классификация
Основная формула минеральных кислот - H n Ac, где Ac - кислотный остаток. В зависимости от состава кислотного остатка выделяют два типа кислот:
- кислородные, содержащие кислород;
- бескислородные, состоящие только из водорода и неметалла.
Основной список неорганических кислот в соответствии с типом представлен в таблице.
Тип |
Название |
Формула |
Кислородные |
||
Азотистая |
||
Дихромовая |
||
Йодноватая |
||
Кремниевые - метакремниевая и ортокремниевая |
H 2 SiO 3 и H 4 SiO 4 |
|
Марганцовая |
||
Марганцовистая |
||
Метафосфорная |
||
Мышьяковая |
||
Ортофосфорная |
||
Сернистая |
||
Тиосерная |
||
Тетратионовая |
||
Угольная |
||
Фосфористая |
||
Фосфорноватистая |
||
Хлорноватая |
||
Хлористая |
||
Хлорноватистая |
||
Хромовая |
||
Циановая |
||
Бескислородные |
Фтороводородная (плавиковая) |
|
Хлороводородная (соляная) |
||
Бромоводородная |
||
Йодоводородная |
||
Сероводородная |
||
Циановодородная |
Кроме того, в соответствии со свойствами кислоты классифицируются по следующим признакам:
- растворимость : растворимые (HNO 3 , HCl) и нерастворимые (H 2 SiO 3);
- летучесть : летучие (H 2 S, HCl) и нелетучие (H 2 SO 4 , H 3 PO 4);
- степень диссоциации : сильные (HNO 3) и слабые (H 2 CO 3).
Рис. 1. Схема классификации кислот.
Для обозначения минеральных кислот используются традиционные и тривиальные названия. Традиционные названия соответствуют наименованию элемента, который образует кислоту с добавлением морфем -ная, -овая, а также -истая, -новатая, -новатистая для обозначения степени окисления.
Получение
Основные методы получения кислот представлены в таблице.
Свойства
Большинство кислот - жидкости с кислым вкусом. Вольфрамовая, хромовая, борная и несколько других кислот находятся в твёрдом состоянии при нормальных условиях. Некоторые кислоты (Н 2 СО 3 , H 2 SO 3 , HClO) существуют только в виде водного раствора и относятся к слабым кислотам.
Рис. 2. Хромовая кислота.
Кислоты - активные вещества, реагирующие:
- с металлами:
Ca + 2HCl = CaCl 2 + H 2 ;
- с оксидами:
CaO + 2HCl = CaCl 2 + H 2 O;
- с основанием:
H 2 SO 4 + 2KOH = K 2 SO 4 + 2H 2 O;
- с солями:
Na 2 CO 3 + 2HCl = 2NaCl + CO 2 + H 2 O.
Все реакции сопровождаются образованием солей.
Возможна качественная реакция с изменением цвета индикатора:
- лакмус окрашивается в красный;
- метил оранж - в розовый;
- фенолфталеин не меняется.
Рис. 3. Цвета индикаторов при взаимодействии кислоты.
Химические свойства минеральных кислот определяются способностью диссоциироваться в воде с образованием катионов водорода и анионов водородных остатков. Кислоты, реагирующие с водой необратимо (диссоциируются полностью) называются сильными. К ним относятся хлорная, азотная, серная и хлороводородная.
Что мы узнали?
Неорганические кислоты образованы водородом и кислотным остатком, которым являются атомы неметалла или оксид. В зависимости от природы кислотного остатка кислоты классифицируются на бескислородные и кислородсодержащие. Все кислоты имеют кислый вкус и способны диссоциироваться в водной среде (распадаться на катионы и анионы). Кислоты получают из простых веществ, оксидов, солей. При взаимодействии с металлами, оксидами, основаниями, солями кислоты образуют соли.
Тест по теме
Оценка доклада
Средняя оценка: 4.4 . Всего получено оценок: 120.
