Интересные приемы быстрого счета. Устный счет: техника быстрого счета в уме
В век кассовых аппаратов и калькуляторов люди все реже считают в уме. Они практически полностью перешли на вычислительную технику, но и она частенько дает сбои, или ее просто не будет рядом, когда она нужна. Незаметно мы утрачиваем навыки точного и быстрого счета и иногда с опозданием понимаем, что мы уже не так хороши в этом деле. Но, быстро считать в уме – это неоспоримое достоинство и преимущество. Человек, которые запросто оперирует цифрами, практически никогда не будет обманут при расчетах. Но важно то, что это будут развивать и поддерживать в форме умственные способности, что важно для детей и молодых людей.
Как научиться быстро считать в уме ребенку
Все навыки лучше всего развиваются и закрепляются в детстве. Учиться считать, также, как и читать, можно с 1.5-2 лет. Особенности этого возраста заключаются в том, что у ребенка сначала накопятся пассивные знания – он будет понимать, знать, но из-за малого словарного запаса, будет мало разговаривать. До пяти лет малыш может обучиться в уме производить простые действия – вычитания и сложения в пределах двадцати. Если в два – три с половиной годика вы будете использовать наглядные методы в обучении, то позже малыш сможет оперировать только цифрами, без подкрепления наглядным материалом.
Если вы хотите, чтобы у вашего ребенка было больше шансов, что процесс оперирования крупными значениями и математическими действиями будет даваться легче и пойдет быстрее, тогда нужно как можно раньше научить его считать.
Обучать детей до четырех лет лучше с наглядными материалами. Считать можно все, что хотите. Пожарные машины, которые спешат на пожар, мотоциклисты, которые с грохотом пролетают мимо вас, кошки, которые греются на солнышке, стайки птиц – все, что вокруг вас можно посчитать. С навыками счета одновременно будут развиваться наблюдательность и внимание. Постепенно увеличивайте нагрузку. Утром вы видели 2 кошек, а когда возвращались домой, еще 3. Спросите у ребенка: «Заметил ли он, что сегодня так много кошек! Сколько он заметил?». Похвалите его за точность и наблюдательность, ведь эти качества пригодятся ему в жизни.
В начальной школе малышу необходимо быстро и свободно производить любые вычисления в пределах, определенных школьной программой. Чтобы научиться считать быстро, необходимы постоянные тренировки. Поэтому задачей родителей является побуждение малыша к счету и делать так, чтобы это происходило интересно. Чем чаще ваш ребенок будет тренироваться, тем легче ему будет делать точные и быстрые вычисления в уме.
Как научиться быстро считать взрослому
Если ребенок с детства обучался быстрому счету, то со временем он без особых усилий будет оперировать с большими значениями. Но если человек более зрелого возраста или студент решил овладеть быстрым счетом, то необходимо применить незамысловатую методику, которая несомненно принесет положительные результат.
Любое обучения начинается с малого. Если вы знаете таблицу умножения, это отлично. Если же забыли, или никогда не знали, стоит воспользоваться таким методом счета. К примеру, необходимо узнать, сколько будет 8х6. Записываем пример таким образом:
Что происходит когда собака облизывает лицо
Как вести себя если вас окружают хамы
Десять привычек, которые делают людей хронически несчастливыми
2 4
—-=48
8х6
Ответ 48. Мы его получили, записав пример 8х6, провели над ним прямую линию и над каждой цифрой записали, сколько не хватает до 10. Над 8 пишем 2, на 6 пишем 4. Первая цифра ответа – это разница между числами в нижней и верхней строках по диагонали. 8-4=4, 6-2=4 – для вычисления можете взять любую пару – ответ будет всегда одинаковым. Итак мы поняли, что первая цифра это 4. Теперь найдем вторую. Для этого следует умножить цифры верхней строки 2х4=8. Наш пример решен: 8х6=48.
Немного по-другому считаются более крупные числа. Например, вам необходимо подсчитать 11х13.
1 3
——=140+3=143
11х13
В нижней строчке записываем пример 11х13. В верхней пишем, на сколько эти числа превышают 10. Получаем 1 и 3. Сложим числа по диагонали. Получаем 11+3=14, 13+1=14. Мы получили 14 десятков, поскольку исходные цифры превышают 10. Поэтому 14 умножим на 10. 14х10=140. Осталось лишь умножить верхние числа 1х3=3 и прибавить полученную цифру к ответу.
Такие способы вычисления сложно проводить только сначала. Поэтому начинайте с простых примеров и постепенно усложняйте. Но дабы научиться считать в уме, необходимо полностью избавиться от записей, а делать все в голове.
