Чтобы найти процент от числа надо. Как посчитать (высчитать) процент от суммы
Проценты - одно из понятий прикладной математики, которые часто встречаются в повседневной жизни. Так, часто можно прочитать или услышать, что, например, в выборах приняли участие 56,3% избирателей, рейтинг победителя конкурса равен 74%, промышленное производство увеличилось на 3,2%, банк начисляет 8% годовых, молоко содержит 1,5% жира, ткань содержит 100% хлопка и т.д. Ясно, что понимание такой информации необходимо в современном обществе.
Одним процентом от любой величины - денежной суммы, числа учащихся школы и т.д. - называется одна сотая ее часть.
Обозначается
процент знаком %, Таким образом,
1% - это 0,01, или \(\frac{1}{100} \) часть величины
Приведем примеры:
- 1% от минимальной заработной платы 2300 р. (сентябрь 2007 г.) - это 2300/100 = 23 рубля;
- 1% от населения России, равного примерно 145 млн. человек (2007 г.), - это 1,45 млн. человек;
- 3%-я концентрация раствора соли - это 3 г соли в 100 г раствора (напомним, что концентрация раствора - это часть, которую
составляет масса растворенного вещества от массы всего раствора).
Понятно, что вся рассматриваемая величина составляет 100 сотых, или 100% от самой себя. Поэтому, например, надпись на этикетке "хлопок 100%" означает, что ткань состоит из чистого хлопка, а стопроцентная успеваемость означает, что в классе нет неуспевающих учеников.
Слово "процент" происходит от латинского pro centum, означающего "от сотни" или "на 100". Это словосочетание можно встретить и в современной речи. Например, говорят: "Из каждых 100 участников лотереи 7 участников получили призы". Если понимать это выражение буквально, то это утверждение, разумеется, неверно: ясно, что можно выбрать 100 человек, участвующих в лотерее и не получивших призы. В действительности точный смысл этого выражения состоит в том, что призы получили 7% участников лотереи, и именно такое понимание соответствует происхождению слова "процент": 7% - это 7 из 100, 7 человек из 100 человек.
Знак "%" получил распространение в конце XVII века. В 1685 году в Париже была издана книга "Руководство по коммерческой арифметике" Матье де ла Порта. В одном месте речь шла о процентах, которые тогда обозначали "cto" (сокращенно от cento). Однако наборщик принял это "с/о" за дробь и напечатал "%". Так из-за опечатки этот знак вошел в обиход.
Любое число процентов можно записать в виде десятичной дроби, выражающей часть величины.
Чтобы выразить проценты числом, нужно количество процентов разделить на 100. Например:
\(58\% = \frac{58}{100} = 0,58; \;\;\; 4,5\% = \frac{4,5}{100} = 0,045; \;\;\; 200\% = \frac{200}{100} = 2 \)Для обратного перехода выполняется обратное действие. Таким образом, чтобы выразить число в процентах, надо его умножить
на 100:
В практической жизни полезно понимать связь между простейшими значениями процентов и соответствующими дробями: половина - 50%, четверть - 25%, три четверти - 75%, пятая часть - 20%, три пятых - 60% и т.д.
Полезно также понимать разные формы выражения одного и того же изменения величины, сформулированные без процентов и с помощью процентов. Например, в сообщениях "Минимальная заработная плата повышена с февраля на 50%" и "Минимальная заработная плата повышена с февраля в 1,5 раз" говорится об одном и том же. Точно так же увеличить в 2 раза - это значит увеличить на 100%, увеличить в 3 раза - это значит увеличить на 200%, уменьшить в 2 раза - это значит уменьшить на 50%.
Аналогично
- увеличить на 300% - это значит увеличить в 4 раза,
- уменьшить на 80% - это значит уменьшить в 5 раз.
Задачи на проценты
Поскольку проценты можно выразить дробями, то задачи на проценты являются, по существу, теми же задачами на дроби. В простейших задачах на проценты некоторая величина а принимается за 100% ("целое"), а ее часть b выражается числом p%.
В зависимости от того, что неизвестно - а, b или р, выделяются три типа задач на проценты. Эти задачи решаются так же, как и соответствующие задачи на дроби, но перед их решением число р% выражается дробью.
1. Нахождение процента от числа.
Чтобы найти \(\frac{p}{100} \) от a, надо a умножить на \(\frac{p}{100} \):
Итак, чтобы найти р% от числа, надо это число умножить на дробь \(\frac{p}{100} \). Например, 20% от 45 кг равны 45 0,2 = 9 кг, а 118% от х равны 1,18x
2. Нахождение числа по его проценту.
