Первая лампочка. Электрическая лампочка (история изобретения)

У лампы накаливания несколько изобретателей:

  • В 1809 году англичанин Деларю сконструировал первую лампу накаливания (с платиновой спиралью).
  • В 1838 году бельгиец Жобар изобрёл угольную лампу накаливания.
  • В 1854 году немец Генрих Гёбель разработал первую "современную" лампу: обугленную бамбуковую нить в вакуумированном сосуде.
  • В 1860 год английский химик и физик Джозеф Уилсон Суон продемонстрировал первые результаты и получил патент, но с получением вакуума в те годы было сложно и лампа Суона работала недолго и неэффективно. Он не остановился на достигнутом и в 1878 году получил патент на лампу с угольным волокном. В ней волокно находилось в разреженной кислородной атмосфере, что позволяло получать очень яркий свет.
  • 11 июля 1874 года российский инженер Александр Николаевич Лодыгин (на фото) получил патент за номером 1619 на нитевую лампу. В качестве нити накала он использовал угольный стержень, помещённый в вакуумированный сосуд.
  • В 1875 году В.Ф. Дидрихсон усовершенствовал лампу Лодыгина, откачав из неё воздух и применил в лампе несколько волосков, чтобы в случае перегорания одного из них, следующий включался автоматически.

Во второй половине 1870-х годов Томас Эдисон взялся за усовершенствование лампы накаливания и провёл серию опытов, используя в качестве нити различные металлы. по результатам опытов в 1879 году он запатентовал лампу с платиновой нитью, а в 1880 году он вернулся к работе с угольным волокном и создал лампу с временем жизни 40 часов. Одновременно с этим Эдисон изобрёл бытовой поворотный выключатель. Несмотря на недолговечность, лампы Эдисона постепенно начали вытеснять газовое освещение.

Лодыгин также не оставлял работы над усовершенствованием лампочек и в 1890-х годах он предложил применять в лампах нити из вольфрама и молибдена и закручивать нить накаливания в форме спирали.

Предпринял первые попытки откачивать из ламп воздух, что сохраняло нить от окисления и увеличивало их срок службы. Первая американская коммерческая лампа с вольфрамовой спиралью впоследствии производилась по патенту Лодыгина.

Конструкция лампочки

Независимо от назначения ламп накаливания, конструктивно они мало отличаются друг от друга: тело накала, колба и токовводы.

В зависимости от особенностей конкретного типа лампы могут применяться держатели тела накала различной конструкции.

Бывают лампы бесцокольные или с цоколями различных типов, также лампочки могут иметь дополнительную внешнюю колбу и иные дополнительные конструктивные элементы.

  • Колба. Защищает тело (спираль) накала от воздействия атмосферных газов. Размеры колбы определяются скоростью осаждения материала тела накала.
  • Газовая среда. Первые лампы были вакуумированными. Большинство современных ламп наполняются химически инертными газами (кроме ламп малой мощности, которые по-прежнему делают вакуумными). Смеси азота N2 с аргоном Ar являются наиболее распространёнными в силу малой себестоимости, также применяют чистый осушенный аргон, реже - криптон Kr или ксенон Xe.
  • Тело накала. Может быть разной формы, наиболее распространённое - спираль из проволоки круглого поперечного сечения, но применяются и ленточные тела накала (из металлических ленточек). Поэтому правильнее будет использовать термин "тело накала", вместо "нить накала".
  • Цоколь. Форма цоколя с резьбой обычной лампы накаливания была предложена Джозефом Уилсоном Суоном. Размеры цоколей стандартизованы. У ламп бытового применения наиболее распространены цоколи Эдисона E14, E27 и E40 - цифра обозначает наружный диаметр в милиметрах. Также встречаются цоколи без резьбы. Лампа держится в таком патроне за счёт трения или нерезьбовыми сопряжениями - британский бытовой стандарт, а также бесцокольные лампы, часто применяемые в автомобилях.

Лампы изготавливают для различных рабочих напряжений. Сила тока определяется по закону Ома: I=U/R и мощность по формуле P=U·I , или P=U²/R .

Принцип работы лампы накаливания

В лампе используется эффект нагревания проводника (тела накаливания - спирали) при протекании через него электрического тока (тепловое действие тока). Температура тела накала резко возрастает после включения тока. Тело накала излучает электромагнитное тепловое излучение в соответствии с законом Планка.

Функция Планка имеет максимум, положение которого на шкале длин волн зависит от температуры. Этот максимум сдвигается с повышением температуры в сторону меньших длин волн (закон смещения Вина). Для получения видимого излучения необходимо, чтобы температура была порядка нескольких тысяч градусов. При температуре 5770 K (кельвинов), что равно температуре поверхности Солнца, свет соответствует спектру Солнца. Чем меньше температура, тем меньше доля видимого света, и тем более «красным» кажется излучение.

Часть потребляемой электрической энергии лампа накаливания преобразует в излучение, а часть уходит в результате процессов теплопроводимости и конвекции. Только малая доля излучения лежит в области видимого света, тогда как основная доля приходится на инфракрасное излучение.