По таким способам можно учить и детей, однако только тогда, когда они полностью знают школьную программу. В ином случае вы не добьетесь положительных результатов, а лишь навредите усвоению школьных знаний.
Когда освоите манипулирование двузначными числами, можете переходить к вычислению многозначных – сотен и даже тысяч.
Видео уроки
Счетным навыкам нас обучают с детства. Это элементарные операции сложения, вычитания, умножения и деления. В случае небольших чисел с ними легко справляются даже младшие школьники, но задача существенно усложняется, когда нужно произвести действие с двузначным или трехзначным числом. Однако с помощью тренировки, несложных упражнений и маленьких хитростей вполне можно подчинить данные операции быстрой умственной обработке.
Возможно, вы спросите, зачем это нужно, ведь существует такая удобная вещь, как калькулятор, а на крайний случай под рукой всегда есть бумага для осуществления вычислений. Быстрый счет в уме дает массу преимуществ:
Возможность обратиться к другим аспектам задачи. Зачастую задачи содержат в себе, как минимум, две стороны: чисто арифметическую (действия с числами) и интеллектуально-творческую (выбор подходящего решения для конкретной задачи, нестандартный подход для более быстрого решения и др.). Если школьник недостаточно хорошо и быстро справляется с первой стороной, то от этого страдает вторая: концентрируясь на выполнении арифметической составляющей, ребенок не задумывается над смыслом задачи, может не увидеть подвоха или более простого решения. Если же счетные операции доведены до автоматизма или просто не требуют большого количества времени, то «включается» детальное рассмотрение смысла задачи, появляется возможность применения творческого подхода к ней.
Тренировка интеллекта. Счет в уме позволяет держать интеллект в тонусе, постоянно задействовать мыслительные процессы. Особенно это характерно для действий с большими числами, когда мы подбираем способ для максимального упрощения операции.
Упражнения с таблицами
Упражнения рассчитаны на детей любого возраста, испытывающих затруднения при выполнении операций с простыми числами (одно- и двузначными). Позволяет натренировать навыки устного счета, довести до автоматизма несложные арифметические операции.
Необходимые материалы: для выполнения упражнений понадобится сетка одно- и двузначных чисел. Пример:
В первом столбце располагаются числа, с которыми нужно выполнять действия. Во втором – ответы на эти действия. С помощью специально вырезанной закладки можно проверить правильность вычисления. Например:
Варианты упражнений:
Последовательно сложи в уме пары чисел в сетке. Назови ответ вслух и проверь себя с помощью второго столбца и закладки. Задание может выполняться в свободном темпе или на время.
Последовательно выполни вычитание в уме чисел из сетки.
Последовательно сложи в уме пары чисел в сетке. Прибавь к каждой сумме цифру 5 и назови ответ вслух.
Последовательно сложи в уме тройки чисел в сетке.
Последовательно со всеми числами в сетке выполни следующие действия: прибавь нижнее число, из полученной суммы вычти следующую в столбце цифру.
На основе подобных таблиц можно формировать любые задания. Сетки составляются в зависимости от модификации упражнения.
ВАЖНО! Чтобы упражнение дало результат, оно должно выполняться регулярно, до полного усвоения навыка.
Осваиваем умножение
Упражнение предназначено для детей, освоивших таблицу умножения от 1 до 10. Тренирует навык перемножения двузначного числа на однозначное.
Составляется столбик из произвольных двузначных чисел. Задание для ребенка: последовательно умножить эти числа сначала на 1, потом на 2, на 3 и т.д. Ответ произносится вслух. Выполняется до тех пор, пока ответы не запомнятся и не будет выдаваться автоматически.
Главное – внимание
Задание: сложи последовательно числа: 3000 + 2000+ 30 + 2000 + 10 + 20 + 1000 + 10 + 1000 + 30 =
Назови ответ. Проверь себя с помощью калькулятора.
Если ответ получился верным, необходимо закрепить успех и прорешать еще несколько подобных примеров (могут составляться произвольно). Если в ответе была ошибка, нужно вернуться к последовательности чисел и исправить ее.
В чем идея: В результате сложения чисел получается сумма 9100. Но если делать это невнимательно, будет автоматически напрашиваться ответ 10000 (мозг стремится округлить сумму, сделать ответ более красивым). Поэтому очень важно сохранять контроль за своими действиями при производстве арифметических задач в несколько действий.
3000 – 700 — 60 – 500 — 40 – 300 -20 – 100 =
100:2:2*3*2 + 50 – 100 + 200 – 30 =
Если большинство примеров решается с ошибками (НО! не связанными с умением считать в принципе), то есть смысл повысить концентрацию внимания. Для этого можно:
Минимизировать внешние раздражители. Например, по возможности выйти в другую комнату, выключить музыку, закрыть окно и т.д. Если необходима концентрация на примере во время урока, когда нет возможности выйти и добиться полной тишины, нужно закрыть глаза и представить цифры, с которыми осуществляются действия.