Чтобы найти число по его части b, выраженной дробью \(\frac{p}{100} , \; (p \neq 0) \), надо b разделить на \(\frac{p}{100} \):
\(a = b: \frac{p}{100} \)
3. Нахождение процентного отношения двух чисел.
Чтобы найти, сколько процентов число b составляет от а \((a \neq 0) \), надо сначала узнать, какую часть b составляет от а, а
затем эту часть выразить в процентах:
Например, 9 г соли в растворе массой 180 г составляют \(\frac{9 \cdot 100}{180} = 5\% \) раствора.
Частное двух чисел, выраженное в процентах, называется процентным отношением этих чисел. Поэтому последнее правило называют правилом нахождения процентного отношения двух чисел.
Нетрудно заметить, что формулы
\(b = a \cdot \frac{p}{100}, \;\; a = b: \frac{p}{100}, \;\; p = \frac{b}{a} \cdot 100\% \;\; (a,b,p \neq 0) \) взаимосвязаны, а именно, две последние формулы получаются из первой, если выразить из нее значения a и p. Поэтому первую формулу считают основной и называют формулой процентов. Формула процентов объединяет все три типа задач на дроби, и, при желании, можно ею пользоваться, чтобы найти любую из неизвестных величин a, b и p.Составные задачи на проценты решаются аналогично задачам на дроби.
Простой процентный рост
Когда человек не вносит своевременную плату за квартиру, на него налагается штраф, который называется "пеня" (от латинского роеnа - наказание). Так, если пеня составляет 0,1% от суммы квартплаты за каждый день просрочки, то, например, за 19 дней просрочки сумма составит 1,9% от суммы квартплаты. Поэтому вместе, скажем, с 1000 р. квартплаты человек должен будет внести пеню 1000 0,019 = 19 р., а всего 1019 р.
Ясно, что в разных городах и у разных людей квартплата, размер пени и время просрочки разные. Поэтому имеет смысл составить общую формулу квартплаты для неаккуратных плательщиков, применимую при любых обстоятельствах.
Пусть S - ежемесячная квартплата, пеня составляет р% квартплаты за каждый день просрочки, а n - число просроченных дней. Сумму,
которую должен заплатить человек после n дней просрочки, обозначим S n .
Тогда за n дней просрочки пеня составит рn% от S, или \(\frac{pn}{100}S \), а всего придется заплатить
\(S + \frac{pn}{100}S = \left(1+ \frac{pn}{100} \right) S \)
Таким образом:
\(S_n = \left(1+ \frac{pn}{100} \right) S \)
Эта формула описывает многие конкретные ситуации и имеет специальное название: формула простого процентного роста.
Аналогичная формула получится, если некоторая величина уменьшается за данный период времени на определенное число процентов.
Как и выше, нетрудно убедиться, что в этом случае
\(S_n = \left(1- \frac{pn}{100} \right) S \)
Эта формула также называется формулой простого процентного роста, хотя заданная величина в действительности убывает. Рост в этом случае "отрицательный".
Сложный процентный рост
В банках России для некоторых видов вкладов (так называемых срочных вкладов, которые нельзя взять раньше, чем через определенный договором срок, например, через год) принята следующая система выплаты доходов: за первый год нахождения внесенной суммы на счете доход составляет, например, 10% от нее. В конце года вкладчик может забрать из банка вложенные деньги и заработанный доход - "проценты", как его обычно называют.
Если же вкладчик этого не сделал, то проценты присоединяются к начальному вкладу (капитализируются), и поэтому в конце следующего года 10% начисляются банком уже на новую, увеличенную сумму. Иначе говоря, при такой системе начисляются "проценты на проценты", или, как их обычно называют, сложные проценты.
Подсчитаем, сколько денег получит вкладчик через 3 года, если он положил на срочный счет в банк 1000 р. и ни разу в течение трех лет не будет брать деньги со счета.
10% от 1000 р. составляют 0,1 1000 = 100 р., следовательно, через год на его счете будет
1000 + 100 = 1100 (р.)
10% от новой суммы 1100 р. составляют 0,1 1100 = 110 р., следовательно, через 2 года на его счете будет
1100 + 110 = 1210 (р.)
10% от новой суммы 1210 р. составляют 0,1 1210 = 121 р., следовательно, через 3 года на его счете будет
1210 + 121 = 1331 (р.)
Нетрудно представить себе, сколько при таком непосредственном, "лобовом" подсчете понадобилось бы времени для нахождения суммы вклада через 20 лет. Между тем подсчет можно вести значительно проще.
А именно, через год начальная сумма увеличится на 10%, то есть составит 110% от начальной, или, другими словами, увеличится в 1,1 раза. В следующем году новая, уже увеличенная сумма тоже увеличится на те же 10%. Следовательно, через 2 года начальная сумма увеличится в 1,1 1,1 = 1,1 2 раз.
