Алканы: общие сведения. Физические и химические свойства алканов. Алканы – предельные углеводороды, их химические свойства
Определение 1
Алканами называют такие углеводороды, атомы углерода, в молекулах которых соединены между собой простыми (одинарными) $\sigma $- связями. Все остальные единицы валентности атомов углерода в этих соединениях заняты (насыщенны) атомами водорода.
Атомы углерода в молекулах насыщенных углеводородов находятся в первом валентном состоянии, то есть в состоянии $sp3$-гибридизации. Такие насыщенные углеводороды еще называют парафинами .
Парафинами эти органические соединения называют потому, что долгое время их считали малореакцийноспособными (от лат. parum - мало и affinis - имеет сродство).
Старое название насыщенных углеводородов - алифатические или жирные, углеводороды (от лат. alifatic - жирный). Это название происходит от названия первых изученных соединений, которые когда-то относили к этим веществам, - жиров.
Насыщенные углеводороды образуют ряд соединений с общей формулой $C_nH_{(2_n+2)}$ $(n - 1, 2, 3, 4, ...)$. Простой соединением этого ряда является метан $CH_4$. Поэтому ряд этих соединений называют еще рядом метановых углеводородов.
Гомологические ряды
Соединения ряда метана имеют подобные строение и свойства. Такой ряд соединений, представители которого имеют близкие химические свойства и характеризуются закономерной сменой физических свойств, имеют однотипную структуру и отличаются друг от друга на одну или несколько $-CH_2$-групп, называют гомологичным рядом (от греч. «гомос » - сходство). Каждый последующий углеводород данного ряда отличается от предыдущего на группу $-CH_2$. Эта группа называется гомологичной разницей, а отдельные члены этого ряда - гомологами.
Происхождение названий алканов
Названия первых четырех насыщенных углеводородов (метан, этан, пропан, бутан) возникли случайно. Например, корень слова «этан» произошел от латинского слова ether - эфиы, так как остаток этана $-C_2H_5$ входит в состав медицинского эфира. Начиная с $C_5H_{12}$, названия алканов образованы от греческих или латинских числительных, которые указывают количество углеродных атомов в молекуле данного насыщенного углеводорода с добавлением к этим названиям суффикса -ан. Так, углеводород $C_5H_{12}$ называется пентан (от греч. «пента » - пять), $C_6H_{14}$ - гексан (от греч. «гекса » - шесть), $C_7H_{10}$ - гептан (от греч. «гепта » - семь) и т. д.
Правила систематической номенклатуры
Для названия органических веществ комиссией Международного союза теоретической и прикладной химии (IUPAC) были разработаны правила систематической (научной) номенклатуры. Согласно этим правилам, названия углеводородам дают таким образом:
В молекуле углеводорода выбирают основную - длинную и сложную (которая имеет наибольшее число ответвлений) - углеродную цепь.
Нумеруют атомы углерода основной цепи. Нумерацию осуществляют последовательно с того конца цепи, который дает радикалу наименьший номер. Если существует несколько алкильных радикалов, то сравнивают величину цифр двух возможных последовательных нумерации. И нумерация, в которой первой встречается меньше цифра, чем во второй последовательной нумерации, считается «меньше» и используется для составления названия углеводорода.
Нумерация справа налево будет «меньше», чем нумерация слева направо.
Называют углеводородные радикалы, которые образуют боковые цепи. Перед названием каждого радикала ставят цифру, которая указывает номер углеродного атома главной цепи, у которого с находится данный радикал. Цифру от названия отделяют дефисом. Названия алкильных радикалов перечисляют в алфавитном порядке. Если углеводород имеет в своем составе несколько одинаковых радикалов, то записывают в порядке возрастания номера углеродных атомов, у которых стоят эти радикалы. Цифры отделяют друг от друга запятыми. После цифр записывают префиксы: ди- (если одинаковых радикалов два), три- (когда одинаковых радикалов три), тетра-, пента- и т. д. (если одинаковых радикалов соответственно четыре, пять и т. д.). Префиксы указывают, сколько одинаковых радикалов имеет данный углеводород. После префикса ставят название радикала. В том случае, если два одинаковых радикалы находятся у одного углеродного атома, номер этого атома углерода ставится в названии дважды.
Называют углеводород основной пронумерованной углеродной цепи, помня при этом, что названия всех насыщенных углеводородов имеют суффикс -ан.
Приведенный ниже пример поможет уяснить эти правила:
Рисунок 1.
Алкильные радикалы боковых цепей
Иногда алкильные радикалы боковых цепей разветвленные. В этом случае их называют так, как соответствующие насыщенные углеводороды, только вместо суффикса -ан принимают суффикс -ил.