Формулы кислот | Названия кислот | Названия соответствующих солей |
HClO 4 | хлорная | перхлораты |
HClO 3 | хлорноватая | хлораты |
HClO 2 | хлористая | хлориты |
HClO | хлорноватистая | гипохлориты |
H 5 IO 6 | иодная | периодаты |
HIO 3 | иодноватая | иодаты |
H 2 SO 4 | серная | сульфаты |
H 2 SO 3 | сернистая | сульфиты |
H 2 S 2 O 3 | тиосерная | тиосульфаты |
H 2 S 4 O 6 | тетратионовая | тетратионаты |
HNO 3 | азотная | нитраты |
HNO 2 | азотистая | нитриты |
H 3 PO 4 | ортофосфорная | ортофосфаты |
HPO 3 | метафосфорная | метафосфаты |
H 3 PO 3 | фосфористая | фосфиты |
H 3 PO 2 | фосфорноватистая | гипофосфиты |
H 2 CO 3 | угольная | карбонаты |
H 2 SiO 3 | кремниевая | силикаты |
HMnO 4 | марганцовая | перманганаты |
H 2 MnO 4 | марганцовистая | манганаты |
H 2 CrO 4 | хромовая | хроматы |
H 2 Cr 2 O 7 | дихромовая | дихроматы |
HF | фтороводородная (плавиковая) | фториды |
HCl | хлороводородная (соляная) | хлориды |
HBr | бромоводородная | бромиды |
HI | иодоводородная | иодиды |
H 2 S | сероводородная | сульфиды |
HCN | циановодородная | цианиды |
HOCN | циановая | цианаты |
Напомню кратко на конкретных примерах, как следует правильно называть соли.
Пример 1 . Соль K 2 SO 4 образована остатком серной кислоты (SO 4) и металлом К. Соли серной кислоты называются сульфатами. K 2 SO 4 - сульфат калия.
Пример 2 . FeCl 3 - в состав соли входит железо и остаток соляной кислоты (Cl). Название соли: хлорид железа (III). Обратите внимание: в данном случае мы не только должны назвать металл, но и указать его валентность (III). В прошлом примере в этом не было необходимости, т. к. валентность натрия постоянна.
Важно: в названии соли следует указывать валентность металла только в том случае, если данный металл имеет переменную валентность!
Пример 3 . Ba(ClO) 2 - в состав соли входит барий и остаток хлорноватистой кислоты (ClO). Название соли: гипохлорит бария. Валентность металла Ва во всех его соединениях равна двум, указывать ее не нужно.
Пример 4 . (NH 4) 2 Cr 2 O 7 . Группа NH 4 называется аммоний, валентность этой группы постоянна. Название соли: дихромат (бихромат) аммония.
В приведенных выше примерах нам встретились только т. н. средние или нормальные соли. Кислые, основные, двойные и комплексные соли, соли органических кислот здесь обсуждаться не будут.
Если вас интересует не только номенклатура солей, но и методы их получения и химические свойства, рекомендую обратиться к соответствующим разделам справочника по химии: "
Бескислородные: | Основность | Название соли |
HCl - хлористоводородная (соляная) | одноосновная | хлорид |
HBr - бромистоводородная | одноосновная | бромид |
HI - йодистоводородная | одноосновная | йодид |
HF - фтористоводородная (плавиковая) | одноосновная | фторид |
H 2 S - сероводородная | двухосновная | сульфид |
Кислородсодержащие: | ||
HNO 3 – азотная | одноосновная | нитрат |
H 2 SO 3 - сернистая | двухосновная | сульфит |
H 2 SO 4 – серная | двухосновная | сульфат |
H 2 CO 3 - угольная | двухосновная | карбонат |
H 2 SiO 3 - кремниевая | двухосновная | силикат |
H 3 PO 4 - ортофосфорная | трёхосновная | ортофосфат |
Соли – сложные вещества, которые состоят из атомов металла и кислотных остатков. Это наиболее многочисленный класс неорганических соединений.