Для повышения коэффициента полезного действия (КПД) лампы и получения максимально "белого" света необходимо повышать температуру нити накала, которая в свою очередь ограничена свойствами материала нити - температурой плавления. В современных лампах накаливания применяют материалы с максимальными температурами плавления - вольфрам (3410°C) и, очень редко, осмий (3045°C).

Для оценки качества света используется цветовая температура. При типичных для ламп накаливания температурах 2200-3000 K излучается желтоватый свет, отличный от дневного. В вечернее время "тёплый" (

Если бы вольфрамовые тела накала использовались на открытом воздухе, то при таких температурах вольфрам мгновенно превратился бы в оксид. Именно поэтому тело накала помещено в колбу, из которой в процессе изготовления лампы откачивается воздух.

Повышенное давление в колбе газонаполненных ламп резко уменьшает скорость испарения вольфрама, благодаря чему не только увеличивается срок службы лампы, но и есть возможность повысить температуру тела накаливания, что позволяет повысить КПД и приблизить спектр излучения к белому. Колба газонаполненной лампы не так быстро темнеет за счёт осаждения материала тела накала, как у вакуумной лампы.

Сегодня лампы накаливания уступают место лампам энергосберегающим, люминесцентным и другим. Они отличаются устройством и техническими характеристиками, так что к этой теме мы обязательно вернёмся.

Трудно представить современному человеку, что всего сто с небольшим лет назад электрические лампочки в нашем быту делало свои первые шаги.

Список изобретателей большинства современных устройств, как правило, ограничивается одной-двумя персонами (часто бывает так, что два талантливых изобретателя приходят к воплощению одной и той же идеи с небольшим временным отрывом друг от друга). Но существуют и весьма интересные исключения из этого правила. Например, лампа накаливания. Поверить в то, что простую лампочку изобрел не один, не два и даже не три, а тринадцать ученых, довольно сложно. Но это на самом деле так. И причина тому проста: дело в том, что первую запатентованную лампу накаливания, и ту лампу, которой мы пользуемся в наши дни, разделяют ровно 100 лет постоянных усовершенствований, которые проводились самыми разными изобретателями из разных стран мира.

И каждый из них сделал свой вклад в историю изобретения простой бытовой лампочки. А значит однозначно ответить на вопрос: кто изобрел лампочку, увы, не получится.

Начало превращение электрической энергии в световую положили опыты ученого Василия Петрова, наблюдавшего явление вольтовой дуги в 1803году. В 1810 году то же открытие сделал английский физик Деви. Оба они получили вольтову дугу, пользуясь большой батареей элементов, между концами стерженьков из древесного угля.

И тот, и другой писали, что вольтова дуга может использоваться в целях освещения. Но прежде надо было найти более подходящий материал для электродов, поскольку стержни из древесного угля сгорали за несколько минут и были малопригодны для практического использования.

В XIX веке получили распространение два типа электрических ламп: лампы накаливания и дуговые. Дуговые лампочки появились немного раньше. Свечение их основано на таком интересном явлении, как вольтова дуга. Если взять две проволоки, подключить их к достаточно сильному источнику тока, соединить, а затем раздвинуть на расстояние нескольких миллиметров, то между концами проводников образуется нечто вроде пламени с ярким светом. Явление будет красивее и ярче, если вместо металлических проводов взять два заостренных угольных стержня.

Англичанин Деларю, создал в 1809 году первую лампочку накаливания с платиновой нитью. Первую дуговую лампу с ручным регулированием длины дуги сконструировал в 1844 году французский физик Фуко. Древесный уголь он заменил палочками из твердого кокса. В 1848 году он впервые применил дуговую лампу для освещения одной из парижских площадей.

В 1875 году Павел Николаевич Яблочков предложил надежное и простое решение для дуговых ламп. Он расположил угольные электроды параллельно, разделив их изолирующим слоем. Изобретение имело колоссальный успех. В 1877 году с их помощью было впервые устроено уличное электричество на Avenue de L`Opera в Париже. Всемирная выставка, открывшаяся в следующем году, дала возможность многим электротехникам познакомиться с этим замечательным изобретением. Под названием «русский свет» свечи Яблочкова использовались позже для уличного освещения во многих городах мира.

В 1874 году инженер Александр Лодыгин запатентовал «нитевую лампу». В качестве нити накала использовался угольный стержень, помещенный опять таки в сосуд с вакуумом. В 1890 году Лодыгин придумал заменить угольную нить проволокой из тугоплавкого вольфрама, имевшей температуру накала 3385 градусов. В 1906 г. Лодыгин продаёт патент на вольфрамовую нить компании General Electric. Из-за высокой стоимости вольфрама изобретение находит ограниченное применение.

Первые случаи применения электричества в Украине для нужд освещения известны с 70-х годов позапрошлого века.

В 1878 г. инженер А.П. Бородин оборудовал токарный цех киевских железнодорожных мастерских четырьмя электрическими дуговыми фонарями. Каждый фонарь имел свою электромагнитную машину Грамма. Фонари были расположены в два ряда в шахматном порядке. Угли рассчитаны на 3 часа работы.

В 1886 г. было установлено электрическое освещение в парке «Шато-де-Флер» в Киеве. В 1996 году в этом же городе начала действовать первая электрическая станция общего пользования.