Углеродную цепь разветвленного радикала нумеруют. Атом углерода этого радикала, соединенный с основным цепью, получает номер $1$. Для удобства углеродную цепь разветвленного радикала нумеруют цифрами со штрихами и полное название такого радикала берут в скобки:
Рисунок 2.
Рациональная номенклатура
Кроме систематической для названия насыщенных углеводородов используют еще рациональную номенклатуру. По этой номенклатуре насыщенные углеводороды рассматривают как производные метана, в молекуле которого один или несколько атомов водорода замещены на радикалы. Название насыщенного углеводорода по рациональной номенклатуре образуют таким образом: называют по степени сложности все радикалы, которые находятся у атома углерода с наибольшим количеством заместителей (отмечая их количество, если они одинаковые), а затем добавляют основу названия углеводорода по этой номенклатуре - слово «метан». К примеру:
Рисунок 3.
Рациональную номенклатуру пользуются для названия сравнительно простых углеводородов. Эта номенклатура не так усовершенствована и гораздо менее удобна в пользовании по сравнению с систематической номенклатурой. По рациональной номенклатуре одно и то же вещество может иметь разные названия, что очень неудобно. Кроме того, по данной номенклатуре можно назвать далеко не все насыщенные углеводороды.
Алканы :
Алканы - это предельные углеводороды, в молекулах которых все атомы связаны одинарными связями. Формула -
- Температуры плавления и кипения увеличиваются с молекулярной массой и длиной главной углеродной цепи
- При нормальных условиях неразветвлённые алканы с CH 4 до C 4 H 10 - газы; с C 5 H 12 до C 13 H 28 - жидкости; после C 14 H 30 - твёрдые тела.
- Температуры плавления и кипения понижаются от менее разветвленных к более разветвленным. Так, например, при 20 °C н-пентан - жидкость, а неопентан - газ.
Химические свойства:
· Галогенирование
это одна из реакций замещения. В первую очередь галогенируется наименее гидрированый атом углерода (третичный атом, затем вторичный, первичные атому галогенируются в последнюю очередь). Галогенирование алканов проходит поэтапно - за один этап замещается не более одного атома водорода:
- CH 4 + Cl 2 → CH 3 Cl + HCl (хлорметан)
- CH 3 Cl + Cl 2 → CH 2 Cl 2 + HCl (дихлорметан)
- CH 2 Cl 2 + Cl 2 → CHCl 3 + HCl (трихлорметан)
- CHCl 3 + Cl 2 → CCl 4 + HCl (тетрахлорметан).
Под действием света молекула хлора распадается на радикалы, затем они атакуют молекулы алкана, забирая у них атом водорода, в результате этого образуются метильные радикалы ·СН 3 , которые сталкиваются с молекулами хлора, разрушая их и образуя новые радикалы.
· Горение
Основным химическим свойством предельных углеводородов, определяющих их использование в качестве топлива, является реакция горения. Пример:
CH 4 + 2O 2 → CO 2 + 2H 2 O + Q
В случае нехватки кислорода вместо углекислого газа получается угарный газ или уголь (в зависимости от концентрации кислорода).
В общем виде реакцию горения алканов можно записать следующим образом:
С n Н 2n +2 +(1,5n +0,5)O 2 = n CO 2 + (n +1)H 2 O
· Разложение
Реакции разложения происходят лишь под влиянием больших температур. Повышение температуры приводит к разрыву углеродной связи и образованию свободных радикалов.
Примеры:
CH 4 → C + 2H 2 (t > 1000 °C)
C 2 H 6 → 2C + 3H 2
Алкены :
Алкены-это непредельные углеводороды,содержащие в молекуле,кроме одинарных связей,одну двойную углерод-углеродную связь.Формула- C n H 2n
Принадлежность углеводорода к классу алкенов отражают родовым суффиксом –ен в его названии.
Физические свойства :
- Температуры плавления и кипения алкенов (упрощенно) увеличиваются с молекулярной массой и длиной главной углеродной цепи.
- При нормальных условиях алкены с C 2 H 4 до C 4 H 8 - газы; с C 5 H 10 до C 17 H 34 - жидкости, после C 18 H 36 - твёрдые тела. Алкены не растворяются в воде, но хорошо растворяются в органических растворителях.
Химические свойства :
· Дегидратация -это процесс отщепления молекулы воды от молекулы органического соединения.
· Полимеризация -это химический процесс соединения множества исходных молекул низкомолекулярного вещества в крупные молекулы полимера.
Полимер -это высокомолекулярное соединение,молекулы которого состоят из множества одинаковых структурных звеньев.