Добавить элемент состязательности. Зная, что верное и быстрое решение принесет победу над противником и/или какое-то поощрение, ученик более охотно сосредоточится на цифрах и предпримет максимум усилий в процессе вычисления.
Устанавливать личные рекорды. Можно визуализировать все ошибки, совершенные школьником в процессе вычисления. Например, нарисовать цветок с крупными лепестками (количество лепестков = количеству решаемых примеров). Черным будет закрашено столько лепестков, сколько примеров было решено с ошибками. Задача – максимально сократить количество черных лепестков, устанавливая личные рекорды с каждой партией примеров.
Группировка. Последовательно складывая/вычитая несколько чисел, необходимо посмотреть, какие из них при сложении/вычитании дадут целое число: 13 и 67, 98 и 32, 49 и 11 и т.д. Сначала выполнить действия с этими цифрами, а потом перейти к остальным. Пример: 7+65+43+82+64+28=(7+43)+(82+28)+65+64=50+110+124=289
Разложение на десятки и единицы. При умножении двух двузначных чисел (например, 24 и 57) выгодно одно из них (заканчивающееся на меньшую цифру) разложить на десятки и единицы: 24 как 20 и 4. Второе число умножается сначала на десятки (57 на 20), потом на единицы (57 на 4). Затем оба значения складываются. Пример: 24×57=57×20+57×4=1140+228=1368
Умножение на 5. При умножении любого числа на 5, выгоднее сначала умножить его на 10, а потом разделить на 2. Пример: 45×5=45×10/2=450/2=225
Умножение на 4 и 8. При умножении на 4, выгоднее умножить число два раза на 2; на 8 – три раза на 2. Пример: 63×4=63x2x2=126×2=252
Деление на 4 и 8. Аналогично умножению: при делении на 4 разделить число дважды на 2, на 8 – трижды на 2. Пример: 192/8=192/2/2/2=96/2/2=48/2=24
Возведение в квадрат чисел, заканчивающихся на 5. Облегчить это действие позволит следующий алгоритм: число десятков, возводимого в квадрат числа, умножается на такое же плюс единица и приписывается в конце 25. Пример: 75^2=7x(7+1)=7×8=5625
Умножение по формуле. В ряде случаев для облегчения счета можно применить формулу разности квадратов: (a+b)x(a-b)=a^2-b^2. Пример: 52×48=(50+2)x(50-2)=50^2-2^2=2500-4=2496
P.S. Данные правила могут существенно упростить устный счет, однако необходимы регулярные тренировки, чтобы в нужный момент можно было правильно воспользоваться правилом. Поэтому рекомендуется прорешать такое количество примеров на каждое из них, которое позволит автоматизировать навык. Для начала можно записывать расчеты на бумаге, постепенно сокращая количество написанного и переводя операции в мыслительный план. В первое время также рекомендуется проверять свои ответы при помощи калькулятора или стандартных вычислений в столбик.
В современном мире с множеством сверх прогрессивных девайсов, счет в уме не утратил своей актуальности.
Иногда мы сталкиваемся с людьми, способными складывать, умножать и делить сложные числа молниеносно. Такие люди не обладают сверхъестественными способностями, они просто знают формулы упрощенного счета и регулярно тренируют свой навык.
Три составляющих успешного обучения
- Способности. Для того чтобы научиться считать в уме, следует уметь концентрировать внимание на поставленной задаче и удерживать в памяти сложные числа.
- Формулы. Чтобы легко и просто производить вычисления в уме, следует запомнить основные математические формулы.
- Практика. Частые тренировки позволят развить и усовершенствовать навык.
Существует несколько простых способов умножения числа на 11.
Способ 1
При умножении 2-значного числа на 11, раздвинем цифры множителя.
Например (54 * 11):
5 _ 4 * 11=…
Теперь суммируем единицы и десятки, а полученный результат записываем в ответе:
5 (5+4) 4 * 11 = 5 (9) 4 = 594
Если при суммировании десятков и единиц у вас получается 2-значное число, оставим только единицы, а к десяткам прибавим «1».
Например (89 * 11):
8 _ (8+9) _9 = 8 _ (17) _ 9 = _ (8+1) _ 79 = 979
Способ 2
При умножении на 11 разложим число 11 на сумму: 10+1, и произведем умножение частей.