Настоящий переворот в создании лампочки совершили опыты американского изобретателя Эдисона. Прежде чем приступить к опытам он изучил весь опыт газгольдерных компаний в освещении городов и помещений. Он разработал на бумаге подробные схемы електростанции и коммуникационных линий к домам и фабрикам. Подсчитал себестоимиость всех материалов и вычислил, что цена лампочки для потребителя не должна превышать 40 центов.

С 1878 года он проводит более 12 тыс. опытов в своей лаборатории. Подсчитано, что его помощники опробовали не менее 6000 различных веществ и соединений, при этом на опыты было израсходовано свыше 100 тысяч долларов.

Сначала Эдисон заменил ломкий уголек более прочным, приготовленным из угля, потом стал делать опыты с различными металлами и, наконец, остановился на нити из обугленных бамбуковых волокон. В 1879 году в присутствии трех тысяч человек Эдисон публично демонстрировал свои электрические лампочки, осветив ими свой дом, лабораторию и несколько прилегающих улиц.

Это была первая лампочка с продолжительным сроком службы, пригодная для массового производства.

Заслуга Эдисона не в том, что «изобрел» лампочку, а в том что он дал начало промышленному производству ламп и ее составлющих: кабелей, двухфазных генераторов (изобретены Эдисоном), электросчетчиков. Патрон и цоколь, а также многие другие элементы электрического освещения, сохранившиеся без изменений до наших дней — выключатели, предохранители, электрические счетчики и многое другое — были также изобретены Эдисоном.
В бизнесе, после окончания работы над изобретениями, он оставался из принципа: обещал довести продажную цену до 40 центов. Продал свою компанию «Эдисон Дженерал Электрик компани» когда цена лампы достигла 22 цента.

Плата за электроэнергию взимались за 1 ч горения лампы фонаря. Цена не препятствовала увеличению числа потребителей. Домовладельцы городов охотно проводили электрическое освещение.

Средняя долговечность лампочки Эдисона составляла 800-1000 часов непрерывного горения. Почти тридцать лет лампочки изготавливались способом который разработан Эдисоном, но будущее было за лампочками с металлической нитью.

Начало ХХ-го века – это первые попытки поставить производство лампочек с вольфрамовыми нитями накаливания «на поток», наладить их массовое производство. Увы, это стало возможным лишь в 1906-м году благодаря усилиям Александра Лодыгина и Вильяма Кулиджа, усердно трудившихся над доступными методами получения вольфрамовой нити. В 1910 г. Вильям Кулидж изобретает улучшенный метод производства вольфрамовой нити. Впоследствии вольфрамовая нить вытесняет все другие виды нитей.

Последним этапом усовершенствования лампочки стало использование благородных инертных газов (в частности аргоном) для заполнения полости лампы. Благодаря этому нововведению, предложенному Ирвингом Ленгмюром, современные лампочки не только ярки, но и долговечны.

Сейчас современная наука делает такое простое и такое незаменимое изобретение как лампочка еще проще и эффек тивнее, но имена тех, кто трудился над ее созданием в прошлом, уже записаны золотыми буквами в историю мировой науки.

МОУ СОШ №9

Лампа накаливания и история ее

изобретения

Шевелева Милана

Александровна

2012 год г. Тихвин

История изобретения

Принцип действия

Конструкция

КПД и долговечность

Литература

История изобретения

§В 1809 году англичанин Деларю строит первую лампу накаливания 1809 году (с платиновой спиралью).

§В 1838 году бельгиец Жобар изобретает угольную лампу накаливания.

§В 1854 году немец Генрих Гёбель разработал первую «современную» лампу: обугленную бамбуковую нить в вакуумированном сосуде. В последующие 5 лет он разработал то, что многие называют первой практичной лампой.

§В 1860 году английский химик и физик Джозеф Уилсон Суон продемонстрировал первые результаты и получил патент, однако трудности в получении вакуума привели к тому, что лампа Суона работала недолго и неэффективно.

§11 июля 1874 года российский инженер Александр Николаевич Лодыгин получил патент за номером 1619 на нитевую лампу. В качестве нити накала он использовал угольный стержень, помещённый в вакуумированный сосуд.

§В 1876 году Павел Николаевич Яблочков разработал один из вариантов электрической угольной дуговой лампы, названный «свечой Яблочкова». Преимуществом конструкции было отсутствие необходимости в механизме, поддерживающем расстояние между электродами для горения дуги. Электродов хватало примерно на 2 часа.

§Английский изобретатель Джозеф Уилсон Суон получил в 1878 году <#"justify">Принцип действия

Лампа накаливания - электрический источник света, в котором тело накала (тугоплавкий проводник), помещённое в прозрачный вакуумированный или заполненный инертным газом сосуд, нагревается до высокой температуры за счёт протекания через него электрического тока, в результате чего излучает в широком спектральном диапазоне, в том числе видимый свет. В качестве тела накала в настоящее время используется в основном спираль из сплавов на основе вольфрама.