Алкадиены :
Алкадиены -это непредельные углеводороды, содержащие в молекуле,кроме одинрных связей,дведвойные углерод-углеродные связи.Формула-
. Диены являются структурными изомерамиалкинов.Физические свойства :
Бутадие́н - газ (tкип −4,5 °C), изопрен - жидкость, кипящая при 34 °C, диметилбутадиен - жидкость, кипящая при 70 °C. Изопрен и другие диеновые углеводороды способны полимеризоваться в каучук. Натуральный каучук в очищенном состоянии является полимером с общей формулой (С5Н8)n и получается из млечного сока некоторых тропических растений.
Каучук хорошо растворим в бензоле, бензине, сероуглероде. При низкой температуре становится ломким, при нагревании липким. Для улучшения механических и химических свойств каучука его превращают в резину, подвергая вулканизации. Для получения резиновых изделий сначала их формуют из смеси каучука с серой, а также с наполнителями: сажей, мелом, глиной и некоторыми органическими соединениями, служащими для ускорения вулканизации. Затем изделия нагревают - горячая вулканизация. При вулканизации сера химически связывается с каучуком. Кроме того, в вулканизированном каучуке сера содержится в свободном состоянии в виде мельчайших частиц.
Диеновые углеводороды легко полимеризуются. Реакция полимеризации диеновых углеводородов лежит в основе синтеза каучука. Вступают в реакции присоединения (гидрирование, галогенирование, гидрогалогенирование):
H 2 C=CH-CH=CH 2 + H 2 -> H 3 C-CH=CH-CH 3
Алкины :
Алкины-этонепредельные углеводороды молекулы которых содержат,помимо одинарных связей,одну тройную углерод-глеродную связь.Формула-C n H 2n-2
Физические свойства :
Алкины по своим физическим свойствам напоминают соответствующие алкены. Низшие (до С 4) - газы без цвета и запаха, имеющие более высокие температуры кипения, чем аналоги в алкенах.
Алкины плохо растворимы в воде, лучше - в органических растворителях.
Химические свойства :
· Реакции галогенирования
Алкины способны присоединять одну или две молекулы галогена с образованием соответствующих галогенпроизводных:
· Гидратация
В присутствии солей ртути алкины присоединяют воду с образованием ацетальдегида (для ацетилена) или кетона (для прочих алкинов)
Строение алканов
Алканы - углеводороды, в молекулах которых атомы связаны одинарными связями и которые соответствуют общей формуле C n H 2n+2 . В молекулах алканов все атомы углерода находятся в состоянии sр 3 -гибридизации .
Это означает, что все четыре гибридные орбитали атома углерода одинаковы по форме, энергии и направлены в углы равносторонней треугольной пирамиды - тетраэдра . Углы между орбиталями равны 109° 28′. Вокруг одинарной углерод-углеродной связи возможно практически свободное вращение, и молекулы алканов могут приобретать самую разнообразную форму с углами при атомах углерода, близкими к тетраэдрическому (109° 28′), например, в молекуле н-пентан.
Особо стоит напомнить о связях в молекулах алканов. Все связи в молекулах предельных углеводородов одинарные. Перекрывание происходит по оси, соединяющей ядра атомов, т. е. это σ-связи . Связи углерод - углерод являются неполярными и плохо поляризуемыми. Длина С-С связи в алканах равна 0,154 нм (1,54 10 10 м). Связи С-Н несколько короче. Электронная плотность немного смещена в сторону более электроотрицательного атома углерода, т. е. связь С-Н является слабополярной .
Гомологический ряд метана
Гомологи - вещества, сходные по строению и свойствам и отличающиеся на одну или более групп СН 2 .
Предельные углеводороды составляют гомологический ряд метана.
Изомерия и номенклатура алканов
Для алканов характерна так называемая структурная изомерия . Структурные изомеры отличаются друг от друга строением углеродного скелета. Простейший алкан, для которого характерны структурные изомеры, - это бутан.
Рассмотрим подробнее для алканов основы номенклатуры ИЮПАК .
1. Выбор главной цепи . Формирование названия углеводорода начинается с определения главной цепи - самой длинной цепочки атомов углерода в молекуле, которая является как бы ее основой.
2. Нумерация атомов главной цепи . Атомам главной цепи присваивают номера. Нумерация атомов главной цепи начинается с того конца, к которому ближе стоит заместитель (структуры А, Б). Если заместители находятся на равном удалении от конца цепи, то нумерация начинается от того конца, при котором их больше (структура В). Если различные заместители находятся на равном удалении от концов цепи, то нумерация начинается с того конца, к которому ближе старший (структура Г). Старшинство углеводородных заместителей определяется по тому, в каком порядке следует в алфавите буква, с которой начинается их название: метил (-СН 3), затем пропил (-СН 2 -СН 2 -СН 3), этил (-СН 2 -СН 3) и т. д.
Обратите внимание на то, что название заместителя формируется заменой суффикса -ан на суффикс -ил в названии соответствующего алкана.