Классификация. По составу и свойствам: средние, кислые, основные, двойные, смешанные, комплексные
Средние соли являются продуктами полного замещения атомов водорода многоосновной кислоты на атомы металла.
При диссоциации дают только катионы металла (или NH 4 +). Например:
Na 2 SO 4 ® 2Na + +SO
CaCl 2 ® Ca 2+ + 2Cl -
Кислые соли являются продуктами неполного замещения атомов водорода многоосновной кислоты на атомы металла.
При диссоциации дают катионы металла (NH 4 +), ионы водорода и анионы кислотного остатка, например:
NaHCO 3 ® Na + + HCO « H + +CO .
Основные соли являются продуктами неполного замещения групп OH - соответствующего основания на кислотные остатки.
При диссоциации дают катионы металла, анионы гидроксила и кислотного остатка.
Zn(OH)Cl ® + + Cl - « Zn 2+ + OH - + Cl - .
Двойные соли содержат два катиона металла и при диссоциации дают два катиона и один анион.
KAl(SO 4) 2 ® K + + Al 3+ + 2SO
Комплексны соли содержат комплексные катионы или анионы.
Br ® + + Br - « Ag + +2 NH 3 + Br -
Na ® Na + + - « Na + + Ag + + 2 CN -
Генетическая связь между различными классами соединений
ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ
Оборудование и посуда : штатив с пробирками, промывалка, спиртовка.
Реактивы и материалы : красный фосфор,оксид цинка, гранулы Zn, порошок гашеной извести Ca(OH) 2 , 1 моль/дм 3 растворы NaOH, ZnSO 4 , СuSO 4 , AlCl 3 , FeCl 3 , HСl, H 2 SO 4 , универсальная индикаторная бумага, раствор фенолфталеина, метилоранжа, дистиллированная вода.
Порядок выполнения работы
1. Оксид цинка насыпать в две пробирки; в одну добавить раствор кислоты (HCl или H 2 SO 4) в другую раствор щелочи (NaOH или KOH) и слегка нагреть на спиртовке.
Наблюдения: Происходит ли растворение оксида цинка в растворе кислоты и щелочи?
Написать уравнения
Выводы: 1.К какому типу оксидов относится ZnO?
2. Какими свойствами обладают амфотерные оксиды?
Получение и свойства гидроксидов
2.1. В раствор щелочи (NaOH или KOH) опустить кончик универсальной индикаторной полоски. Сравнить полученный цвет индикаторной полоски со стандартной цветовой шкалой.
Наблюдения: Записать значение рН раствора.
2.2. Взять четыре пробирки, налить в первую 1 мл раствора ZnSO 4 , во вторую - СuSO 4 , в третью - AlCl 3 , в четвертую - FeCl 3 . В каждую пробирку добавить 1мл раствора NaOH. Написать наблюдения и уравнения происходящих реакций.
Наблюдения: Происходит ли выпадение осадка при добавлении щелочи к раствору соли? Укажите цвет осадка.
Написать уравнения происходящих реакций (в молекулярном и ионном виде).
Выводы: Какими способами могут быть получены гидроксиды металлов?
2.3. Половину осадков, полученных в опыте 2.2., перенести в другие пробирки. На одну часть осадка подействовать раствором H 2 SO 4 на другую – раствором NaOH.
Наблюдения: Происходит ли растворение осадков при добавлении щелочи и кислоты к осадкам?
Написать уравнения происходящих реакций (в молекулярном и ионном виде).
Выводы: 1.К какому типу гидроксидов относятся Zn(OH) 2 , Al(OH) 3 , Сu(OH) 2 , Fe(OH) 3 ?
2. Какими свойствами обладают амфотерные гидроксиды?
Получение солей.
3.1. В пробирку налить 2 мл раствора CuSO 4 и опустить в этот раствор очищенный гвоздь. (Реакция идет медленно, изменения на поверхности гвоздя появляются через 5-10 мин).
Наблюдения: Происходят ли какие-то изменения с поверхностью гвоздя? Что осаждается?