Например:
12 * 11 = 12 * (10+1) = 120 + 12 = 132
Так же и с 3-значными числами:
114 * 11 = 114 * (10+1) = 1140 + 114 = 1254
Умножаем на 9 и 11
При умножении на «9», просто умножим число на 10, а затем вычтем это же первоначальное число. Если умножаем на «11» - число следует умножить на «10» и добавить исходное число.
Примеры:
15 * 9 = 15 * 10 – 15 = 150 - 15 = 135
57 * 11 = 57 * 10 + 57 = 570 + 57 = 627
Возведение в квадрат числа, заканчивающегося на 5
Достаточно простая методика. Умножаем десяток на самого себя +1, и дописываем «25» в конце.
Например (35 * 35):
35 * 35 = 3 * (3+1)_25 = 1225
Устное умножение на 5, 25, 50, 125
Умножить на 5 числа до 10-ти не составляет проблем
Давайте научимся так же легко умножать двузначные и трехзначные числа.
Способ 1
Разделим наш множитель на «2». Получилось целое число? Значит, добавим к нему в конце «0», если число поровну не делится – отбрасываем остаток и добавляем «5» в конце.
Например (1482 * 5):
1482 * 5 = (1482/2) _ (+0 или +5) = 741 _(+0) = 7410 – число делится на 2 без остатка
2269 * 5 = (2269/2) _ (+0 или +5) = 1134.5 _ (+5) = 11345 – число делится на 2 с остатком
Способ 2
Умножая число на 5, 25, 50, 125 можно использовать следующие формулы:
А * 5 = А * 10 / 2
А * 50 = А * 100 / 2
А * 25 = А * 100 / 4
А * 125 = А* 1000 / 8
Примеры:
44 * 5 = 44 * 10 / 2 = 440 / 2 = 220
24 * 50 = 24 * 100 / 2 = 2400 / 2 = 1200
26 * 25 = 26 * 100 / 4 = 2600 / 4 = 650
54 * 125 = 54 * 1000 / 8 = 54000 / 8 = 6750
Учимся устно умножать на 4
Достаточно простой метод, не требующий особых усилий.
Умножаем число на «2», а потом полученный результат снова умножаем на «2».
Например:
27 * 4 = 27 * 2 * 2 = 54 * 2 = 108
Вычисляем в уме 15 % от числа
Находим 10% от числа и добавляем ½ от 10%.
Например:
15% от 664 = (10%) + (10% / 2) = 66.4 + 33.2 = 99.6
Умножаем в уме большие числа, одно из которых четное
При умножении больших чисел, одно из которых четное, воспользуемся методикой упрощения множителей. Четное число уменьшаем в два раза, а нечетное – увеличиваем во столько же раз.
Например:
48 * 125 = 24 * 250 = 12 * 500 = 6 * 1000 = 6000
Учимся делить на 5, 50, 25
Один простой прием поможет вам быстро делить в уме: умножим наше число на «2» и переместим запятую на одну цифру назад.
145 / 5 = 145 * 2 = 290 (смещаем запятую) = 29
1200 / 5 = 1200 * 2 = 2 400 (смещаем запятую) = 240
При делении на 50, 25, удобно воспользоваться формулами:
А / 50 = А * 2 / 100
А / 25 – А * 4 / 100
Примеры:
2350 / 50 = 2350 * 2 / 100 = 4700 / 100 = 47
2600 / 25 = 2600 * 4 / 100 = 10400 / 100 = 104
Вычитаем из 1000
Для того, чтобы вычесть число из 1000, отнимаем каждую цифру числа от «9», а последнюю цифру отнимаем от 10.
Например:
1000 – 248 = (9-2) _ (9-4) _ (10-8) = 752
Умножаем простые числа
Такой метод часто называют диагональным. Над числами мы дописываем, сколько им не хватает до «10», вычитаем по диагонали и получаем 1-ю цифру числа, затем перемножим верхние числа и записали 2-ю цифру.
Пример, умножим 7 на 8: 3 __ 2
7 8
8 – 3 = 5 _
3 * 2 = 6
Итог: 56
Умножаем числа от 10 до 20
Для того чтобы быстро в уме умножать числа от 10 до 20-ти, следует знать одну хитрость: к одному числу прибавим единицы другого, а сумму умножим на 10, к полученному результату добавим произведение единиц.
Пример:
13 * 15 = (13 + 5) * 10 + 3 * 5 = 180 + 15 = 195
Складываем и вычитаем натуральные числа
1. Если слагаемое увеличить на некоторое число, то это же число следует вычесть из полученной суммы.
Например:
650 + 346 = (650 + 346 + 4) – 4 = (650 + 350) – 2 = 1000 – 2 = 998
2. Если одно слагаемое уменьшить на некоторое число, а ко второму слагаемому это же число добавить, то сумма не изменится.