Еще через один год и эта сумма увеличится в 1,1 раза, так что начальная сумма увеличится в 1,1 1,1 2 = 1,1 3 раз. При таком способе рассуждений получаем решение нашей задачи значительно более простое: 1,1 3 1000 = 1,331 1000 - 1331 (р.)
Решим теперь эту задачу в общем виде. Пусть банк начисляет доход в размере р% годовых, внесенная сумма равна S р., а сумма, которая будет на счете через n лет, равна S n р.
Величина p% от S составляет \(\frac{p}{100}S \) р., и через год на счете окажется сумма
\(S_1 = S+ \frac{p}{100}S = \left(1+ \frac{p}{100} \right)S \)
то есть начальная сумма увеличится в \(1+ \frac{p}{100} \) раз.
За следующий год сумма S 1 увеличится во столько же раз, и поэтому через два года на счете будет сумма
\(S_2 = \left(1+ \frac{p}{100} \right)S_1 = \left(1+ \frac{p}{100} \right) \left(1+ \frac{p}{100} \right)S = \left(1+ \frac{p}{100} \right)^2 S \)
Аналогично \(S_3 = \left(1+ \frac{p}{100} \right)^3 S \) и т.д. Другими словами, справедливо равенство
\(S_n = \left(1+ \frac{p}{100} \right)^n S \)
Эту формулу называют формулой сложного процентного роста , или просто формулой сложных процентов.
In // 0 Comments
Как найти процент от числа? Общее правило такое. Чтобы найти процентную часть числа, нужно:
1. Число разделить на 100. Почему на 100? Потому что процент — это одна сотая часть числа. И для того, чтобы найти несколько процентов, для начала нужно найти 1 %(процент). Число мы делим на 100 и таким образом мы находим 1%(процент) числа.
2. Получившийся результат умножить на количество процентов. Таким образом мы увидим какую часть от числа мы искали.
Давайте разберем это на конкретных примерах:
1. Вычислить 5% от числа 60. Найдем 1 %, итак число 60 нам нужно разделить на 100 (60: 100= 0,6). Теперь 0,6 нужно умножить на то число, сколько процентов мы ищем. Мы ищем 5%. Просто умножаем 6*5 =30 , в результате нужно отделить запятой один знак, потому что в множителях стоит один знак после запятой, поэтому 0,6*5= 3
2. Вычислить 15% от числа 30. По той же схеме 30:100= 0,3. Теперь 0,3 нужно умножить на то число, сколько процентов мы ищем. Мы ищем 15%. Просто умножаем 3*15 =45, но нам нужно отделить запятой 1 цифру. Поэтому 0,3*15= 4,5
3. Вычислить 75% от числа 150. По той же схеме 150:100= 1,5. Теперь 1,5 нужно умножить на то число, сколько процентов мы ищем. Мы ищем 75%. поэтому Для того что бы умножить эти 2 числа нужно отбросить все запятые и просто умножить 15 *75= 1125. Теперь в результате нужно отделить запятой столько цифр, сколько в обоих множителях в сумме. В обоих множителях у нас одна цифра. То есть только 5 в числе 1,5. Поэтому запятую мы двигаем тоже на одну цифру 1,5*75= 112,5.
Таким способом легче узнать проценты.
Проценты - одно из понятий прикладной математики, которые часто встречаются в повседневной жизни. Так, часто можно прочитать или услышать, что, например, в выборах приняли участие 56,3% избирателей, рейтинг победителя конкурса равен 74%, промышленное производство увеличилось на 3,2%, банк начисляет 8% годовых, молоко содержит 1,5% жира, ткань содержит 100% хлопка и т.д. Ясно, что понимание такой информации необходимо в современном обществе.
Одним процентом от любой величины - денежной суммы, числа учащихся школы и т.д. - называется одна сотая ее часть.
Обозначается
процент знаком %, Таким образом,
1% - это 0,01, или \(\frac{1}{100} \) часть величины
Приведем примеры:
- 1% от минимальной заработной платы 2300 р. (сентябрь 2007 г.) - это 2300/100 = 23 рубля;
- 1% от населения России, равного примерно 145 млн. человек (2007 г.), - это 1,45 млн. человек;
- 3%-я концентрация раствора соли - это 3 г соли в 100 г раствора (напомним, что концентрация раствора - это часть, которую
составляет масса растворенного вещества от массы всего раствора).
Понятно, что вся рассматриваемая величина составляет 100 сотых, или 100% от самой себя. Поэтому, например, надпись на этикетке "хлопок 100%" означает, что ткань состоит из чистого хлопка, а стопроцентная успеваемость означает, что в классе нет неуспевающих учеников.