Написать уравнение окислительно-восстановительной реакции.
Выводы: Принимая во внимание ряд напряжений металлов, укажите способ получения солей.
3.2. В пробирку поместить одну гранулу цинка и прилить раствор HCl.
Наблюдения: Происходят ли выделение газа?
Написать уравнение
Выводы: Объясните данный способ получения солей?
3.3. В пробирку насыпать немного порошка гашеной извести Ca(OH) 2 и прилить раствор HСl.
Наблюдения: Происходит ли выделение газа?
Написать уравнение происходящей реакции (в молекулярном и ионном виде).
Вывод: 1. К какому типу относится реакция взаимодействия гидроксида и кислоты?
2.Какие вещества являются продуктами этой реакции?
3.5. В две пробирки налейте по 1 мл растворов солей: в первую – сульфата меди, во вторую – хлорида кобальта. Добавьте в обе пробирки по каплям раствор гидроксида натрия до образования осадков. Затем добавьте в обе пробирки избыток щелочи.
Наблюдения: Укажите изменения цвета осадков в реакциях.
Написать уравнение происходящей реакции (в молекулярном и ионном виде).
Вывод: 1. В результате каких реакций образуются основные соли?
2. Как можно перевести основные соли в средние?
1. Из перечисленных веществ выписать формулы солей, оснований, кислот: Ca(OH) 2, Ca(NO 3) 2, FeCl 3, HCl, H 2 O, ZnS, H 2 SO 4, CuSO 4, KOH
Zn(OH) 2, NH 3, Na 2 CO 3, K 3 PO 4 .
2. Укажите формулы оксидов, соответствующие перечисленным веществам H 2 SO 4 , H 3 AsO 3 , Bi(OH) 3 , H 2 MnO 4 , Sn(OH) 2 , KOH, H 3 PO 4 , H 2 SiO 3 , Ge(OH) 4 .
3. Какие гидроксиды относятся к амфотерным? Составьте уравнения реакций, характеризующих амфотерность гидроксида алюминия и гидроксида цинка.
4. Какие из указанных соединений будут попарно взаимодействовать: P 2 O 5 , NaOH, ZnO, AgNO 3 , Na 2 CO 3 , Cr(OH) 3 , H 2 SO 4 . Составьте уравнения возможных реакций.
Лабораторная работа № 2 (4 ч.)
Тема: Качественный анализ катионов и анионов
Цель: освоить технику проведения качественных и групповых реакций на катионы и анионы.
ТЕОРЕТИЧЕСКАЯ ЧАСТЬ
Основной задачей качественного анализа является установление химического состава веществ, находящихся в разнообразных объектах (биологических материалах, лекарственных препаратах, продуктах питания, объектах окружающей среды). В настоящей работе рассматривается качественный анализ неорганических веществ, являющихся электролитами, т. е. по сути качественный анализ ионов. Из всей совокупности встречающихся ионов выбраны наиболее важные в медико-биологическом отношении: (Fе 3+ , Fе 2+ , Zn 2+ , Са 2+ , Na + , К + , Мg 2+ , Сl - , РО , СО и др.). Многие из этих ионов входят в состав различных лекарственных препаратов и продуктов питания.
В качественном анализе используются не все возможные реакции, а только те, которые сопровождаются отчетливым аналитическим эффектом. Наиболее часто встречающиеся аналитические эффекты: появление новой окраски, выделение газа, образование осадка.
Существуют два принципиально разных подхода к качественному анализу: дробный и систематический . В систематическом анализе обязательно используют групповые реагенты, позволяющие разделить присутствующие ионы на отдельные группы, а в некоторых случаях и на подгруппы. Для этого часть ионов переводят в состав нерастворимых соединений, а часть ионов оставляют в растворе. После отделения осадка от раствора анализ их проводят раздельно.