В лампе накаливания используется эффект нагревания проводника (нити накаливания) при протекании через него электрического тока. Температура вольфрамовой нити накала резко возрастает после включения тока. Нить лампы накаливания излучает электромагнитное излучение в соответствии с законом Планка. Функция Планка имеет максимум, положение которого на шкале длин волн зависит от температуры. Этот максимум сдвигается с повышением температуры в сторону меньших длин волн (закон смещения Вина). Для получения видимого излучения необходимо, чтобы температура была порядка нескольких тысяч градусов. Чем меньше температура, тем меньше доля видимого света и тем более «красным» кажется излучение. Часть потребляемой электрической энергии лампа накаливания преобразует в излучение, часть уходит в результате процессов теплопроводности и конвекции. Только малая доля излучения лежит в области видимого света, основная доля приходится на инфракрасное излучение. Для повышения КПД лампы накаливания и получения максимально «белого» света необходимо повышать температуру нити накала, которая в свою очередь ограничена свойствами материала нити - температурой плавления. В современных лампах накаливания применяют материалы с максимальными температурами плавления - вольфрам (3410°C) и, очень редко, осмий (3045°C). При практически достижимых температурах 2300-2900°C излучается далеко не белый и не дневной свет. По этой причине лампы накаливания испускают свет, который кажется более «желто-красным», чем дневной свет. Для характеристики качества света используется т. н. цветовая температура. В обычном воздухе при таких температурах вольфрам мгновенно превратился бы в оксид. По этой причине вольфрамовая нить защищена стеклянной колбой, заполненной нейтральным газом (обычно аргоном). Первые лампы накаливания делались с вакуумированными колбами. Однако в вакууме при высоких температурах вольфрам быстро испаряется, делая нить тоньше и затемняя стеклянную колбу при осаждении на ней. Позднее колбы стали заполнять химически нейтральными газами. Вакуумные колбы сейчас используют только для ламп малой мощности.

Конструкция

Конструкции ламп накаливания весьма разнообразны и зависят от назначения. Однако общими являются тело накала, колба и токовводы. В зависимости от особенностей конкретного типа лампы могут применяться держатели тела накала различной конструкции; лампы могут изготавливаться бесцокольными или с цоколями различных типов, иметь дополнительную внешнюю колбу и иные дополнительные конструктивные элементы.

В конструкции ламп общего назначения предусматривается предохранитель - звено из ферроникелевого сплава, вваренное в разрыв одного из токовводов и расположенное вне колбы лампы - как правило, в ножке. Назначение предохранителя - предотвратить разрушение колбы при обрыве нити накала в процессе работы. Дело в том, что при этом в зоне разрыва возникает электрическая дуга, которая расплавляет остатки нити, капли расплавленного металла могут разрушить стекло колбы и послужить причиной пожара. Предохранитель рассчитан таким образом, чтобы при зажигании дуги он разрушался под воздействием тока дуги, существенно превышающего номинальный ток лампы. Ферроникелевое звено находится в полости, где давление равно атмосферному, а потому дуга легко гаснет. Из-за малой эффективности в настоящее время отказались от их применения.

Полость колбы (вакуумированная или наполненная газом)

Тело накала

5.Электроды (токовые вводы)

Крючки - держатели тела накала

Ножка лампы

Внешнее звено токоввода,предохранитель

Корпус цоколя

Изолятор цоколя (стекло)

Контакт донышка цоколя

КПД и долговечность

Галогенная лампа

Двойная спираль лампы мощностью 200 Вт (сильно увеличено)

лампа накаливания

Двойная спираль (биспираль) лампы Osram 200 Вт с токовводами и держателями (увеличено)

Литература

1.

Https://www.google.ru/url?sa=t&rct=j&q=&esrc=s&source=web&cd=15&sqi=2&ved=0CJUBEBYwDg&url=http%3A%2F%2Flights-on.ru%2Flampi%2Flampi-nakalivanija%2F28175&ei=v6CNT_rqKMyG-wbA1vn9Dw&usg=AFQjCNEzqWLjmpEbj209-oMXsFOeSzJwvQ&sig2=IrbpH2wgyJjnVy5eiBSrCQ

Https://www.google.ru/url?sa=t&rct=j&q=&esrc=s&source=web&cd=2&ved=0CEsQFjAB&url=http%3A%2F%2Felectrolibrary.narod.ru%2Fsvetrazvitie.htm&ei=daGNT4bBIM2a-gaqkPX-Dw&usg=AFQjCNEcg5f-Wd5KUCqbBYyjRW246151pA&sig2=ENB3pspm4tXAa0-6x0Sx3w

Https://www.google.ru/url?sa=t&rct=j&q=&esrc=s&source=web&cd=4&ved=0CFgQFjAD&url=http%3A%2F%2Fwww.energy-etc.ru%2Fcontent%2Fmaterials%2Findex19-183.html&ei=daGNT4bBIM2a-gaqkPX-Dw&usg=AFQjCNHCeI84cuCIZaG-U0oisEZ6JXI7kA&sig2=NA156uCVQOb90ANGsOWt2A

print render($content["field_photo_descr"]); ?>

Искусственное освещение – это, несомненно, одно из главных благ человечества. Сейчас уже практически невозможно представить, какой была бы наша жизнь без него (разве что в качестве сюжета для фильма-антиутопии или «ужастика»). Наверно, мир казался бы более тусклым и мрачным. Собственно, так оно и было – до того как появились лампочки. Когда же это произошло и кому мы обязаны их изобретением?

