Murakkab funktsiyaning hosilasi. Yechimlarga misollar

Hosilni topish operatsiyasi differensiallash deyiladi.

Hosilni argumentning o'sish ko'payishiga nisbati chegarasi sifatida aniqlash orqali eng oddiy (va unchalik ham oddiy bo'lmagan) funktsiyalarning hosilalarini topish masalalarini hal qilish natijasida hosilalar jadvali va aniq belgilangan differentsiallash qoidalari paydo bo'ldi. . Hosilalarni topish sohasida birinchi bo'lib Isaak Nyuton (1643-1727) va Gotfrid Vilgelm Leybnits (1646-1716) ishlagan.

Shuning uchun bizning zamonamizda har qanday funktsiyaning hosilasini topish uchun funktsiya o'sishining argument o'sishiga nisbatining yuqorida ko'rsatilgan chegarasini hisoblash kerak emas, faqat jadvaldan foydalanish kerak. hosilalar va farqlash qoidalari. Hosilni topish uchun quyidagi algoritm mos keladi.

Hosilini topish uchun, sizga bosh belgisi ostida ifoda kerak oddiy funktsiyalarni komponentlarga ajratish va qanday harakatlarni aniqlang (mahsulot, summa, qism) bu funktsiyalar o'zaro bog'liq. Keyinchalik, elementar funktsiyalarning hosilalarini hosilalar jadvalidan, hosila, yig'indi va qismning hosilalari uchun formulalarni - farqlash qoidalaridan topamiz. Birinchi ikkita misoldan keyin hosila jadvali va farqlash qoidalari berilgan.

1-misol. Funktsiyaning hosilasini toping

Yechim. Differensiallash qoidalaridan biz aniqlaymizki, funktsiyalar yig'indisining hosilasi funktsiyalarning hosilalari yig'indisi, ya'ni.

Hosilalar jadvalidan “x” hosilasi birga, sinus hosilasi esa kosinusga teng ekanligini aniqlaymiz. Biz ushbu qiymatlarni hosilalar yig'indisiga almashtiramiz va masalaning sharti uchun zarur bo'lgan hosilani topamiz:

2-misol. Funktsiyaning hosilasini toping

Yechim. Biz yig'indining hosilasi sifatida ajratamiz, unda ikkinchi hadda doimiy ko'rsatkichga ega bo'ladi, uni hosilaning belgisidan chiqarish mumkin;

Agar biror narsa qayerdan kelganligi haqida hali ham savollar tug'ilsa, ular odatda hosilalar jadvali va farqlashning eng oddiy qoidalari bilan tanishgandan so'ng tozalanadi. Biz hozir ularga o'tmoqdamiz.

Oddiy funksiyalarning hosilalari jadvali

1. Doimiy (son)ning hosilasi. Funktsiya ifodasida joylashgan har qanday raqam (1, 2, 5, 200...). Har doim nolga teng. Buni eslash juda muhim, chunki bu juda tez-tez talab qilinadi
2. Mustaqil o‘zgaruvchining hosilasi. Ko'pincha "X". Har doim bittaga teng. Buni uzoq vaqt davomida eslab qolish ham muhimdir
3. Darajaning hosilasi. Muammolarni hal qilishda siz kvadrat bo'lmagan ildizlarni kuchlarga aylantirishingiz kerak.
4. O‘zgaruvchining -1 darajasiga hosilasi
5. Hosil kvadrat ildiz
6. Sinusning hosilasi
7. Kosinusning hosilasi
8. Tangensning hosilasi
9. Kotangentning hosilasi
10. Arksinusning hosilasi
11. Arkkosinning hosilasi
12. Arktangensning hosilasi
13. Yoy kotangensining hosilasi
14. Natural logarifmaning hosilasi
15. Logarifmik funksiyaning hosilasi
16. Ko‘rsatkichning hosilasi
17. Hosil eksponensial funktsiya

Farqlash qoidalari

1. Yig‘indi yoki farqning hosilasi
2. Mahsulotning hosilasi
2a. Ifodaning hosilasi doimiy omilga ko'paytiriladi
3. Bo‘lakning hosilasi
4. Kompleks funktsiyaning hosilasi

1-qoida.Funktsiyalar bo'lsa

bir nuqtada differensiallanadi, keyin funksiyalar bir nuqtada differentsiallanadi

va

bular. funksiyalarning algebraik yig‘indisining hosilasi bu funksiyalarning hosilalarining algebraik yig‘indisiga teng.