3. Формирование названия . В начале названия указывают цифры - номера атомов углерода, при которых находятся заместители. Если при данном атоме находятся несколько заместителей, то соответствующий номер в названии повторяется дважды через запятую (2,2-). После номера через дефис указывают количество заместителей (ди - два, три - три, тетра - четыре, пента - пять) и название заместителя (метил, этил, пропил). Затем без пробелов и дефисов - название главной цепи. Главная цепь называется как углеводород - член гомологического ряда метана (метан, этан, пропан и т. д.).
Названия веществ, структурные формулы которых приведены выше, следующие:
Структура А: 2-метилпропан;
Структура Б: 3-этилгексан;
Структура В: 2,2,4-триметилпентан;
Структура Г: 2-метил 4-этилгексан.
Отсутствие в молекулах предельных углеводородов полярных связей приводит к тому, что они плохо растворяются в воде , не вступают во взаимодействие с заряженными частицами (ионами) . Наиболее характерными для алканов являются реакции, протекающие с участием свободных радикалов .
Физические свойства алканов
Первые четыре представителя гомологического ряда метана - газы . Простейший из них - метан - газ без цвета, вкуса и запаха (запах «газа», почувствовав который, надо звонить 04, определяется запахом меркаптанов - серосодержащих соединений, специально добавляемых к метану, используемому в бытовых и промышленных газовых приборах для того, чтобы люди, находящиеся рядом с ними, могли по запаху определить утечку).
Углеводороды состава от С 5 Н 12 до С 15 Н 32 - жидкости; более тяжелые углеводороды - твердые вещества. Температуры кипения и плавления алканов постепенно увеличиваются с возрастанием длины углеродной цепи. Все углеводороды плохо растворяются в воде, жидкие углеводороды являются распространенными органическими растворителями.
Химические свойства алканов
Реакции замещения.
Наиболее характерными для алканов являются реакции свободнорадикального замещения , в ходе которого атом водорода замещается на атом галогена или какую-либо группу.
Приведем уравнения характерных реакций галогенирования :
В случае избытка галогена хлорирование может пойти дальше, вплоть до полного замещения всех атомов водорода на хлор :
Полученные вещества широко используются как растворители и исходные вещества в органических синтезах.
Реакция дегидрирования (отщепления водорода).
В ходе пропускания алканов над катализатором (Pt, Ni, Al 2 O 3 , Cr 2 O 3) при высокой температуре (400-600 °C) происходит отщепление молекулы водорода и образование алкена :
Реакции, сопровождающиеся разрушением углеродной цепи. Все предельные углеводороды горят с образованием углекислого газа и воды. Газообразные углеводороды, смешанные с воздухом в определенных соотношениях, могут взрываться.
1. Горение предельных углеводородов - это свободнорадикальная экзотермическая реакция, которая имеет очень большое значение при использовании алканов в качестве топлива:
В общем виде реакцию горения алканов можно записать следующим образом:
2. Термическое расщепление углеводородов .
Процесс протекает по свободнорадикальному механизму . Повышение температуры приводит к гомолитическому разрыву углерод-углеродной связи и образованию свободных радикалов.
Эти радикалы взаимодействуют между собой, обмениваясь атомом водорода, с образованием молекулы алкана и молекулы алкена :
Реакции термического расщепления лежат в основе промышленного процесса - крекинга углеводородов . Этот процесс является важнейшей стадией переработки нефти.
3. Пиролиз . При нагревании метана до температуры 1000 °С начинается пиролиз метана - разложение на простые вещества:
При нагревании до температуры 1500 °С возможно образование ацетилена :
4. Изомеризация . При нагревании линейных углеводородов с катализатором изомеризации (хлоридом алюминия) происходит образование веществ с разветвленным углеродным скелетом :
5. Ароматизация . Алканы с шестью или более углеродными атомами в цепи в присутствии катализатора циклизуются с образованием бензола и его производных:
Алканы вступают в реакции, протекающие по свободнорадикальному механизму, т. к. все атомы углерода в молекулах алканов находятся в состоянии sp 3 -гибридизации. Молекулы этих веществ построены при помощи ковалентных неполярных С-С (углерод - углерод) связей и слабополярных С-Н (углерод - водород) связей. В них нет участков с повышенной и с пониженной электронной плотностью, легко поляризуемых связей, т. е. таких связей, электронная плотность в которых может смещаться под действием внешних факторов (электростатических полей ионов). Следовательно, алканы не будут реагировать с заряженными частицами, т. к. связи в молекулах алканов не разрываются по гетеролитическому механизму.
Алканами называют насыщенные углеводороды. В их молекулах атомы имеют одинарные связи. Структура определяется формулой CnH2n+2. Рассмотрим алканы: химические свойства, виды, применение.
В структуре углерода есть четыре орбиты, по которым вращаются атомы. Орбитали обладают одинаковой формой, энергией.