Первые прообразы: интересные факты из истории

Люди с самых древних времен искали искусственные источники, которые могли бы давать яркое и долгое освещение. И, как свидетельствуют исторические факты, многим народам это удавалось. Вот лишь несколько удивительных примеров из прошлого:

  • В римской гробнице, вскрытой неподалеку от Аппиевой дороги, рядом с останками дочери Цицерона была обнаружена светящаяся лампа, которая проработала около 1 600 лет.
  • В одной из гробниц Рима был обнаружен фонарь «Полланта», который светил около 2 000 лет.
  • В древнеегипетском храме Хатхор, построенном в первом столетии до нашей эры, на барельефе сохранилось изображение предмета, очень напоминающего по строению лампу накаливания. Это вытянутый сосуд, внутри которого извивается змея. Некоторые ученые предполагают, что египтяне были знакомы с электричеством, а рисунок – не что иное, как схема лампочки; сам же Хатхор – огромная электростанция. К слову, в мифологии Древнего Египта есть ряд упоминаний таких явлений, как автоматические двери, вспышки ослепительного света и др.
  • Свидетельства о существовании долговечных и ярких ламп можно встретить у авторов различных эпох и стран: о них писали Плутарх, Лукиан, Аврелий Августин, Павсаний и др.
  • Исправно горевшая более 500 лет во времена раннего средневековья лампа была найдена в Англии.
  • О «вечной лампе» рассказывал Сирано де Бержерак.
  • Современный путешественник Эндрю Томас в своих трудах описывает, как в Индии ему довелось познакомиться со старинной рукописью, где содержалась инструкция по изготовлению электрической батареи. Кроме того, он обнаружил деревню в джунглях Новой Гвинеи, где используется система искусственного освещения на основе светильников, идентичных нашим неоновым лампам.

Кто изобрел лампочку в ее современном виде

На вопрос о том, кто изобрел электрическую лампочку, однозначный ответ дать очень сложно. В разработку технологии внесли вклад сразу несколько выдающихся ученых-изобретателей из России, США, Бельгии, Англии и др. Поэтому разные страны приписывают авторство себе: так, американцы уверены, что лампу накаливания изобрел Томас Эдисон, а россияне считают, что ее открыл Александр Лодыгин. И в каждом из этих утверждений есть доля правды. Расскажем обо всем по порядку.

Узнай, когда и где были созданы цифровые фотоаппараты . И как с годами совершенствовались технологии.Что такое шамбала, можно узнать в нашей статье .
  1. В 1809 году британец Деларю сконструировал первую модель лампы накаливания с платиновой спиралью. Материал был слишком хрупким и очень дорогим, поэтому эта технология оказалась неэффективной.
  2. Следующий вариант – угольная лампа накаливания – появляется в 1838 году благодаря стараниям бельгийского ученого Жобара. Она была значительно дешевле, однако угольный стержень слишком быстро сгорал из-за содержащегося в лампе кислорода.
  3. В 1854 году часовщик Генрих Гебель из Германии разработал первую «практичную лампу» -- вакуумный сосуд с обугленной бамбуковой нитью.
  4. 11 июля 1874 года российский инженер Александр Николаевич Лодыгин запатентовал нитевую лампу, где использовался угольный стержень, помещённый в вакуумированную колбу. В качестве материала для нитей накала использовался вольфрам, что значительно продлевало срок жизни лампочек.
  5. В 1878 году английский физик Джозеф Вильсон Суон получил британский патент на лампу собственного изобретения, где угольное волокно находилось в разреженной кислородной атмосфере.
  6. В то же время, но по другую сторону Атлантики, свои исследования ведет Томас Эдисон. По сути, он занимается доработкой уже существующих технологий - лампы с платиновой нитью и угольным волокном. В 1880 году он патентует угольную лампу, способную светить около 40 часов. И совсем скоро лампы Эдисона вытесняют газовое освещение.
  7. В 1906 году патент Лодыгина на лампу с вольфрамовой нитью приобретает General Electric. Но эта технология поначалу не находит своего применения из-за дороговизны вольфрама.
  8. В 1910 году появляется улучшенный способ изготовления вольфрамовой нити (его изобрел Вильям Дэвид Кулидж) и вскоре этот материал получает широчайшее распространение.
  9. Одновременно Ирвинг Ленгмюр, сотрудник GeneralElectric, предложил заполнять стеклянные колбы аргоном, что повысило долговечность вольфрамовой нити накаливания.

И все же: Лодыгин или Эдисон?

Нет никаких сомнений в том, что именно российский гений дал жизнь той самой технологии: вольфрамовые нити накаливания, предложенные Лодыгиным, используются в электрических лампах и по сей день.

Кстати, за это изобретение Петербургская академия наук вручила инженеру престижную Ломоносовскую премию. Кроме того, Лодыгин первым предложил использовать в составе ламп инертный газ – для увеличения срока службы, а также изобрел конструкцию розетки и вилки.