Слово "процент" происходит от латинского pro centum, означающего "от сотни" или "на 100". Это словосочетание можно встретить и в современной речи. Например, говорят: "Из каждых 100 участников лотереи 7 участников получили призы". Если понимать это выражение буквально, то это утверждение, разумеется, неверно: ясно, что можно выбрать 100 человек, участвующих в лотерее и не получивших призы. В действительности точный смысл этого выражения состоит в том, что призы получили 7% участников лотереи, и именно такое понимание соответствует происхождению слова "процент": 7% - это 7 из 100, 7 человек из 100 человек.
Знак "%" получил распространение в конце XVII века. В 1685 году в Париже была издана книга "Руководство по коммерческой арифметике" Матье де ла Порта. В одном месте речь шла о процентах, которые тогда обозначали "cto" (сокращенно от cento). Однако наборщик принял это "с/о" за дробь и напечатал "%". Так из-за опечатки этот знак вошел в обиход.
Любое число процентов можно записать в виде десятичной дроби, выражающей часть величины.
Чтобы выразить проценты числом, нужно количество процентов разделить на 100. Например:
\(58\% = \frac{58}{100} = 0,58; \;\;\; 4,5\% = \frac{4,5}{100} = 0,045; \;\;\; 200\% = \frac{200}{100} = 2 \)Для обратного перехода выполняется обратное действие. Таким образом, чтобы выразить число в процентах, надо его умножить
на 100:
В практической жизни полезно понимать связь между простейшими значениями процентов и соответствующими дробями: половина - 50%, четверть - 25%, три четверти - 75%, пятая часть - 20%, три пятых - 60% и т.д.
Полезно также понимать разные формы выражения одного и того же изменения величины, сформулированные без процентов и с помощью процентов. Например, в сообщениях "Минимальная заработная плата повышена с февраля на 50%" и "Минимальная заработная плата повышена с февраля в 1,5 раз" говорится об одном и том же. Точно так же увеличить в 2 раза - это значит увеличить на 100%, увеличить в 3 раза - это значит увеличить на 200%, уменьшить в 2 раза - это значит уменьшить на 50%.
Аналогично
- увеличить на 300% - это значит увеличить в 4 раза,
- уменьшить на 80% - это значит уменьшить в 5 раз.
Задачи на проценты
Поскольку проценты можно выразить дробями, то задачи на проценты являются, по существу, теми же задачами на дроби. В простейших задачах на проценты некоторая величина а принимается за 100% ("целое"), а ее часть b выражается числом p%.
В зависимости от того, что неизвестно - а, b или р, выделяются три типа задач на проценты. Эти задачи решаются так же, как и соответствующие задачи на дроби, но перед их решением число р% выражается дробью.
1. Нахождение процента от числа.
Чтобы найти \(\frac{p}{100} \) от a, надо a умножить на \(\frac{p}{100} \):
Итак, чтобы найти р% от числа, надо это число умножить на дробь \(\frac{p}{100} \). Например, 20% от 45 кг равны 45 0,2 = 9 кг, а 118% от х равны 1,18x
2. Нахождение числа по его проценту.
Чтобы найти число по его части b, выраженной дробью \(\frac{p}{100} , \; (p \neq 0) \), надо b разделить на \(\frac{p}{100} \):
\(a = b: \frac{p}{100} \)
3. Нахождение процентного отношения двух чисел.
Чтобы найти, сколько процентов число b составляет от а \((a \neq 0) \), надо сначала узнать, какую часть b составляет от а, а
затем эту часть выразить в процентах:
Например, 9 г соли в растворе массой 180 г составляют \(\frac{9 \cdot 100}{180} = 5\% \) раствора.
Частное двух чисел, выраженное в процентах, называется процентным отношением этих чисел. Поэтому последнее правило называют правилом нахождения процентного отношения двух чисел.
Нетрудно заметить, что формулы
\(b = a \cdot \frac{p}{100}, \;\; a = b: \frac{p}{100}, \;\; p = \frac{b}{a} \cdot 100\% \;\; (a,b,p \neq 0) \) взаимосвязаны, а именно, две последние формулы получаются из первой, если выразить из нее значения a и p. Поэтому первую формулу считают основной и называют формулой процентов. Формула процентов объединяет все три типа задач на дроби, и, при желании, можно ею пользоваться, чтобы найти любую из неизвестных величин a, b и p.Составные задачи на проценты решаются аналогично задачам на дроби.
Простой процентный рост
Когда человек не вносит своевременную плату за квартиру, на него налагается штраф, который называется "пеня" (от латинского роеnа - наказание). Так, если пеня составляет 0,1% от суммы квартплаты за каждый день просрочки, то, например, за 19 дней просрочки сумма составит 1,9% от суммы квартплаты. Поэтому вместе, скажем, с 1000 р. квартплаты человек должен будет внести пеню 1000 0,019 = 19 р., а всего 1019 р.