Например:
335 + 765 = (335 + 5) + (765 - 5) = 340 + 760 = 1100
3. Если к уменьшаемому и вычитаемому добавить одно и то же число, результат не изменится.
Например:
225 - 339 = (225 + 5) - (339 + 5) = 230 - 344 = 114
Умножаем числа с одинаковым количеством десятков, сумма единиц которых = 10
Арифметика достаточно проста: десятки одного из множителей умножаем на число, большее на «1», перемножаем единицы, и записываем поочередно результат.
Например:
302 * 308 = ..
1). 30 * (30 + 1) = 900 + 30 = 930
2). 2 * 8 = 16
Умножаем на число, состоящее из цифр 9
Как умножить на число 9, 99, 999?
Для этого просто добавим недостающие единицы и произведем вычисление.
Пример:
154 * 99 = 154 * (100 - 1) = 15400 - 154 = 15246
Складываем близкие по величине числа
Производим вычисление ряда чисел, близких по величине
Их можно разложить, и сложить частями.
Например:
19 + 22 + 23 + 21+ 24 + 17=…
Разложим слагаемые:
19 = 20 - 1
22 = 20 + 2
23 = 20 + 3
21 = 20 + 1
24 = 20 + 4
17 = 20 -3
Итог: 20 * 6 + (2-1+3+1+4-3) = 120 + 6 = 126
Надеемся, что наши советы помогут вам освоить приемы быстрого счета в уме. Следует помнить, что теория – это лишь 20 % успеха. Остальные 80% - ваше желание и практика.
Чистая математика является в своём роде поэзией логической идеи. Альберт Эйнштейн
В данной статье мы предлагаем вам подборку простых математических приёмов, многие из которых довольно актуальны в жизни и позволяют считать быстрее.
1. Быстрое вычисление процентов
Пожалуй, в эпоху кредитов и рассрочек наиболее актуальным математическим навыком можно назвать виртуозное вычисление процентов в уме. Самым быстрым способом вычислить определённый процент от числа является умножение данного процента на это число с последующим отбрасыванием двух последних цифр в получившемся результате, ведь процент есть не что иное, как одна сотая доля.
Сколько составляют 20% от 70? 70 × 20 = 1400. Отбрасываем две цифры и получаем 14. При перестановке множителей произведение не меняется, и если вы попробуете вычислить 70% от 20, то ответ также будет 14.
Данный способ очень прост в случае с круглыми числами, но что делать, если надо посчитать, к примеру, процент от числа 72 или 29? В такой ситуации придётся пожертвовать точностью ради скорости и округлить число (в нашем примере 72 округляется до 70, а 29 до 30), после чего воспользоваться тем же приёмом с умножением и отбрасыванием двух последних цифр.
2. Быстрая проверка делимости
Можно ли поровну поделить 408 конфет между 12 детьми? Ответить на этот вопрос легко и без помощи калькулятора, если вспомнить простые признаки делимости, которые нам преподавали ещё в школе.
- Число делится на 2, если его последняя цифра делится на 2.
- Число делится на 3, если сумма цифр, из которых состоит число, делится на 3. Например, возьмём число 501, представим его как 5 + 0 + 1 = 6. 6 делится на 3, а значит, и само число 501 делится на 3.
- Число делится на 4, если число, образованное его последними двумя цифрами, делится на 4. Например, берём 2 340. Последние две цифры образуют число 40, которое делится на 4.
- Число делится на 5, если его последняя цифра 0 или 5.
- Число делится на 6, если оно делится на 2 и 3.
- Число делится на 9, если сумма цифр, из которых состоит число, делится на 9. Например, возьмём число 6 390, представим его как 6 + 3 + 9 + 0 = 18. 18 делится на 9, а значит, и само число 6 390 делится на 9.
- Число делится на 12, если оно делится на 3 и 4.
3. Быстрое вычисление квадратного корня
Квадратный корень из 4 равен 2. Это посчитает любой. А как насчёт квадратного корня из 85?
Для быстрого приблизительного решения находим ближайшее к заданному квадратное число, в данном случае это 81 = 9^2.
Теперь находим следующий ближайший квадрат. В данном случае это 100 = 10^2.
Корень квадратный из 85 находится где-то в интервале между 9 и 10, а поскольку 85 ближе к 81, чем к 100, то квадратный корень этого числа будет 9 с чем-то.
4. Быстрое вычисление времени, через которое денежный вклад под определённый процент удвоится
Хотите быстро узнать время, которое потребуется, чтобы ваш денежный вклад с определённой процентной ставкой удвоился? Тут также не нужен калькулятор, достаточно знать «правило 72».