Тем не менее, отвечая на вопрос о том, кто изобрел лампочку накаливания, многие называют фамилию Эдисона. Дело в том, что американец стал первым, кому удалось создать промышленный образец и запустить его в коммерческое использование. Помимо этого, Томас Эдисон усовершенствовал техническое решение: ввел двойную спираль, снабдил конструкцию патроном, цоколем и выключателем, придумал современную форму лампы. И, наконец, он постарался найти более дешевые материалы, что, собственно, и позволило организовать массовое производство.

Как лампа накаливания стала в России «лампочкой Ильича»

Лампу накаливания в России называют еще «лампочкой Ильича». Но почему ее связывают с Лениным?

Тут следует вспомнить, что электрификация страны – один из важнейших лозунгов Советской власти. В. И. Ленин задумал грандиозную по своим масштабам программу: провести электричество во все уголки России, включая малонаселенные сельские районы, модернизировать и перестроить все производство, сельское хозяйство и другие отрасли с учетом новейших достижений электроэнергетики.

Казалось, что эти планы несбыточны: огромная страна была в то время достаточно отсталой во всех смыслах. Однако к их реализации подошли очень серьезно. К проекту привлекли политиков, ученых, инженеров. Совместными усилиями к концу 1920 года они разработали комплексный план (свыше 600 листов) по электрификации РСФСР – так называемый ГОЭЛРО, включавший четкую программу действий по электрификации. В него входило как строительство электростанций, так и создание одной из крупнейших в мире сети высоковольтных линий электропередачи.

Внедрение ГОЭЛРО кардинальным образом изменило облик нашего государства, и лампа накаливания пришла в самые отдаленные деревни. А словосочетание «лампочка Ильича» возникло после того, как Ленин посетил открытие одной из ТЭЦ в Подмосковье: радио и газеты, освещавшие торжественную церемонию, разнесли это выражение, и оно прочно вошло в обиход.

К слову, в советских учебниках истории, в разделе, посвященному электрификации, была напечатана известная фотография Аркадия Шайхета: сельские жители вкручивают лампу накаливания в патрон, который свисает на проводе с потолка. И размышляя над вопросом, кто изобрел лампочку Ильича, многие до сих пор вспоминают этот классический образ.

История электрической лампочки началась в 1802 г. в Санкт-Петербурге. Именно тогда профессор физики Василий Владимирович Петров пропустил электрический ток по двум стержням из древесного угля. Между ними дугой перекинулось пламя. Обнаружились не известные ранее свойства электричества - возможность давать людям яркий свет и тепло. Как ни странно, именно эта возможность менее всего заинтересовала ученого. Он в основном обратил внимание на температуру пламени, настолько высокую, что в ней плавятся металлы. Спустя 80 лет это свойство использовал другой русский ученый Бенардос для сварки металлов.
Открытие Петрова осталось незамеченным. Спустя десять лет электрическую дугу вновь открыл англичанин Гемфри Дэви. Но до появления электрической лампы оставалось еще 60 лет.
Для того чтобы использовать электрическую дугу для освещения, было необходимо решить три задачи.
Во-первых, концы угольков, между которыми вспыхивала дуга, быстро сгорали в ее пламени. Расстояние между ними увеличивалось, и дуга гасла. Поэтому необходимо было найти способ поддерживать пламя не несколько минут, а сотни часов, т. е. создать удобный для пользования электрический светильник. Это оказалось самым трудным.
Во-вторых, нужен был надежный и экономичный источник тока. Требовалась машина, вырабатывающая дешевый электрический ток. Существовавшие в то время гальванические батареи были громоздки, и на их изготовление требовалось много дорогого цинка.
И наконец, в-третьих, нужен был способ «дробить электрическую энергию», другими словами, использовать вырабатываемый машиной ток для нескольких светильников, установленных в разных местах.
Благодаря открытию Майклом Фарадеем эффекта возникновения электрического тока в изолированном проводе при его движении в магнитном поле, были построены первые генераторы электрического тока - динамомашины.

Основной вклад в создание электрической лампочки внесли трое людей, по иронии судьбы родившихся в один и тот же 1847 год. Это были русские инженеры Павел Николаевич Яблочков, Александр Николаевич Лодыгин и американец Томас Алва Эдисон.
А. Н. Лодыгин закончил военное училище, но затем подал в отставку и поступил в Петербургский университет. Там он начал работу над проектом летательного аппарата. В России у него не было возможности построить свое изобретение, и 23-летний Лодыгин уезжает в 1870 г. во Францию. Тогда шла франко-прусская война, и молодой изобретатель хотел приспособить свое детище для военных нужд. Французское правительство приняло его предложение, и началась постройка аппарата, напоминавшего современный вертолет. Но Франция проиграла войну, и работы были остановлены. Сам Лодыгин, работая над своим изобретением, столкнулся с проблемой его освещения ночью. Эта проблема настолько его увлекла, что после возвращения в Россию Лодыгин полностью переключился на ее решение.