Natija. Agar ikkita differentsiallanuvchi funktsiya doimiy had bilan farq qilsa, ularning hosilalari tengdir, ya'ni.

2-qoida.Funktsiyalar bo'lsa

bir nuqtada differentsial bo'ladi, keyin ularning mahsuloti xuddi shu nuqtada farqlanadi

va

bular. Ikki funktsiya hosilasining hosilasi bu funksiyalarning har birining hosilasi va ikkinchisining hosilasi yig‘indisiga teng.

Xulosa 1. Doimiy koeffitsient hosila belgisidan chiqarilishi mumkin:

Xulosa 2. Bir necha differensiallanuvchi funksiyalar hosilasining hosilasi har bir omil va boshqa hamma hosilalarning hosilalari yig‘indisiga teng.

Masalan, uchta ko'paytiruvchi uchun:

3-qoida.Funktsiyalar bo'lsa

bir nuqtada farqlanadi Va , u holda bu nuqtada ularning koeffitsienti ham differentsial bo'ladiu/v , va

bular. ikki funktsiya bo'limining hosilasi kasrga teng bo'lib, uning ayirmasi maxrajning hosilasining ayirmasi bo'lib, maxrajning kvadrati bo'ladi. oldingi hisoblagich.

Boshqa sahifalardagi narsalarni qaerdan qidirish kerak

Haqiqiy masalalarda mahsulotning hosilasi va qismni topishda har doim bir vaqtning o'zida bir nechta farqlash qoidalarini qo'llash kerak, shuning uchun maqolada bu hosilalarga ko'proq misollar mavjud."Mahsulotning hosilasi va funksiyalar qismi".

Izoh. Siz doimiyni (ya'ni sonni) yig'indidagi atama va doimiy omil sifatida aralashtirmasligingiz kerak! Terminda uning hosilasi nolga teng, doimiy koeffitsientda esa hosilalarning belgisidan olinadi. Bu tipik xato da sodir bo'ladi dastlabki bosqich hosilalarni o'rganish, lekin biz bir nechta bir va ikki qismli misollarni hal qilganimizdek o'rtacha talaba endi bu xatoga yo'l qo'ymaydi.

Va agar mahsulot yoki qismni farqlashda sizda atama bo'lsa u"v, unda u- raqam, masalan, 2 yoki 5, ya'ni doimiy, keyin bu raqamning hosilasi nolga teng bo'ladi va shuning uchun butun muddat nolga teng bo'ladi (bu holat 10-misolda muhokama qilinadi).

Boshqa keng tarqalgan xato- murakkab funksiya hosilasining oddiy funksiya hosilasi sifatidagi mexanik yechimi. Shunung uchun murakkab funksiyaning hosilasi alohida maqola bag'ishlangan. Lekin birinchi navbatda oddiy funksiyalarning hosilalarini topishni o'rganamiz.

Yo'lda siz ifodalarni o'zgartirmasdan qilolmaysiz. Buning uchun qo'llanmani yangi oynalarda ochishingiz kerak bo'lishi mumkin. Quvvat va ildizlarga ega harakatlar Va Kasrlar bilan amallar .

Agar siz darajali va ildizli kasr hosilalarining yechimlarini izlayotgan bo'lsangiz, ya'ni funksiya qachon ko'rinadi. , so'ngra "Kasrlar yig'indisining darajalari va ildizlari bilan hosilasi" darsiga o'ting.

Agar sizda kabi vazifa bo'lsa , keyin siz “Oddiy trigonometrik funksiyalarning hosilalari” darsini olasiz.