Делим число 72 на нашу процентную ставку, после чего получаем приблизительный срок, через который вклад удвоится.
Если вклад сделан под 5% годовых, то потребуется 14 с небольшим лет, чтобы он удвоился.
Почему именно 72 (иногда берут 70 или 69) ? Как это работает? На эти вопросы развёрнуто ответит «Википедия».
5. Быстрое вычисление времени, через которое денежный вклад под определённый процент утроится
В данном случае процентная ставка по вкладу должна стать делителем числа 115.
Если вклад сделан под 5% годовых, то потребуется 23 года, чтобы он утроился.
6. Быстрое вычисление почасовой ставки
Представьте, что вы проходите собеседования с двумя работодателями, которые не называют оклад в привычном формате «рублей в месяц», а говорят о годовых окладах и почасовой оплате. Как быстро посчитать, где платят больше? Там, где годовой оклад составляет 360 000 рублей, или там, где платят 200 рублей в час?
Для расчёта оплаты одного часа работы при озвучивании годового оклада необходимо отбросить от названной суммы три последних знака, после чего разделить получившееся число на 2.
360 000 превращается в 360 ÷ 2 = 180 рублей в час. При прочих равных условиях получается, что второе предложение лучше.
7. Продвинутая математика на пальцах
Ваши пальцы способны на гораздо большее, нежели простые операции сложения и вычитания.
С помощью пальцев можно легко умножать на 9, если вы вдруг забыли таблицу умножения.
Пронумеруем пальцы на руках слева направо от 1 до 10.
Если мы хотим умножить 9 на 5, то загибаем пятый палец слева.
Теперь смотрим на руки. Получается четыре несогнутых пальца до согнутого. Они обозначают десятки. И пять несогнутых пальцев после согнутого. Они обозначают единицы. Ответ: 45.
Если мы хотим умножить 9 на 6, то загибаем шестой палец слева. Получим пять несогнутых пальцев до согнутого пальца и четыре после. Ответ: 54.
Таким образом можно воспроизвести весь столбик умножения на 9.
8. Быстрое умножение на 4
Существует чрезвычайно лёгкий способ молниеносного умножения даже больших чисел на 4. Для этого достаточно разложить операцию на два действия, умножив искомое число на 2, а затем ещё раз на 2.
Посмотрите сами. Умножить 1 223 сразу на 4 в уме сможет не каждый. А теперь делаем 1223 × 2 = 2446 и далее 2446 × 2 = 4892. Так гораздо проще.
9. Быстрое определение необходимого минимума
Представьте, что вы проходите серию из пяти тестов, для успешной сдачи которых вам необходим минимальный балл 92. Остался последний тест, а по предыдущим результаты таковы: 81, 98, 90, 93. Как вычислить необходимый минимум, который нужно получить в последнем тесте?
Для этого считаем, сколько баллов мы недобрали/перебрали в уже пройденных тестах, обозначая недобор отрицательными числами, а результаты с запасом - положительными.
Итак, 81 − 92 = −11; 98 − 92 = 6; 90 − 92 = −2; 93 − 92 = 1.
Сложив эти числа, получаем корректировку для необходимого минимума: −11 + 6 − 2 + 1 = −6.
Получается дефицит в 6 баллов, а значит, необходимый минимум увеличивается: 92 + 6 = 98. Дела плохи. :(
10. Быстрое представление значения обыкновенной дроби
Примерное значение обыкновенной дроби можно очень быстро представить в виде десятичной дроби, если предварительно приводить её к простым и понятным соотношениям: 1/4,1/3, 1/2 и 3/4.
К примеру, у нас есть дробь 28/77, что очень близко к 28/84 = 1/3, но поскольку мы увеличили знаменатель, то изначальное число будет несколько больше, то есть чуть больше, чем 0,33.
11. Трюк с угадыванием цифры
Можно немного поиграть в Дэвида Блэйна и удивить друзей интересным, но очень простым математическим трюком.
- Попросите друга загадать любое целое число.
- Пусть он умножит его на 2.
- Затем прибавит к получившемуся числу 9.
- Теперь пусть отнимет 3 от получившегося числа.
- А теперь пусть разделит получившееся число пополам (оно в любом случае разделится без остатка).
- Наконец, попросите его вычесть из получившегося числа то число, которое он загадал в начале.
Ответ всегда будет 3.
Да, очень тупо, но часто эффект превосходит все ожидания.
Бонус
И, конечно же, мы не могли не вставить в этот пост ту самую картинку с очень крутым способом умножения.