Обратите внимание! Углы между ними составляют 109 градусов и 28 минут, они направлены на вершины тетраэдра.
Простая углеродная связь позволяет алкановым молекулам свободно вращаться, в результате чего структуры приобретают различные формы, образуя вершины при атомах углерода.
Все алкановые соединения разделяются на две основные группы:
- Углеводороды алифатического соединения. Такие структуры обладают линейным соединением. Общая формула выглядит таким образом: CnH2n+2. Значение n равно или больше единицы, означает количество углеродных атомов.
- Циклоалканы циклической структуры. Химические свойства циклических алканов значительно отличаются от свойств линейных соединений. Формула циклоалканов в некоторой степени делает их схожими с углеводородами, обладающими тройной атомной связью, то есть с алкинами.
Виды алканов
Существует несколько видов алкановых соединений, каждой из которых имеет свою формулу, строение, химические свойства и алкильный заместитель. Таблица содержит гомологический ряд
Название алканов
Общая формула насыщенных углеводородов — CnH2n+2. Изменяя значение n, получают соединение с простой межатомной связью.
Полезное видео: алканы — строение молекул, физические свойства
Разновидности алканов, варианты реакций
В естественных условиях алканы являются химически инертными соединения. Углеводороды не реагируют на контактирование с концентратом азотной и серной кислоты, щелочью и перманганатом калия.
Одинарные молекулярные связи определяют реакции, характерные для алканов. Алкановые цепочки отличаются неполярной и слабо поляризуемой связью. Она несколько длиннее, нежели С-Н.
Общая формула алканов
Реакция замещения
Парафиновые вещества отличаются незначительной химической активностью. Объясняется это повышенной прочностью цепной связи, которую непросто разорвать. Для разрушения используют гомологический механизм, в котором принимают участие свободные радикалы.
Для алканов более естественны реакции замещения. Они не реагируют на молекулы воды и заряженные ионы. При замещении происходит замена водородных частиц галогеновыми и прочими активными элементами. Среди подобных процессов выделяют галогенирование, нитрирование и сульфохлорирование. Такие реакции используют для образования алкановых производных.
Свободнорадикальное замещение происходит в три основных этапа:
- Появление цепочки, на основе которой создаются свободные радикалы. В качестве катализаторов используют нагревание и ультрафиолетовый свет.
- Развитие цепочки, в структуре которой происходят взаимодействия активных и неактивных частиц. Так формируются молекулы и радикальные частицы.
- В завершение цепочка обрывается. Активные элементы создают новые комбинации или вовсе исчезают. Цепная реакция завершается.
Галогенирование
Процесс осуществляется по радикальному типу. Галогенирование происходит под воздействием ультрафиолета и температурного нагрева углеводородной и галогеновой смеси.
Весь процесс происходит по правилу Марковникова. Суть его заключается в том, что первым галогенированию подвергается атом водорода, принадлежащий гидрированному углероду. Процесс начинается с третичного атома и заканчивается первичным углеродом.
Сульфохлорирование
Другое название – реакция Рида. Осуществляется она методом свободнорадикального замещения. Таким образом, алканы реагируют на действие комбинации серного диоксида и хлора под воздействием ультрафиолетового излучения.
Реакция начинается с активизации цепного механизма. В это время из хлора выделяются два радикала. Действие одного направлено на алкан, в результате формируется молекула хлорводорода и алкильный элемент. Другой радикал соединяется с диоксидом серы, создавая сложную комбинацию. Для равновесия из другой молекулы отбирают один атом хлора. В итоге получают сульфонилхлорид алкана. Это вещество используют для выработки поверхностно-активных компонентов.
Сульфохлорирование
Нитрование
Процесс нитрования подразумевает соединение насыщенных углеродов с газообразным оксидом четырехвалентного азота и азотной кислотой, доведенной до 10% раствора. Для протекания реакции потребуется низкий уровень давления и высокая температура, приблизительно 104 градуса. В результате нитрования получают нитроалканы.
Отщепление
Посредством отделения атомов проводят реакции дегидрирования. Молекулярная частица метана полностью разлагается под влиянием температуры.
Дегидрирование
Если от углеродной решетки парафина (кроме метана) отделить атом водорода, образуются непредельные соединения. Эти реакции осуществляются в условиях значительных температурных режимов (400-600 градусов). Также используются различные металлические катализаторы.
Получение алканов происходит путем проведения гидрирования непредельных углеводородов.
Процесс разложения
При влиянии температур во время алкановых реакций могут происходить разрывы молекулярных связей, выделение активных радикалов. Эти процессы известны под названием пиролиз и крекинг.
При нагревании реакционного компонента до 500 градусов, молекулы начинают разлагаться, а на их месте формируются сложные радикальные алкильные смеси. Таким способом получают алканы и алкены в промышленности.