Bosqichma-bosqich misollar - hosilani qanday topish mumkin

3-misol. Funktsiyaning hosilasini toping

Yechim. Funktsiya ifodasining qismlarini aniqlaymiz: butun ifoda mahsulotni ifodalaydi va uning omillari yig'indi, ikkinchisida atamalardan biri doimiy omilni o'z ichiga oladi. Mahsulotni farqlash qoidasini qo'llaymiz: ikkita funktsiya mahsulotining hosilasi ushbu funktsiyalarning har biri ikkinchisining hosilasi bilan hosil bo'lgan yig'indisiga teng:

Keyinchalik, yig'indini differentsiallash qoidasini qo'llaymiz: funktsiyalarning algebraik yig'indisining hosilasi bu funktsiyalarning hosilalarining algebraik yig'indisiga teng. Bizning holatda, har bir yig'indida ikkinchi muddat minus belgisiga ega. Har bir yig'indida hosilasi birga teng bo'lgan mustaqil o'zgaruvchini ham, hosilasi nolga teng bo'lgan doimiy (son)ni ham ko'ramiz. Shunday qilib, "X" bittaga, minus 5 esa nolga aylanadi. Ikkinchi ifodada "x" 2 ga ko'paytiriladi, shuning uchun biz ikkitani "x" ning hosilasi bilan bir xil birlikka ko'paytiramiz. Biz quyidagi lotin qiymatlarini olamiz:

Topilgan hosilalarni mahsulotlar yig‘indisiga almashtiramiz va masala sharti uchun zarur bo‘lgan butun funksiyaning hosilasini olamiz:

4-misol. Funktsiyaning hosilasini toping

Yechim. Bizdan qismning hosilasini topish talab qilinadi. Biz qismni farqlash uchun formulani qo'llaymiz: ikki funktsiya bo'limining hosilasi kasrga teng bo'lib, uning soni maxrajning ko'paytmalari va sonning hosilasi va sonining hosilasi va hosilasi o'rtasidagi farqdir. maxraj, maxraj esa oldingi sonning kvadratidir. Biz olamiz:

Biz 2-misoldagi ko'paytmalarning hosilasini allaqachon topdik. Joriy misoldagi payning ikkinchi ko'paytmasi bo'lgan ko'paytma minus belgisi bilan olinganligini ham unutmaylik:

Agar siz uzluksiz ildizlar va kuchlar to'plami mavjud bo'lgan funktsiyaning hosilasini topish kerak bo'lgan muammolarga yechim izlayotgan bo'lsangiz, masalan, , keyin sinfga xush kelibsiz "Kasrlar yig'indisining darajalari va ildizlari bilan hosilasi" .

Agar sinuslar, kosinuslar, tangenslar va boshqalarning hosilalari haqida ko'proq ma'lumotga ega bo'lishingiz kerak bo'lsa trigonometrik funktsiyalar, ya'ni funksiya o'xshash bo'lganda , keyin siz uchun saboq "Oddiy trigonometrik funksiyalarning hosilalari" .

5-misol. Funktsiyaning hosilasini toping

Yechim. Ushbu funktsiyada biz ko'paytmani ko'ramiz, uning omillaridan biri mustaqil o'zgaruvchining kvadrat ildizi bo'lib, hosilasi bilan biz hosilalar jadvalida tanishdik. Mahsulotni va kvadrat ildiz hosilasining jadval qiymatini farqlash qoidasidan foydalanib, biz quyidagilarni olamiz:

6-misol. Funktsiyaning hosilasini toping

Yechim. Ushbu funktsiyada dividendlari mustaqil o'zgaruvchining kvadrat ildizi bo'lgan qismni ko'ramiz. Biz 4-misolda takrorlagan va qo'llagan bo'limlarni farqlash qoidasidan va kvadrat ildiz hosilasining jadvalli qiymatidan foydalanib, biz quyidagilarni olamiz:

Numeratordagi kasrdan qutulish uchun son va maxrajni ga ko'paytiring.