Приемы быстрого счета: магия, доступная всем
Для того чтобы понять, какую роль в нашей жизни играют цифры, поставьте простой эксперимент. Попробуйте некоторое время обойтись без них. Без цифр, без вычислений, без измерений… Вы окажетесь в странном мире, где почувствуете себя абсолютно беспомощным, связанным по рукам и ногам. Как успеть на встречу вовремя? Отличить один автобус от другого? Позвонить по телефону? Купить хлеб, колбасу, чай? Сварить суп или картошку? Без чисел, а значит, без счета жизнь невозможна. Но как тяжело иногда дается эта наука! Попробуйте быстро перемножить 65 на 23? Не получается? Рука сама тянется за мобильником с калькулятором. А, между тем, полуграмотные русские крестьяне 200 лет назад спокойно делали это, пользуясь лишь первым столбиком таблицы умножения - умножением на два. Не верите? А зря. Это - реальность.
"Компьютер" каменного века
Даже не зная чисел, люди уже пытались считать. Если нашим предкам, обитавшим в пещерах и носившим шкуры, нужно было поменяться чем-либо с соседним племенем, они поступали просто: расчищали площадку и выкладывали, например, наконечник стрелы. Рядом ложилась рыба или горсть орехов. И так до тех пор, пока не заканчивался один из обменных товаров, или глава "торговой миссии" не решал, что уже хватит. Примитивно, но по-своему очень удобно: и не запутаешься, и не обманут.
С освоением скотоводства задачи усложнились. Большое стадо нужно было как-то считать, чтобы знать, все ли козы или коровы на месте. "Счетной машиной" неграмотных, но умных пастухов стала долбленая тыква с камешками. Как только животное покидало загон, пастух клал в тыкву камешек. Вечером стадо возвращалось, и пастух вынимал по камешку с каждым входившим в загон животным. Если тыква пустела, он знал, что со стадом все в порядке. Если оставались камешки - шел искать потерю.
Когда появились цифры, дело пошло веселее. Хотя еще долго у наших предков в ходу было лишь три числительных: "один", "пара" и "много".
Можно ли считать быстрее компьютера?
Обогнать устройство, выполняющее сотни миллионов операций в секунду? Невозможно… Но тот, кто говорит так, жестоко лукавит, или просто кое-что умышленно упускает из вида. Компьютер - это лишь набор микросхем в пластике, он не считает сам по себе.
Поставим вопрос по-другому: может ли человек, считая в уме, обогнать того, кто выполняет вычисления на компьютере? И здесь ответ - да. Ведь, чтобы получить ответ от "черного чемоданчика", данные в него необходимо сначала ввести. Это будет делать человек при помощи пальцев или голосом. А все эти действия имеют ограничения по времени. Непреодолимые ограничения. Сама природа поставила их человеческому телу. Всему - кроме одного органа. Мозга!
Калькулятор умеет выполнять лишь две операции: сложение и вычитание. Умножение для него - это множественное сложение, а деление - множественное вычитание.
Наш мозг поступает по-другому.
Класс, где учился будущий король математики, Карл Гаусс, как-то получил задание: сложить все числа от 1 до 100. Карл написал на своей доске абсолютно правильный ответ, как только учитель закончил объяснять задание. Он не стал прилежно складывать числа по порядку, как поступил бы любой уважающий себя компьютер. Он применил открытую им самим формулу: 101 х 50 = 5050. И это далеко не единственный прием, ускоряющий вычисления в уме.
Простейшие приемы быстрого счета
Их изучают в школе. Самое простое: если вам нужно прибавить к любому числу 9, прибавляете 10 и вычитаете 1, если 8 (+ 10 - 2), 7 (+ 10 - 3) и т.д.
54 + 9 = 54 + 10 - 1 = 63. Быстро и удобно.
Двухзначные числа складываются так же легко. Если во втором слагаемом последняя цифра больше пяти, число округляется до следующего десятка, а потом "лишнее" вычитается. 22 + 47 = 22 + 50 - 3 = 69. Если ключевая цифра меньше пятерки, то надо сложить сперва десятки, затем единицы: 27 + 51 = 20 + 50 + 7 + 1 = 78.
С трехзначными числами точно так же не возникает никаких трудностей. Складываем их, как читаем, слева на право: 321 + 543 = 300 + 500 + 20 + 40 + 1 + 3 = 864. Гораздо проще, чем в столбик. И гораздо быстрее.
А вычитание? Принцип тот же: вычитаемое округляем до целого и добавляем недостающее: 57 - 8 = 57 - 10 + 2 = 49; 43 - 27 = 43 - 30 + 3 = 16. Быстрее чем на калькуляторе - и никаких претензий от учителя даже во время контрольной!
Нужно ли учить таблицу умножения?