Окисление
Это химические реакции, основанные на отдаче электронов. Для парафинов характерно автоокисление. В процессе используется окисление насыщенных углеводородов свободными радикалами. Алкановые соединения в жидком состоянии преобразуются в гидроперекись. Сначала парафин вступает в реакцию с кислородом. Образуются активные радикалы. Затем происходит реакция алкильной частицы со второй молекулой кислорода. Формируется перекисный радикал, который в последствие взаимодействует с алкановой молекулой. В результате процесса выделяется гидроперекись.
Реакция окисления алканов
Применение алканов
Углеродные соединения имеют широкое применение практически во всех основных сферах человеческой жизни. Некоторые из видов соединений являются незаменимыми для определенных отраслей производства и комфортного существования современного человека.
Газообразные алканы – основа ценного топлива. Главным компонентом большинства газов является метан.
Метан обладает способностью создавать и выделять большое количество тепла. Поэтому его в значительных объемах применяют в промышленности, для потребления в бытовых условиях. При смешивании бутана и пропана получают хорошее бытовое топливо.
Метан используют при производстве таких продуктов:
- метанол;
- растворители;
- фреон;
- типографская краска;
- топливо;
- синтез-газ;
- ацетилен;
- формальдегид;
- муравьиная кислота;
- пластмасса.
Применение метана
Жидкие углеводороды предназначены для создания топлива для двигателей и ракет, растворителей.
Высшие углеводороды, где количество атомов углерода превышает 20, участвуют в производстве смазочных веществ, лакокрасочной продукции, мыла и моющих средств.
Комбинация жирных углеводородов, в которых менее 15 атомов Н, являет собой вазелиновое масло. Эта безвкусная прозрачная жидкость применяется в косметике, в создании парфюмов, в медицинских целях.
Вазелин – результат соединения твердых и жирных алканов с количеством атомов углерода меньше 25. Вещество участвует в создании медицинских мазей.
Парафин, полученный в результате комбинирования твердых алканов, является твердой безвкусной массой, белого цвета и без аромата. Из вещества производят свечи, пропитывающую субстанцию для упаковочной бумаги и спичек. Также парафин популярен при осуществлении тепловых процедур в косметологии и медицине.
Обратите внимание! На основе алкановых смесей также делают синтетические волокна, пластмассы, моющую химию и каучук.
Галогенопроизводные алкановые соединения выполняют функции растворителей, хладагентов, а также основного вещества для дальнейшего синтеза.
Полезное видео: алканы — химические свойства
Вывод
Алканы являются ациклическими углеводородными соединениями, обладающими линейной или разветвленной структурой. Между атомами установлена одинарная связь, которая не поддается разрушению. Реакции алканов, основанные на замещении молекул, свойственные этому виду соединений. Гомологический ряд имеет общую структурную формулу CnH2n+2. Углеводороды относятся к насыщенному классу, поскольку содержат максимально допустимое количество атомов водорода.
Химические свойства. Физические свойства алканов
Физические свойства алканов
В обычных условиях первые четыре члена гомологического ряда алканов (С 1 - С 4) - газы. Нормальные алканы от пентана до гептадекана (С 5 - С 17) - жидкости, начиная с С 18 и выше - твердые вещества. По мере увеличения числа атомов углерода в цепи, т.е. с ростом относительной молекулярной массы, возрастают температуры кипения и плавления алканов.
При одинаковом числе атомов углерода в молекуле алканы с разветвленным строением имеют более низкие температуры кипения, чем нормальные алканы.
Алканы практически нерастворимы в воде, т.к. их молекулы малополярны и не взаимодействуют с молекулами воды. Жидкие алканы легко смешиваются друг с другом. Они хорошо растворяются в неполярных органических растворителях, таких, как бензол, тетрахлорметан и т.п.
Строение
Молекула простейшего алкана - метана - имеет форму правильного тетраэдра, в центре которого находится атом углерода, а в вершинах - атомы водорода. Углы между осями связей С-Н составляют 109°28" (рис. 29).
В молекулах других предельных углеводородов углы между связями (как С-Н, так и С-С) имеют такое же значение. Для описания формы молекул используется понятие гибридизации атомных орбиталей (см. часть I, §6).
В алканах все атомы углерода находятся в состоянии sp 3 - гибридизации (рис. 30).
Таким образом, атомы углерода в углеродной цепи не находятся на одной прямой. Расстояние между соседними атомами углерода (между ядрами атомов) строго фиксировано - это длина химической связи (0,154 нм). Расстояние С 1 - С 3 , С 2 - С 4 и т.д. (через один атом) тоже постоянны, т.к. постоянен угол между связями -валентный угол.