Darajali funksiyaning hosilasi formulasini hosil qilish (x dan a darajasiga). X ning ildizlaridan hosilalar ko'rib chiqiladi. Yuqori tartibli quvvat funksiyasining hosilasi uchun formula. Hosilalarni hisoblash misollari.

X ning a ning kuchiga hosilasi x ning minusning kuchiga teng:
(1) .

x ning n- ildizining m-darajali hosilasi:
(2) .

Quvvat funksiyasining hosilasi formulasini hosil qilish

X > 0 holi

a ko'rsatkichli x o'zgaruvchining quvvat funksiyasini ko'rib chiqing:
(3) .
Bu erda a - ixtiyoriy haqiqiy son. Keling, avvalo ishni ko'rib chiqaylik.

(3) funktsiyaning hosilasini topish uchun daraja funksiyasining xossalaridan foydalanamiz va uni quyidagi ko'rinishga o'tkazamiz:
.

Endi biz hosilani topamiz:
;
.
Bu yerga .

Formula (1) isbotlangan.

X ning n darajali ildizining m gradusli hosilasi formulasini hosil qilish

Endi quyidagi shaklning ildizi bo'lgan funktsiyani ko'rib chiqing:
(4) .

Hosilni topish uchun ildizni quvvat funksiyasiga aylantiramiz:
.
Formula (3) bilan solishtirsak, buni ko'ramiz
.
Keyin
.

Formuladan (1) foydalanib, hosilani topamiz:
(1) ;
;
(2) .

Amalda (2) formulani yodlashning hojati yo'q. Avval ildizlarni quvvat funktsiyalariga aylantirish, so'ngra (1) formuladan foydalanib ularning hosilalarini topish ancha qulayroqdir (sahifa oxiridagi misollarga qarang).

X = 0 holi

Agar , keyin quvvat funktsiyasi x = o'zgaruvchining qiymati uchun ham aniqlanadi 0 . (3) funksiyaning x = da hosilasi topilsin 0 . Buning uchun biz hosila ta'rifidan foydalanamiz:
.

X = ni almashtiramiz 0 :
.
Bunday holda, hosila deganda biz o'ng chegarani tushunamiz.

Shunday qilib, biz topdik:
.
Bundan ko'rinib turibdiki, , uchun.
Da , .
Da , .
Bu natija (1) formuladan ham olinadi:
(1) .
Demak, (1) formula x = uchun ham amal qiladi 0 .

X holat< 0

Funktsiyani (3) yana ko'rib chiqing:
(3) .
a doimiysining ma'lum qiymatlari uchun u ham aniqlanadi salbiy qiymatlar o'zgaruvchan x. Ya'ni, a ratsional son bo'lsin. Keyin uni kamaytirilmaydigan kasr sifatida ifodalash mumkin:
,
bu yerda m va n -siz butun sonlar umumiy bo'luvchi.

Agar n g'alati bo'lsa, u holda quvvat funktsiyasi x o'zgaruvchining salbiy qiymatlari uchun ham aniqlanadi. Masalan, n = bo'lganda 3 va m = 1 bizda x ning kub ildizi bor:
.
Shuningdek, u x o'zgaruvchisining salbiy qiymatlari uchun ham aniqlanadi.

U aniqlangan a doimiysining ratsional qiymatlari uchun (3) quvvat funksiyasining hosilasini topamiz. Buning uchun x ni quyidagi shaklda ifodalaymiz:
.
Keyin,
.
Konstantani hosila belgisidan tashqariga qo'yib, murakkab funktsiyani farqlash qoidasini qo'llash orqali hosila topamiz:

.
Bu yerga . Lekin
.
O'shandan beri
.
Keyin
.
Ya'ni (1) formulalar uchun ham amal qiladi:
(1) .

Yuqori tartibli hosilalar

Endi quvvat funksiyasining yuqori tartibli hosilalarini topamiz
(3) .
Biz allaqachon birinchi tartibli hosilani topdik:
.