Дети этого, как правило, терпеть не могут. И правильно делают. Ни к чему ее учить! Но не спешите возмущаться. Никто не утверждает, что таблицу не нужно знать.
Ее изобретение приписывают Пифагору, но, скорее всего, великий математик лишь придал законченную, лаконичную форму тому, что уже было известно. На раскопках древней Месопотамии археологи нашли глиняные таблички с сакраментальным: "2 х 2". Люди давно пользуются этой в высшей степени удобной системой вычислений и открыли множество способов, которые помогают постичь внутреннюю логику и красоту таблицы, понять - а не тупо, механически зазубрить.
В древнем Китае таблицу начинали учить с умножения на 9. Так проще, и не в последнюю очередь потому, что умножать на 9 можно "на пальцах".
Положите обе руки на стол ладонями вниз. Первый слева палец - 1, второй - 2 и т.д. Допустим, вам нужно решить пример 6 х 9. Поднимите шестой палец. Пальцы слева покажут десятки, справа - единицы. Ответ 54.
Пример: 8 х 7. Левая рука - первый множитель, правая - второй. На руке пять пальцев, а нам нужно 8 и 7. Загибаем на левой руке три пальца (5 + 3 = 8), на правой 2 (5 + 2 = 7). Загнутых пальцев у нас пять, значит пять десятков. Теперь перемножим оставшиеся: 2 х 3 = 6. Это единицы. Всего 56.
Это лишь один из наипростейших приемов "пальцевого" умножения Их много. "На пальцах" можно оперировать числами до 10 000!
У "пальцевой" системы есть бонус: ребенок воспринимает ее как веселую игру. Занимается охотно, испытывает массу положительных эмоций и в итоге очень скоро начинает проделывать все операции в уме, без помощи пальцев.
Делить так же можно при помощи пальцев, но это немного сложнее. Программисты до сих пор пользуются руками, чтобы перевести числа из десятичной системы в двоичную - это удобнее и гораздо быстрее, чем на компьютере. Но в рамках школьной программы научиться быстро делить можно даже без пальцев, в уме.
Допустим, нужно решить пример 91: 13. Столбик? Нет нужды пачкать бумагу. Делимое заканчивается на единицу. А делитель - на тройку. Что там в таблице умножения самое первое, где задействована тройка, а заканчивается на единицу? 3 х 7 = 21. Семерка! Вот и все, мы ее поймали. Надо 84: 14. Вспоминаем таблицу: 6 х 4 = 24. Ответ - 6. Просто? Еще бы!
Волшебство числа
Большинство приемов быстрого счета похоже на фокусы. Взять хотя бы известнейший пример умножения на 11. Чтобы, например, 32 х 11 нужно написать 3 и 2 по краям, а в середину поставить их сумму: 352.
Для умножения двузначного числа на 101 надо просто записать число два раза. 34 х 101 = 3434.
Для умножения числа на 4 нужно два раза умножить его на 2. Для деления - дважды разделить на 2.
Много остроумных и, главное, быстрых приемов помогают возводить число в степень, извлекать квадратный корень. Знаменитые "30 приемов Перельмана" для математически мыслящих людей будут покруче шоу Коперфильда, потому что они еще и ПОНИМАЮТ что происходит, и как оно происходит. Ну а остальные могут просто наслаждаться красивым фокусом. Например, нужно перемножить 45 на 37. Напишем числа на листе и разделим их вертикальной чертой. Левое число делим на 2, отбрасывая остаток, пока не получим единицу. Правое - умножаем до тех пор, пока число строчек в столбике не сравняется. Затем вычеркиваем из ПРАВОГО столбика все те числа, напротив которых в ЛЕВОМ столбике получился четный результат. Оставшиеся числа из правого столбика складываем. Получится 1665. Перемножьте числа привычным способом. Ответ сойдется.
"Зарядка" для ума
Приемы быстрого счета способны здорово облегчить жизнь и ребенку в школе, и маме в магазине или на кухне, и папе на производстве или в офисе. Но мы предпочитаем калькулятор. Почему? Не любим напрягаться. Нам тяжело держать числа, даже двухзначные, в голове. Почему-то не держатся.
Попробуйте выйти на середину комнаты и сесть на шпагат. Почему-то "не сажается", да? А гимнаст делает это совершенно спокойно, не напрягаясь. Тренироваться нужно!
Самый простой способ тренировки и, одновременно, разминки мозга: устный счет вслух (обязательно!) через число до ста и обратно. Утром, стоя под душем, или готовя завтрак, посчитайте: 2.. 4.. 6.. 100... 98.. 96. Можно считать через три, через восемь - главное, делать это вслух. Всего через пару недель регулярных занятий вы удивитесь, насколько ПРОЩЕ станет обращаться с числами.