Например, в растворе имеются ионы А1 3+ , Fе 3+ и Ni 2+ . Если на этот раствор подействовать избытком щелочи, выпадает осадок Fе(ОН) 3 и Ni(ОН) 2 , а в растворе остаются ионы [А1(ОН) 4 ] - . Осадок, содержащий гидроксиды железа и никеля, при обработке аммиаком частично растворится за счет перехода в раствор 2+ . Таким образом, с помощью двух реагентов - щелочи и аммиака были получены два раствора: в одном содержались ионы [А1(ОН) 4 ] - , в другом - ионы 2+ и осадок Fе(ОН) 3 . С помощью характерных реакций затем доказывается наличие тех или иных ионов в растворах и в осадке, который предварительно нужно растворить.
Систематический анализ используют в основном для обнаружения ионов в сложных многокомпонентных смесях. Он очень трудоемок, однако преимущество его заключается в легкой формализации всех действий, укладывающихся в четкую схему (методику).
Для проведения дробного анализа используют только характерные реакции. Очевидно, что присутствие других ионов может значительно искажать результаты реакции (наложение окрасок друг на друга, выпадение нежелательных осадков и т. д.). Во избежание этого в дробном анализе используют в основном высокоспецифические реакции, дающие аналитический эффект с небольшим числом ионов. Для успешного проведения реакций очень важно поддерживать определенные условия, в частности, рН. Очень часто в дробном анализе приходится прибегать к маскировке, т. е. к переводу ионов в соединения, не способные давать аналитический эффект с выбранным реактивом. Например, для обнаружения иона никеля используется диметилглиоксим. Сходный аналитический эффект с этим реагентом дает и ион Fе 2+ . Для обнаружения Ni 2+ ион Fе 2+ переводят в прочный фторидный комплекс 4- или же окисляют до Fе 3+ , например, пероксидом водорода.
Дробный анализ используют для обнаружения ионов в более простых смесях. Время анализа значительно сокращается, однако при этом от экспериментатора требуется более глубокое знание закономерностей протекания химических реакций, так как учесть в одной конкретной методике все возможные случаи взаимного влияния ионов на характер наблюдаемых аналитических эффектов достаточно сложно.
В аналитической практике часто применяют так называемый дробно-систематический метод. При таком подходе используется минимальное число групповых реактивов, что позволяет наметить тактику анализа в общих чертах, который затем осуществляется дробным методом.
По технике проведения аналитических реакций различают реакции: осадочные; микрокристаллоскопические; сопровождающиеся выделением газообразных продуктов; проводимые на бумаге; экстракционные; цветные в растворах; окрашивания пламени.
При проведении осадочных реакций обязательно отмечают цвет и характер осадка (кристаллический, аморфный), при необходимости проводят дополнительные испытания: проверяют осадок на растворимость в сильных и слабых кислотах, щелочах и аммиаке, избытке реактива. При проведении реакций, сопровождающихся выделением газа, отмечают его цвет и запах. В некоторых случаях проводят дополнительные испытания.
Например, если предполагают, что выделяющийся газ – оксид углерода (IV), его пропускают через избыток известковой воды.
В дробном и систематическом анализах широко используются реакции, в ходе которых появляется новая окраска, чаще всего это реакции комплексообразования или окислительно-восстановительные реакции.
В отдельных случаях такие реакции удобно проводить на бумаге (капельные реакции). Реактивы, не подвергающиеся разложению в обычных условиях, наносят на бумагу заранее. Так, для обнаружения сероводорода или сульфид-ионов применяют бумагу, пропитанную нитратом свинца [происходит почернение за счет образования сульфида свинца(II)]. Многие окислители обнаруживают с помощью йодкрахмальной бумаги, т.е. бумаги, пропитанной растворами иодида калия и крахмала. В большинстве же случаев необходимые реактивы наносят на бумагу во время проведения реакции, например, ализарин на ион А1 3+ , купрон на ион Сu 2+ и др. Для усиления окраски иногда применяют экстракцию в органический растворитель. Для предварительных испытаний используют реакции окрашивания пламени.