A doimiysini hosila belgisidan tashqariga olib, ikkinchi tartibli hosilani topamiz:
.
Xuddi shunday, biz uchinchi va to'rtinchi tartiblarning hosilalarini topamiz:
;

.

Bundan ma'lum bo'ladiki ixtiyoriy n-tartibning hosilasi quyidagi shaklga ega:
.

e'tibor bering, bu agar a bo'lsa natural son , u holda n-chi hosila doimiy bo'ladi:
.
Keyin barcha keyingi hosilalar nolga teng:
,
da .

Hosilalarni hisoblash misollari

Misol

Funktsiyaning hosilasini toping:
.

Yechim

Keling, ildizlarni kuchlarga aylantiramiz:
;
.
Keyin asl funktsiya quyidagi shaklni oladi:
.

Kuchlarning hosilalarini topish:
;
.
Doimiyning hosilasi nolga teng:
.

Unda biz eng oddiy hosilalarni ko'rib chiqdik, shuningdek, differensiallash qoidalari va hosilalarni topishning ba'zi texnik usullari bilan tanishdik. Shunday qilib, agar siz funktsiyalarning hosilalarini yaxshi bilmasangiz yoki ushbu maqoladagi ba'zi fikrlar to'liq tushunarsiz bo'lsa, avval yuqoridagi darsni o'qing. Iltimos, jiddiy kayfiyatda bo'ling - material oddiy emas, lekin baribir uni sodda va aniq taqdim etishga harakat qilaman.

Amalda hosila bilan murakkab funktsiya juda tez-tez duch kelishga to'g'ri keladi, hatto aytmoqchimanki, deyarli har doim, hosilalarni topish bo'yicha topshiriqlar berilganda.

Murakkab funktsiyani differensiallash uchun qoida (№ 5) jadvaliga qaraymiz:

Keling, buni aniqlaylik. Avvalo, kirishga e'tibor beraylik. Bu erda bizda ikkita funktsiya mavjud - va , va funksiya, majoziy ma'noda, funktsiya ichida joylashgan. Bunday turdagi funktsiya (bir funktsiya boshqasining ichiga joylashtirilganda) murakkab funktsiya deyiladi.

Men funktsiyani chaqiraman tashqi funktsiya, va funksiya – ichki (yoki ichki) funksiya.

! Ushbu ta'riflar nazariy emas va topshiriqlarning yakuniy dizaynida ko'rinmasligi kerak. Men "tashqi funktsiya", "ichki" funktsiya norasmiy iboralarni faqat materialni tushunishingizni osonlashtirish uchun ishlataman.

Vaziyatni aniqlashtirish uchun quyidagilarni ko'rib chiqing:

1-misol

Funktsiyaning hosilasini toping

Sinus ostida bizda nafaqat "X" harfi, balki butun ifoda mavjud, shuning uchun hosilani jadvaldan darhol topish ishlamaydi. Bundan tashqari, biz bu erda birinchi to'rtta qoidani qo'llashning iloji yo'qligini payqadik, farq borga o'xshaydi, lekin haqiqat shundaki, sinusni "bo'laklarga bo'lib bo'lmaydi":

IN bu misolda Mening tushuntirishlarimdan allaqachon intuitiv ravishda aniq bo'ldiki, funktsiya murakkab funktsiya, polinom esa ichki funktsiya (o'rnatish) va tashqi funktsiyadir.

Birinchi qadam murakkab funksiyaning hosilasini topishda nima qilish kerak qaysi funktsiya ichki va qaysi tashqi ekanligini tushunish.

Qachon oddiy misollar Ko'rinib turibdiki, polinom sinus ostida joylashgan. Ammo hamma narsa aniq bo'lmasa-chi? Qaysi funktsiya tashqi va qaysi ichki ekanligini qanday aniq aniqlash mumkin? Buning uchun men aqliy yoki qoralama shaklida bajarilishi mumkin bo'lgan quyidagi texnikadan foydalanishni taklif qilaman.