Ясно, что в разных городах и у разных людей квартплата, размер пени и время просрочки разные. Поэтому имеет смысл составить общую формулу квартплаты для неаккуратных плательщиков, применимую при любых обстоятельствах.
Пусть S - ежемесячная квартплата, пеня составляет р% квартплаты за каждый день просрочки, а n - число просроченных дней. Сумму,
которую должен заплатить человек после n дней просрочки, обозначим S n .
Тогда за n дней просрочки пеня составит рn% от S, или \(\frac{pn}{100}S \), а всего придется заплатить
\(S + \frac{pn}{100}S = \left(1+ \frac{pn}{100} \right) S \)
Таким образом:
\(S_n = \left(1+ \frac{pn}{100} \right) S \)
Эта формула описывает многие конкретные ситуации и имеет специальное название: формула простого процентного роста.
Аналогичная формула получится, если некоторая величина уменьшается за данный период времени на определенное число процентов.
Как и выше, нетрудно убедиться, что в этом случае
\(S_n = \left(1- \frac{pn}{100} \right) S \)
Эта формула также называется формулой простого процентного роста, хотя заданная величина в действительности убывает. Рост в этом случае "отрицательный".
Сложный процентный рост
В банках России для некоторых видов вкладов (так называемых срочных вкладов, которые нельзя взять раньше, чем через определенный договором срок, например, через год) принята следующая система выплаты доходов: за первый год нахождения внесенной суммы на счете доход составляет, например, 10% от нее. В конце года вкладчик может забрать из банка вложенные деньги и заработанный доход - "проценты", как его обычно называют.
Если же вкладчик этого не сделал, то проценты присоединяются к начальному вкладу (капитализируются), и поэтому в конце следующего года 10% начисляются банком уже на новую, увеличенную сумму. Иначе говоря, при такой системе начисляются "проценты на проценты", или, как их обычно называют, сложные проценты.
Подсчитаем, сколько денег получит вкладчик через 3 года, если он положил на срочный счет в банк 1000 р. и ни разу в течение трех лет не будет брать деньги со счета.
10% от 1000 р. составляют 0,1 1000 = 100 р., следовательно, через год на его счете будет
1000 + 100 = 1100 (р.)
10% от новой суммы 1100 р. составляют 0,1 1100 = 110 р., следовательно, через 2 года на его счете будет
1100 + 110 = 1210 (р.)
10% от новой суммы 1210 р. составляют 0,1 1210 = 121 р., следовательно, через 3 года на его счете будет
1210 + 121 = 1331 (р.)
Нетрудно представить себе, сколько при таком непосредственном, "лобовом" подсчете понадобилось бы времени для нахождения суммы вклада через 20 лет. Между тем подсчет можно вести значительно проще.
А именно, через год начальная сумма увеличится на 10%, то есть составит 110% от начальной, или, другими словами, увеличится в 1,1 раза. В следующем году новая, уже увеличенная сумма тоже увеличится на те же 10%. Следовательно, через 2 года начальная сумма увеличится в 1,1 1,1 = 1,1 2 раз.
Еще через один год и эта сумма увеличится в 1,1 раза, так что начальная сумма увеличится в 1,1 1,1 2 = 1,1 3 раз. При таком способе рассуждений получаем решение нашей задачи значительно более простое: 1,1 3 1000 = 1,331 1000 - 1331 (р.)
Решим теперь эту задачу в общем виде. Пусть банк начисляет доход в размере р% годовых, внесенная сумма равна S р., а сумма, которая будет на счете через n лет, равна S n р.
Величина p% от S составляет \(\frac{p}{100}S \) р., и через год на счете окажется сумма
\(S_1 = S+ \frac{p}{100}S = \left(1+ \frac{p}{100} \right)S \)
то есть начальная сумма увеличится в \(1+ \frac{p}{100} \) раз.
За следующий год сумма S 1 увеличится во столько же раз, и поэтому через два года на счете будет сумма
\(S_2 = \left(1+ \frac{p}{100} \right)S_1 = \left(1+ \frac{p}{100} \right) \left(1+ \frac{p}{100} \right)S = \left(1+ \frac{p}{100} \right)^2 S \)
Аналогично \(S_3 = \left(1+ \frac{p}{100} \right)^3 S \) и т.д. Другими словами, справедливо равенство
\(S_n = \left(1+ \frac{p}{100} \right)^n S \)
Эту формулу называют формулой сложного процентного роста , или просто формулой сложных процентов.