Лодыгин начал опыты с электрической дугой, но очень быстро от них отказался, так как увидел, что раскаленные концы угольных стержней светят ярче, чем сама дуга. Изобретатель пришел к выводу, что дуга не нужна, и начал опыты с различными материалами, накаляя их током. Эксперименты с проволокой из различных металлов ничего не дали - проволока светились лишь несколько минут, затем перегорала. Тогда Лодыгин вернулся к углю, которым пользовались для получения электрической дуги. Но он брал не толстые угольные стержни, а тонкие. Угольный стерженек помещался между двумя медными держателями в стеклянный шар, по нему пропускался электрический ток. Уголь давал свет довольно яркий, хотя и желтоватый. Угольный стержень выдерживал примерно полчаса.

Для того чтобы стержень не сгорал, Лодыгин поставил в лампу два стержня. Сперва накалялся только один и быстро сгорал, поглощая весь кислород в лампе, после этого начинал светиться второй. Поскольку кислорода оставалось очень мало, он светил примерно два часа. Теперь нужно было выкачать воздух из лампочки и исключить его просачивание внутрь. Для этого нижний конец лампы погружался в масляную ванну, через которую от источника тока к лампе шли провода. Вскоре и от этого способа пришлось отказаться, была сделана лампочка, в которой можно было менять угольные стержни после сгорания. Но неудобства возникали из-за необходимости откачивать воздух.

Лодыгин создал «Товарищество электрического освещения Лодыгин и компания». Весной 1873 г. в отдаленном районе Петербурга Пески состоялась демонстрация ламп накаливания системы Лодыгина. В двух уличных фонарях керосиновые лампы были заменены электрическими. Многие принесли с собой газеты для сравнения расстояния, на котором их можно было читать при керосиновом и электрическом освещении. Позже лампами Лодыгина освещалась витрина бельевого магазина Флорана.
Летом 1873 г. «Товариществом Лодыгин и компания» был организован вечер, где были показаны фонарь для освещения комнаты, сигнальный фонарь для железных дорог, подводный фонарь, уличный фонарь. Каждый фонарь мог зажигаться и гаситься отдельно от остальных.
Академия наук присвоила Лодыгину Ломоносовскую премию за то, что его изобретение приводит к «полезным, важным и новым практическим применениям».

Признание важности его труда вдохновило Лодыгина. Он совершенствовал свою лампочку, а его мастерская выпускала все новые ее разновидности. Но «Товарищество» для изготовления и продажи лампочек Лодыгина было основано прежде, чем удалось сделать новую лампочку, которая бы выдержала конкуренцию со старыми способами освещения. Мастерскую закрыли, «Товарищество» распалось, о лампочках Лодыгина на некоторое время забыли. А. сам изобретатель поступил слесарем на завод.
В это же время собственную конструкцию лампы разрабатывал Яблочков. Работая на Курской железной дороге, Павел Николаевич предложил поставить на паровозе поезда Александра II электрический фонарь для освещения пути. Он представлял собой два угольных стержня, между которыми вспыхивала электрическая дуга. По мере сгорания стержней их сближал механический регулятор. Ток давала гальваническая батарея. Молодому изобретателю пришлось две ночи напролет провести на паровозе, беспрестанно подправляя регулятор.

Яблочков ушел со службы и открыл в Москве мастерскую физических приборов. Но мастерская несла убытки, и ему пришлось уехать за границу, в Париж. Там он поступил на работу в мастерскую Бреге и возобновил работу над созданием электрического светильника. Его занимала одна проблема: как построить лампу, не нуждающуюся в регуляторе. Решение оказалось простым: вместо того, чтобы располагать стержни один против другого, их надо было поставить параллельно, разделив прослойкой тугоплавкого вещества, не проводящего электрический ток. Тогда угли будут сгорать равномерно, а прокладка будет играть ту же роль, что и воск в свече. Для прослойки между электродами Яблочков выбрал каолин - белую глину, из которой делают фарфор.

Спустя месяц после появления этой блестящей идеи лампа была сконструирована, и Яблочков получил на нее патент. Это было в 1876 году. Свою электрическую свечу он поместил в стеклянный шар. Для ее зажигания использовалось простое устройство: стержни сверху соединялись тонкой угольной нитью. Когда в лампу пускали ток, нить раскалялась, быстро сгорала и между стержнями вспыхивала дуга.
Изобретение имело огромный успех. Магазины, театры, улицы Парижа были освещены «свечами Яблочкова». В Лондоне ими осветили набережную Темзы и корабельные доки. Яблочков стал одним из самых популярных в Париже людей. Газеты называли его изобретение «русским светом».

«Русский свет» не имел успеха только на родине изобретателя в России. Французские изобретатели предложили Яблочкову купить у него право на изготовление его свечи для всех стран. Прежде чем дать согласие, Яблочков предложил бесплатно свой патент русскому военному министерству. Ответа не последовало. И тогда изобретатель согласился взять миллион франков у французов. После грандиозного успеха свечи Яблочкова на Парижской выставке 1878 г., которую посетило много русских, ею заинтересовались и в России. Один из великих князей, побывав на выставке, обещал Яблочкову помощь в организации производства его ламп в России. Ради возможности работать на родине изобретатель, возвратив миллион франков, выкупил право на производство своих свечей и уехал в Петербург.
Там образовалось общество «Яблочков и компания», которое построило завод электрических аппаратов и при нем лабораторию для изобретателя. Для широкого распространения электрического освещения Яблочкову было необходимо решить все три задачи, о которых было сказано выше.
Для этого уже были все предпосылки. Изобретатели предлагали много конструкций машин, вырабатывавших электрический ток. Свой генератор создал и Яблочков. Кроме того, он нашел способ питать током много ламп, поэтому его завод предлагал не только «свечи», но и брал на себя устройство электрического освещения полностью. Яблочков осветил в Петербурге Литейный мост, площадь перед театром и некоторые заводы.