Tasavvur qilaylik, biz kalkulyatorda ifoda qiymatini hisoblashimiz kerak (bitta o'rniga har qanday raqam bo'lishi mumkin).

Avval nimani hisoblaymiz? Birinchidan siz quyidagi amalni bajarishingiz kerak bo'ladi: , shuning uchun polinom ichki funktsiya bo'ladi:

Ikkinchidan topish kerak bo'ladi, shuning uchun sinus - tashqi funktsiya bo'ladi:

Bizdan keyin SOTILDI ichki va tashqi funktsiyalar bilan murakkab funktsiyalarni farqlash qoidasini qo'llash vaqti keldi .

Keling, qaror qabul qilishni boshlaylik. Darsdan hosilani qanday topish mumkin? Biz har qanday hosila uchun yechimning dizayni har doim shunday boshlanishini eslaymiz - biz ifodani qavs ichiga olamiz va yuqori o'ngga chiziq qo'yamiz:

Boshida tashqi funktsiyaning hosilasini (sinus) topamiz, elementar funksiyalarning hosilalari jadvaliga qarang va e'tibor bering. Agar "x" murakkab ifoda bilan almashtirilsa, barcha jadval formulalari ham amal qiladi, V Ushbu holatda:

E'tibor bering, ichki funktsiya o'zgarmadi, biz unga tegmaymiz.

Xo'sh, bu juda aniq

Formulani qo'llash natijasi yakuniy shaklda u quyidagicha ko'rinadi:

Doimiy omil odatda ifoda boshida joylashtiriladi:

Agar biron bir tushunmovchilik bo'lsa, echimni qog'ozga yozing va tushuntirishlarni qayta o'qing.

2-misol

Funktsiyaning hosilasini toping

3-misol

Funktsiyaning hosilasini toping

Har doimgidek, biz yozamiz:

Keling, qaerda tashqi funktsiyamiz borligini va qaerda ichki funksiyamiz borligini aniqlaylik. Buning uchun biz (aqliy yoki qoralamada) ifoda qiymatini hisoblashga harakat qilamiz. Avval nima qilish kerak? Avvalo, siz asos nimaga teng ekanligini hisoblashingiz kerak: shuning uchun polinom ichki funktsiyadir:

Va shundan keyingina eksponentsiya bajariladi, shuning uchun quvvat funktsiyasi tashqi funktsiyadir:

Formulaga ko'ra , birinchi navbatda tashqi funktsiyaning hosilasini, bu holda darajani topishingiz kerak. Jadvaldan kerakli formulani qidiramiz: . Yana takrorlaymiz: har qanday jadval formulasi nafaqat "X" uchun, balki murakkab ifoda uchun ham amal qiladi. Shunday qilib, murakkab funktsiyani farqlash qoidasini qo'llash natijasi Keyingisi:

Yana bir bor ta'kidlaymanki, biz tashqi funktsiyaning hosilasini olganimizda, bizning ichki funktsiyamiz o'zgarmaydi:

Endi faqat ichki funktsiyaning juda oddiy hosilasini topish va natijani biroz o'zgartirish qoladi:

4-misol

Funktsiyaning hosilasini toping

Bu misol uchun mustaqil qaror(javob dars oxirida).

Murakkab funktsiyaning hosilasi haqidagi tushunchangizni mustahkamlash uchun men izohlarsiz misol keltiraman, buni o'zingiz aniqlashga harakat qiling, tashqi va ichki funktsiya qayerda ekanligini, nima uchun vazifalar bu tarzda hal qilingan?