Наш мир состоит из схем и последовательностей. Они повсюду: день сменяется ночью, животные мигрируют в своем порядке. У животных даже есть чувство расстояния и количества. Главная концепция математики - это пространство и количество, встроенные в наш мозг. В природе все взаимосвязано с этой наукой. Возможно, некоторые люди не задумываются над этим. Но это так. Великие представители разных культур открыли язык математики для описания Вселенной. И на их основе человек в современном мире пользуется ею в жизни. К примеру, процент от числа в основном затрагивает экономику, финансовую и демографическую сторону нашей жизни. Таким образом, даже эта незначительная часть великой науки имеет отношение к каждой семье. В современном мире уже не обойтись без определенных познаний в той или иной области.
Зачем человеку математические расчеты в жизни?
Это нужно для равномерного развития во всех отношениях, для рационального использования расходов семьи. Информация из данной статьи может пригодиться каждому из нас. Кому-то будет полезно освежить знания, полученные еще на школьной скамье, а некоторым людям необходимо заполнить брешь в образовании. Ведь не секрет, что многие из нас могли относиться к обучению в школе несерьезно. Когда мы были детьми, то считали, что некоторые темы слишком сложны и вообще не пригодятся нам в жизни. Особенно нужны знания о том, как находить процент от числа. Математика есть везде: в биологии, химии, астрономии. Она учит думать нестандартно. Развивает математическую логику, раскрывает творческие способности. Как сказал один умный человек: «Математика - это особый вид искусства». Чтобы представить все нюансы, нужно включать фантазии и абстрактное мышление. А для того чтобы все это было интересно, необходим высокий уровень преподавания точных наук и правильное восприятие. Знания вычислений (процент от числа) упрощают жизнь в материальном и другом отношении.
Когда в жизни применяется расчет процента?
Это необходимо для сравнения, восприятия (например, человек состоит из 66% воды, а медуза - из 98%). В экономике используется процент от числа (можно вычислить прибыль в бизнесе ((3000 - 2000) : 2000) · 100% = 50%). Также эти знания пригодятся для анализа величин (например, в июне - 100% зарплата, в июле - на 50% выше, 100 + 50 = 150%, (50: 150) умножаем на 100%, получается (1: 3) х 100 = 33%, т. е. на 33% зарплата была меньше, чем в июле). Высчитать процент от числа будет легко, если один раз вникнуть в суть задачи. Если вы усвоите материал о нахождении части от числа и наоборот, то трудностей с вычислением процентов не будет. Например, найдем 2/5 части от 20. Решение: 20 х 2/5 = 20 х 2: 5 = 8. Теперь можно понять, как производить расчеты по процентам.
Расчет процента от числа
Для того чтобы разобраться в теме, желательно начать с самых ее азов. Один процент - это одна сотая от числа: 1/100, или 0,01. Два процента - это 2/100, или 0,02. Двадцать процентов = 20/100 = 1/5 = 0,2. Так же 75% = 75/100 = 3/4 = 0,75. Сейчас высчитаем, допустим, 25% от 80. Рассмотрим пример. 25% = 25/100 = 0,25 = 1/4, а 80 х 0,25 = 20. Еще один способ: 80 х 25/100 = 80 х 1: 4 = 20. Как видно, на результат решения не влияет форма записи числа. Или высчитаем 20% от 150. Простой пример: 20% = 0,2. 150 х 0,2 = 30. Выше упоминалось, что такие вычисления необходимы при составлении бюджетной книги семьи. Попробуем подсчитать самостоятельно свой бюджет (расходы и доходы), рассмотрев предложенный пример.
Бюджетные расчеты семьи
Родители получают: мама - восемь тысяч, папа - шесть тысяч. Всего четырнадцать тысяч (100%). Нужно найти процентный доход в бюджет семьи обоих родителей. Применим правило нахождения процента от числа. Чтобы найти процент зарплаты, нужно умножить сумму на сто и разделить на четырнадцать тысяч. (6000 х 100: 14 000 = 42,85%). Далее: (8000 х 100: 14 000 = 57,14%). Теперь рассмотрим расходы семьи и процент от суммы.
Расходы семьи
- Коммунальные услуги - 800 рублей (800 х 100: 14 000 = 5,7%).
- Электроэнергия - 490 рублей (490 х 100: 14 000 = 3,5%).
- Оплата стационарного телефона - 250 рублей (250 х 100: 14 000 = 1,7%).
- Питание - 5000 рублей (5000 х 100: 14 000 = 35,71%).
- Одежда - 3900 рублей (3900 х 100: 14 000 = 27,85%).
- Медикаменты - 510 рублей (510 х 100: 14 000 = 3,64%).
- Моющие средства - 220 рублей (220 х 100: 14 000 = 1,57%).
- Покупка бензина и прочее для машины - 1000 рублей (1000 х 100: 14 000 = 7,1%).