Расстояния между более удаленными атомами углерода могут изменяться (в некоторых пределах) в результате вращения вокруг s-связей. Такое вращение не нарушает перекрывания орбиталей, образующих s-связь, поскольку эта связь имеет осевую симметрию.
Разные пространственные формы одной молекулы, образующиеся при вращении групп атомов вокруг s-связей, называют конформациями (рис. 31).
Конформации различают по энергии, но это различие невелико (12-15 кДж/моль). Более устойчивы такие конформации алканов, в которых атомы расположены возможно дальше друг от друга (отталкивание электронных оболочек). Переход от одной конформации к другой осуществляется за счет энергии теплового движения. Для изображения конформации используют специальные пространственные формулы (формулы Ньюмена).
Не путать!
Следует различать понятия конформация и конфигурация.
Разные конформации могут превращаться друг в друга без разрыва химических связей. Для превращения молекулы с одной конфигурацией в молекулу с другой конфигурацией требуется разрыв химических связей.
Из четырех видов изомерии для алканов характерны два: изомерия углеродного скелета и оптическая изомерия (см. часть
Химические связи в алканах, их разрыв и образование определяют химические свойства алканов. Связи С-С и С-Н ковалентные, простые (s-связи), практически неполярные, достаточно прочные, поэтому:
1) алканы вступают чаще всего в такие реакции, которые идут с гемолитическим разрывом связей;
2) по сравнению с органическими соединениями других классов алканы обладают низкой реакционной способностью (их за это называют парафинами - «лишенными свойства»). Так, алканы устойчивы к действию водных растворов кислот, щелочей и окислителей (например, перманганата калия) даже при кипячении.
Алканы не вступают в реакции присоединения к ним других молекул, т.к. алканы не имеют в своих молекулах кратных связей.
Алканы подвергаются разложению при сильном нагревании в присутствии катализаторов в виде платины или никеля, при этом от алканов отщепляется водород.
Алканы могут вступать в реакции изомеризации. Характерной реакцией для них является реакция замещения, протекающая по радикальному механизму.
Химические свойства
Реакции радикального замещения
В качестве примера рассмотрим взаимодействие алканов с галогенами. Фтор реагирует очень энергично (как правило, со взрывом) - при этом рвутся все С-Н и С-С связи, и в результате образуются соединения CF 4 и HF. Практического значения реакция не имеет. Иод с алканами не взаимодействует. Реакции с хлором или бромом идут либо при освещении, либо при сильном нагревании; при этом происходит образование от моно- до полигалогензамещенных алканов, например:
СН 3 -СН 3 +Сl 2 ® hv СН 3 -СН 2 -Сl+НСl
Образование галогенопроизводных метана протекает по цепному свободнорадикальному механизму. Под действием света молекулы хлора распадаются на неорганические радикалы:
Неорганический радикал Сl . отрывает от молекулы метана атом водорода с одним электроном, образуя НС1 и свободный радикал СН 3
Свободный радикал взаимодействует с молекулой хлора Сl 2 , образуя галогенопроизводное и радикал хлора.
Реакция окисления начинается с отрыва атома водорода молекулой кислорода (которая представляет собой бирадикал) и далее идет как разветвленная цепная реакция. Количество радикалов в ходе реакции увеличивается. Процесс сопровождается
выделением большого количества теплоты, рвутся уже не только С-Н, но и С-С связи, так что в результате образуется оксид углерода (IV) и вода. Реакция может протекать как горение или приводит к взрыву.
2С n Н2 n+2 +(3n+1)О 2 ®2nСO 2 +(2n+2)Н 2 O
При обычной температуре реакция окисления не идет; ее можно инициировать либо поджиганием, либо действием электрического разряда.
При сильном нагревании (свыше 1000°С) алканы полностью разлагаются на углерод и водород. Эта реакция называется пиролизом.
СН 4 ® 1200° С+2Н 2
При мягком окислении алканов, в частности метана, кислородом воздуха в присутствии различных катализаторов могут быть получены метиловый спирт, формальдегид, муравьиная кислота.
Если метан пропускать через нагретую зону очень быстро, а затем сразу охлаждать водой, то в результате образуется ацетилен.
Эта реакция - основа промышленного синтеза, который называется крекингом (неполным разложением) метана.
Крекинг гомологов метана проводят при более низкой температуре (около 600°С). Например, крекинг пропана включает следующие стадии:
Итак, крекинг алканов приводит к образованию смеси алканов и алкенов меньшей молекулярной массы.
Нагревание алканов до 300-350°С (крекинг еще не идет) в присутствии катализатора (Pt или Ni) приводит к дегидрированию - отщеплению водорода.
При действии разбавленной азотной кислоты на алканы при 140°С и небольшом давлении протекает радикальная реакция:
СН 3 -СН 3 + HNO 3 ®CH 3 -CH 2 -NO 2 + Н 2 О Изомеризация
При определенных условиях алканы нормального строения могут превращаться в алканы с разветвленной цепью.