5-misol

a) funksiyaning hosilasini toping

b) funksiyaning hosilasini toping

6-misol

Funktsiyaning hosilasini toping

Bu erda bizda ildiz bor va ildizni farqlash uchun uni kuch sifatida ifodalash kerak. Shunday qilib, avval biz funktsiyani farqlash uchun mos shaklga keltiramiz:

Funksiyani tahlil qilib, biz uchta hadning yig'indisi ichki funktsiya, kuchga ko'tarish esa tashqi funktsiya degan xulosaga kelamiz. Biz murakkab funksiyalarni differentsiallash qoidasini qo'llaymiz :

Biz darajani yana radikal (ildiz) sifatida ifodalaymiz va ichki funktsiyaning hosilasi uchun yig'indini farqlash uchun oddiy qoidani qo'llaymiz:

Tayyor. Bundan tashqari, ifodani qavs ichidagi umumiy maxrajga qisqartirishingiz va hamma narsani bitta kasr sifatida yozishingiz mumkin. Bu, albatta, go'zal, lekin siz og'ir uzun lotinlarni olganingizda, buni qilmaslik yaxshiroqdir (chalkashib ketish, keraksiz xatoga yo'l qo'yish oson va o'qituvchiga tekshirish noqulay bo'ladi).

7-misol

Funktsiyaning hosilasini toping

Bu siz o'zingiz hal qilishingiz uchun misol (dars oxirida javob).

Qizig'i shundaki, ba'zida murakkab funktsiyani farqlash qoidasi o'rniga, siz qismni farqlash qoidasidan foydalanishingiz mumkin. , lekin bunday yechim noodatiy buzuqlik kabi ko'rinadi. Bu yerga tipik misol:

8-misol

Funktsiyaning hosilasini toping

Bu erda siz qismni farqlash qoidasidan foydalanishingiz mumkin , lekin hosilani murakkab funktsiyani differentsiallash qoidasi orqali topish ancha foydalidir:

Biz funktsiyani farqlash uchun tayyorlaymiz - biz minusni hosila belgisidan chiqaramiz va kosinusni hisoblagichga ko'taramiz:

Kosinus - ichki funktsiya, ko'rsatkich - tashqi funktsiya.
Keling, qoidamizdan foydalanaylik :

Biz ichki funktsiyaning hosilasini topamiz va kosinusni qayta tiklaymiz:

Tayyor. Ko'rib chiqilgan misolda, belgilarda chalkashmaslik kerak. Aytgancha, qoida yordamida uni hal qilishga harakat qiling , javoblar mos kelishi kerak.

9-misol

Funktsiyaning hosilasini toping

Bu siz o'zingiz hal qilishingiz uchun misol (dars oxirida javob).

Hozirgacha biz murakkab funktsiyada faqat bitta uyaga ega bo'lgan holatlarni ko'rib chiqdik. Amaliy topshiriqlarda siz ko'pincha lotinlarni topishingiz mumkin, bu erda, xuddi qo'g'irchoqlar kabi, bir vaqtning o'zida 3 yoki hatto 4-5 funktsiya bir-birining ichiga joylashtirilgan.

10-misol

Funktsiyaning hosilasini toping

Keling, ushbu funktsiyaning qo'shimchalarini tushunaylik. Eksperimental qiymat yordamida ifodani hisoblashga harakat qilaylik. Kalkulyatorga qanday ishonishimiz mumkin?

Avval siz ni topishingiz kerak, ya'ni arksinus eng chuqur joylashuvdir:

Birning bu yoyi kvadratiga aylantirilishi kerak:

Va nihoyat, ettitani kuchga ko'taramiz:

Ya'ni, bu misolda bizda uchta turli funktsiya va ikkita o'rnatish mavjud, eng ichki funktsiya arksinus, eng tashqi funktsiya esa eksponensial funktsiyadir.

Keling, qaror qabul qilishni boshlaylik

Qoidaga ko'ra Avval siz tashqi funktsiyaning hosilasini olishingiz kerak. Biz hosilalar jadvalini ko'rib chiqamiz va ko'rsatkichli funktsiyaning hosilasini topamiz: yagona farq shundaki, bizda "x" o'rniga murakkab ifoda, bu formulaning haqiqiyligini inkor etmaydi. Demak, murakkab funktsiyani differensiallash qoidasini qo'llash natijasi Keyingisi.