- Оплата школьного питания - 500 рублей (500 х 100: 14 000 = 3,57%).
- Всего 12 670 рублей (12 670 х 100: 14 000 = 90,5%).
Вывод: 90,5% расходов от числа, т. е. от зарплаты родителей. Почти 10% остается на всякий непредвиденный случай. В мире существуют формулы, которые желательно запомнить. Они пригодятся везде. Следующий подраздел статьи мы как раз и посвятим этой теме.
Формулы
Приведем пример существующих формул:
- В = А х Р: 100%; А = В х 100% : Р;
- Р = В: А х 100%; В = А х (1 + Р: 100%);
- В = А х (1 - Р: 100%);
- А = (В х 100%) : (100% + Р).
Также список продолжают формулы:
- А = (В х 100%) : (100% - Р);
- В = А х (1 + Р: 100%) х n.
Обозначения: В - будущая стоимость; А - текущая стоимость; Р - процентная ставка за определенный период; n - количество всех вычислительных периодов.
Приведем пример. Задача № 1: необходимо найти В, которое составляет 6% от 36. Решение: В = 36 х 6: 100 = 2,16. Ответ: В = 2,16.
Задача № 2. Сколько процентов составляет число 37 от 21? Решение: 37: 21 х 100 = 176%. Ответ: 176%.
Задача № 3. Найдем число на 17% меньше, чем 30. Решение: 30 х (1 - 17: 100%) = 30 х 0,83 = 24,9. Ответ: число 24,9 меньше на 17% от 30.
На наглядном примере мы видим, что нет ничего сложного в решении задач с процентами. Главное, чтобы заранее был развит интерес к этой теме. И даже если отсутствуют знания, их можно восполнить, прочитав до конца эту статью.
Факторы, развивающие интерес к учебе
Заметно, что если уделить немного времени решению процентных задач, то у любого проснется интерес, и математика станет неотъемлемой частью жизни. Но начинать учиться необходимо еще с детского сада. А еще лучше с самого рождения. Ребенок легче воспринимает науку в эти годы. Бытует мнение, что если упустить обучение до трех лет, то позже будет труднее привить ребенку любовь к школе, урокам. Существуют факторы, которые формируют заинтересованность человека к математике: доброе отношение учителя, внимание родителей, похвала и правильная активная методика обучения (попытаться увлечь ребенка и превратить задачу в захватывающее приключение). Ведь даже самая сложная задача может стать увлекательной. Учитель должен быть в первую очередь психологом и находить подход к каждому ученику, готовить индивидуальные занятия. Это сможет развить уверенность и чувство собственного достоинства в детях.
Добросовестный учитель разрабатывает разные соревнования, сценки, математический КВН для того, чтобы дети полюбили его науку и другие предметы в школе и дошкольном учреждении. Это разжигает энтузиазм в детях. Обучение через сказку понравится всем. Некоторые преподаватели дают задания домой, к примеру, написать сказочное сочинение на тему «Путешествие в страну математики». И дети включают свое воображение и пишут увлекательные истории. В этом случае ребята действительно полюбят школу! И тогда, повзрослев, дети найдут применение математике в любой области жизни. Да, всему человечеству стоит расширять свои познания в сфере процентных вычислений, несмотря на то что эта тема - одна из сложнейших. В каких классах изучаются задачи на проценты? Подробно эту тему разбирают только в пятых, шестых классах. Позже этому посвящается незначительная часть времени. Поэтому каждому, кто сталкивается с процентными вычислениями, придется вспомнить математику средних классов. Как оказалось, это сделать несложно. Кто придумал это?
История возникновения процентных задач
Латинское выражение pro centum определяется как «за сотню», «со ста». Но произошло оно от итальянского слова, которое пишется как «сто». Однако еще существует предположение, что знак «%» (процент) появился через оплошность писателя книги. Он вместо «сто» напечатал %. Один инженер из Нидерландов как первооткрыватель выпустил в мир процентную таблицу расчетов в 1584 г. Сначала эта наука применялась в торговых областях, затем постепенно проценты стали использовать в технических работах, науке, хозяйственных делах, статистике. Можно сделать вывод, что математика и использование процентных вычислений очень пригодятся в жизни.
Если вам на уроках не удалось понять, как найти процент от числа, и на носу контрольная или ЭГЭ - не унывайте. Для нахождения процента одного числа от другого или процента между двумя числами, достаточно усвоить значение понятия - «процент» и делать примеры для закрепления знаний.
Это совсем несложно, а даже наоборот. Ниже приведены решения типовых задач.
Что такое процент?
Любое число или вещь можно разделить на много частей. Если таких условных частей будет 100, то каждую долю назовут процентом.