Между Яблочковым и Лодыгиным долго шел творческий спор о путях развития электрического освещения. Яблочков считал, что отказ от дуги - ошибка Лодыгина и лампочки накаливания не смогут быть прочными и экономичными. Лодыгин, в свою очередь, упорно совершенствовал лампочку накаливания.
Недостатком свечи Яблочкова был слишком сильный свет, который она давала - не менее 300 свечей. При этом она излучала столько тепла, что в небольшой комнате было невозможно дышать.
Поэтому свечами Яблочкова пользовались для освещения улиц и больших помещений: театров, заводских цехов, морских портов.
В свою очередь, лампочки накаливания не нагревали сколь-нибудь заметно помещение. Их можно было делать любой силы. Несмотря на различия во взглядах, Яблочков и Лодыгин относились друг к другу с уважением, вместе работали в научном обществе, организовывали журнал «Электричество». На заводе Яблочкова изготавливали и лампочки Лодыгина, который к тому времени внес усовершенствования в свое изобретение: вместо угольных стержней стал использовать угольные нити. Новая лампочка потребляла меньше тока и служила несколько сот часов.

Около двух лет завод Яблочкова был завален заказами, во многих русских городах появилось электрическое освещение. Затем количество заказов сократилось, и завод начал хиреть. Изобретатель разорился, был вынужден снова уехать в Париж. Там он поступил на работу в то самое общество, которое основал и которому вернул миллион франков.
На парижской выставке 1881 г. свеча Яблочкова была признана лучшим способом электрического освещения. Но их стали использовать все реже, и вскоре сам изобретатель потерял к ним интерес.
После того как закрылся завод Яблочкова, Лодыгину не удалось наладить в России широкое производство своих ламп. Он уехал сначала в Париж, затем в Америку. Он узнал, что там изобретенная им лампочка носит имя Эдисона. Но русский инженер не стал доказывать свой приоритет, а продолжал работу над усовершенствованием своего изобретения.

Говоря о вкладе Эдисоне в развитие электрической лампочки, следует отметить, что перед созданием своей лампочки в его руках побывала лампочка Лодыгина. Поскольку электрический свет должен был выдержать конкуренцию с газовым рожком, Эдисон до тонкостей изучил газовую промышленность. Он разработал план центральной электростанции и схему линий подвода тока домам и фабрикам. Затем, подсчитав стоимость материалов и электроэнергии, определил цену лампы в 40 центов. После этого Эдисон начал работу над лампой с угольной нитью накаливания, помещенной в стеклянный шар, из которого выкачан воздух. Он нашел способ выкачивать воздух из баллона лучше, чем это удавалось другим изобретателям. Но главное было найти материал для угольной нити, который бы обеспечил долгий срок службы. Для этого он перепробовал около шести тысяч растений из разных стран мира. В конце концов он остановился на одном из видов бамбука.

После этого в ход пошла реклама. Газеты сообщили, что усадьба Эдисона, Менло-парк, будет иллюминирована электрическими лампочками. Семьсот лампочек произвели на многочисленных посетителей ошеломляющее впечатление. Эдисону пришлось много поработать над дополнительными изобретениями - генераторами, кабелями. Он работал также над снижением цены лампочки и остановился лишь, когда она стала стоить 22 цента. Несмотря на все это, Эдисон получил патент не на изобретение лампочки, а лишь на усовершенствование, поскольку приоритет оставался за Лодыгиным.
Сам Лодыгин в Америке вернулся к опытам с нитью из тугоплавких металлов. Он и нашел самый подходящий материал для нити, использующийся до сих пор - вольфрам. Вольфрамовая нить дает яркий белый свет, требует гораздо меньше тока, чем угольная, и может служить тысячи часов.

Не были забыты и дуговые лампы. Их используют там, где необходим источник света во много тысяч свечей: в прожекторах, маяках, на съемочных площадках. Причем изготавливают их не по методу Яблочкова, а по отвергнутой им схеме - с регулятором, сближающим угольные стержни.
В XX веке у лампочек накаливания появился конкурент - газосветные лампы, или лампы дневного света. Они наполнены газом и дают свет, не нагреваясь. Сначала появились цветные газосветные лампы. В стеклянную трубку с обоих концов вплавлялись металлические пластины - электроды, к которым подводился ток. Трубка наполнялась газом или парами металла. Под воздействием тока газ начинал светиться. Аргон дает синий цвет, неон - красный, ртуть - фиолетовый, а пары натрия - желтый. Эти лампы нашли применение в рекламе.
Позже были созданы лампы, свет которых приближается к солнечному. Их основа - ультрафиолетовые лучи. Их преимуществом является меньшее, по сравнению с лампами накаливания, потребление тока.

Пристинский В.Л.