Получение алканов
Рассмотрим получение алканов на примере получения метана. Метан широко распространен в природе. Он является главной составной частью многих горючих газов, как природных (90-98%), так и искусственных, выделяющихся при сухой перегонке дерева, торфа, каменного угля, а также при крекинге нефти. Природные газы, особенно попутные газы нефтяных месторождений, помимо метана содержат этан, пропан, бутан и пентан.
Метан выделяется со дна болот и из каменноугольных пластов в рудниках, где он образуется при медленном разложении растительных остатков без доступа воздуха. Поэтому метан часто называют болотным газом или рудничным газом.
В лаборатории метан получают при нагревании смеси ацетата натрия с гидроксидом натрия:
CH 3 COONa+NaOH® 200° Na 2 CO 3 +CH 4
или при взаимодействии карбида алюминия с водой: Аl 4 Сl 3 +12H 2 O®4Аl(ОН) 3 +3CH 4
В последнем случае метан получается весьма чистым.
Метан может быть получен из простых веществ при нагревании в присутствии катализатора:
С+2Н 2 ® Ni СН 4 8 также синтезом на основе водяного газа
CO+3H 2 ® Ni CH 4 +H 2 O
Этот способ имеет промышленное значение. Однако используют обычно метан природных газов или газов, образующихся при коксовании каменных углей и при переработке нефти.
Гомологи метана, как и метан, в лабораторных условиях получают прокаливанием солей соответствующих органических кислот с щелочами. Другой способ - реакция Вюрца, т.е. нагревание моногалогенопроизводных с металлическим натрием, например:
С 2 Н 5 Br+2Na+BrC 2 H 6 ® С 2 Н 5 -С 2 Н 5 +2NaBr
В технике для получения технического бензина (смесь углеводородов, содержащих 6-10 атомов углерода) применяют синтез
из оксида углерода (II) и водорода в присутствии катализатора (соединения кобальта) и при повышенном давлении. Процесс
можно выразить уравнением
nСО+(2n+1)Н 2 ® 200° C n H 2n+2 +nН 2 O
I Итак, основным источником алканов служат природный газ и нефть. Однако некоторые предельные углеводороды синтезируют из других соединений.
Применение алканов
Большая часть алканов используется как топливо. Крекинг и
Дегидрирование их приводит к непредельным углеводородам, на
базе которых получают множество других органических веществ.
Метан - основная часть природных газов (60-99%). В состав
природных газов входят пропан и бутан. Жидкие углеводороды
применяются в качестве горючего в двигателях внутреннего сгорания а автомашинах, самолетах и др. Очищенная смесь жидких
и твердых алканов образует вазелин. Высшие алканы являются
исходными веществами при получении синтетических моющих средств. Алканы, полученные путем изомеризации, используются в производстве высококачественных бензинов и каучука. Ниже приведена схема применения метана
Циклоалканы
Строение
Циклоалканы - насыщенные углеводороды, в молекулах которых имеется замкнутое кольцо из углеродных атомов.
Циклоалканы (циклопарафины) образуют гомологический ряд с общей формулой С n Н 2 n , в котором первым членом является
циклопропан С 3 Н 6 , т.к. для образования кольца необходимо наличие не менее трех атомов углерода.
Циклоалканы имеют несколько названий: циклопарафины, нафтены, цикланы, полиметилены. Примеры некоторых соединений:
Формула С n Н 2 n характерна для циклопарафинов, и точно такая же формула описывает гомологический ряд алкенов (непредельных углеводородов, имеющих одну кратную связь). Из этого можно сделать вывод, что каждому циклоалкану изомерен соответствующий алкен - это пример «межклассовой» изомерии.
Циклоалканы по размеру цикла делятся на ряд групп, из которых рассмотрим две: малые (С 3 , С 4) и обычные (С 5 -С 7) циклы.
Названия циклоалканов строятся путем добавления приставки цикло- к названию алкана с соответствующим числом атомов углерода. Нумерацию в цикле проводят так, чтобы заместители получили наименьшие номера.
Структурные формулы циклоалканов обычно записываются в сокращенном виде, используя геометрическую форму цикла и опуская символы атомов углерода и водорода. Например:
Структурная изомерия циклоалканов обусловлена размером цикла (циклобутан и метилциклопропан - изомеры) и положением заместителей в цикле (например, 1,1- и 1,2-диметилбутан), а также их строением.
Пространственная изомерия также характерна для циклоалканов, т.к. она связана с различным расположением заместителей относительно плоскости цикла. При расположении заместителей по одну сторону от плоскости цикла получаются цис-изомеры, по разные стороны - транс-изомеры.