Запись 1% расшифровывают, как 0,01 или сотую долю от числа. Эта информация позволит легко рассчитать 1 процент от числа, 7 процентов от числа и так далее.
Основные задачи на нахождение процента
Для решения задач достаточно понимать определение % и правильно определять число, от которого этот процент ищут в задаче. Рассмотрим конкретные решения типовых задач, чтобы вам было легче понять принцип работы с процентами.
Найти указанный процент от заданного числа
Чтобы узнать % от заданного количества, нужно разделить количество на 100 частей и умножать на указанный %.
A1= A2 * P / 100 , где
- A1 - вычисляемое значение;
- A2 - заданное начальное значение;
- P - указанный в задаче процент.
Пример:
На пляже Las Salinas отдыхают 2000 человек, 40% из них - женщины. Как рассчитать количество отдыхающих женщин на пляже?
Решение:
2000 * 40 / 100 = 800 женщин
Внимание! Если задачи кажутся вам слишком легкими - все равно потратьте 1–2 минуты на их письменное решение. Это позволит укрепить навык и освежить полученные знания.
Найти число за его процентным отношением к другому числу
Чтобы узнать число, если известно его процентное отношение к другому числу, нужно разделить известное число на процентное отношение и умножить на 100%. Так мы узнаем для начала 1%, а далее - 100% искомого числа.
Пример:
Интернет доход Максима в этом месяце составил 600$, что составляет 200% от дохода «на дядю» в офисе. Сколько получает Максим, работая «на дядю»?
Решение:
600 / 200 * 100 = 300$
Найти процентное выражение одного числа от другого
Чтобы найти, сколько % числа состоит в другом, нужно их дробь умножить на 100%.
Пример:
Лиза купила 20 шоколадных конфет в продуктовом магазине «Ромашка», а Маша - 50. Сколько процентов от числа Машиных конфет купила Лиза в «Ромашке»?
Решение:
20 / 50 * 100 = 40%
Узнать на сколько процентов одно число больше другого
Чтобы узнать, на сколько % одно число превышает другое, нужно взять % второго числа от первого и вычесть 100%.
Пример:
Сегодня вечером на заправку заезжали 15 белых машин и 75 черных. На сколько процентов черных машин заехало больше, чем белых?
Решение:
75 / 15 * 100 – 100 = 400%
Осторожно! Следующая задача напомнит вам предыдущую, но принцип ее решения немного отличается. Внимательно вчитывайтесь в условия и решение.
Узнать на сколько процентов одно число меньше другого
Для расчета, на сколько % одного из чисел меньше, нужно из 100% вычесть процент меньшего числа от большего.
Пример:
У Васи в гараже помещается четыре машины, а у Ани только одна. На сколько процентов меньше машин помещается у Ани в гараже?
Решение:
100 – 1/4*100 = 75%
Осторожно! При решении подобных заданий, легко перепутать, какое число принимается за 100%. чтобы не допустить этой типичной ошибки, выполняйте проверку подстановочным методом.
Как увеличить значение на заданный процент
Для увеличения числа на заданный %, нужно выполнить операцию сложения после того, как найдете % от числа.
Пример:
У меня есть 40 игр в Steam, по итогам конкурса могу увеличить их на число проценты которого равны 20. Сколько у меня станет игр в Steam, если я выиграю?
Решение:
40 + 20 * 40 / 100 = 40 + 8 = 48 шт.
Осторожно! Помните о необходимости записывать обозначение решения в штуках, метрах, процентах, килограммах - такая ошибка серьезно воспринимается проверяющими.
Как уменьшить значение на указанный процент
Для уменьшения числа на заданный %, нужно найти величину % от заданного числа и выполнить операцию вычитания.
Пример:
Медведю из зоопарка на год выделили 200 литров меда, и он уже съел 10%. Сколько литров осталось в запасе у зоопарка?
Решение:
200 – 200 * 10 / 100 = 180 литров
Внимание! Если вы будете долго заниматься решением однотипных задач, принцип их решения может автоматически перенестись на другие задачи. Комбинируйте разные задачи для решений при изучении учебных материалов.
Универсальный способ — метод крестиков или диагоналей
Для умников и умниц. Есть универсальный способ, как найти сколько процентов составляет число в любой задаче - метод крестиков. Его суть заключается в том, что зависимые числа записываются напротив друг друга.
Затем, по диагонали известные числа перемножаются и разделяются на диагональную пару неизвестного. Например, чтобы найти 5% от 20 рублей, нужно сделать краткую запись:
20
- 100%
(известное в задаче число всегда принимается за 100%)
?
- 5%
(под числом записывается число, под процентами - процент)
Если используется формула A1= A2 * P / 100 , получается тоже самое значение: 20 * 5 / 100 = 1 рубль
Видео «Как быстро считать проценты в уме»