Как быстро считать в уме двузначные числа. Эффективные способы быстрого счета в уме
Чистая математика является в своём роде поэзией логической идеи. Альберт Эйнштейн
В данной статье мы предлагаем вам подборку простых математических приёмов, многие из которых довольно актуальны в жизни и позволяют считать быстрее.
1. Быстрое вычисление процентов
Пожалуй, в эпоху кредитов и рассрочек наиболее актуальным математическим навыком можно назвать виртуозное вычисление процентов в уме. Самым быстрым способом вычислить определённый процент от числа является умножение данного процента на это число с последующим отбрасыванием двух последних цифр в получившемся результате, ведь процент есть не что иное, как одна сотая доля.
Сколько составляют 20% от 70? 70 × 20 = 1400. Отбрасываем две цифры и получаем 14. При перестановке множителей произведение не меняется, и если вы попробуете вычислить 70% от 20, то ответ также будет 14.
Данный способ очень прост в случае с круглыми числами, но что делать, если надо посчитать, к примеру, процент от числа 72 или 29? В такой ситуации придётся пожертвовать точностью ради скорости и округлить число (в нашем примере 72 округляется до 70, а 29 до 30), после чего воспользоваться тем же приёмом с умножением и отбрасыванием двух последних цифр.
2. Быстрая проверка делимости
Можно ли поровну поделить 408 конфет между 12 детьми? Ответить на этот вопрос легко и без помощи калькулятора, если вспомнить простые признаки делимости, которые нам преподавали ещё в школе.
- Число делится на 2, если его последняя цифра делится на 2.
- Число делится на 3, если сумма цифр, из которых состоит число, делится на 3. Например, возьмём число 501, представим его как 5 + 0 + 1 = 6. 6 делится на 3, а значит, и само число 501 делится на 3.
- Число делится на 4, если число, образованное его последними двумя цифрами, делится на 4. Например, берём 2 340. Последние две цифры образуют число 40, которое делится на 4.
- Число делится на 5, если его последняя цифра 0 или 5.
- Число делится на 6, если оно делится на 2 и 3.
- Число делится на 9, если сумма цифр, из которых состоит число, делится на 9. Например, возьмём число 6 390, представим его как 6 + 3 + 9 + 0 = 18. 18 делится на 9, а значит, и само число 6 390 делится на 9.
- Число делится на 12, если оно делится на 3 и 4.
3. Быстрое вычисление квадратного корня
Квадратный корень из 4 равен 2. Это посчитает любой. А как насчёт квадратного корня из 85?
Для быстрого приблизительного решения находим ближайшее к заданному квадратное число, в данном случае это 81 = 9^2.
Теперь находим следующий ближайший квадрат. В данном случае это 100 = 10^2.
Корень квадратный из 85 находится где-то в интервале между 9 и 10, а поскольку 85 ближе к 81, чем к 100, то квадратный корень этого числа будет 9 с чем-то.
4. Быстрое вычисление времени, через которое денежный вклад под определённый процент удвоится
Хотите быстро узнать время, которое потребуется, чтобы ваш денежный вклад с определённой процентной ставкой удвоился? Тут также не нужен калькулятор, достаточно знать «правило 72».
Делим число 72 на нашу процентную ставку, после чего получаем приблизительный срок, через который вклад удвоится.
Если вклад сделан под 5% годовых, то потребуется 14 с небольшим лет, чтобы он удвоился.
Почему именно 72 (иногда берут 70 или 69) ? Как это работает? На эти вопросы развёрнуто ответит «Википедия».
5. Быстрое вычисление времени, через которое денежный вклад под определённый процент утроится
В данном случае процентная ставка по вкладу должна стать делителем числа 115.
Если вклад сделан под 5% годовых, то потребуется 23 года, чтобы он утроился.
6. Быстрое вычисление почасовой ставки
Представьте, что вы проходите собеседования с двумя работодателями, которые не называют оклад в привычном формате «рублей в месяц», а говорят о годовых окладах и почасовой оплате. Как быстро посчитать, где платят больше? Там, где годовой оклад составляет 360 000 рублей, или там, где платят 200 рублей в час?
Для расчёта оплаты одного часа работы при озвучивании годового оклада необходимо отбросить от названной суммы три последних знака, после чего разделить получившееся число на 2.
360 000 превращается в 360 ÷ 2 = 180 рублей в час. При прочих равных условиях получается, что второе предложение лучше.
7. Продвинутая математика на пальцах
Ваши пальцы способны на гораздо большее, нежели простые операции сложения и вычитания.
С помощью пальцев можно легко умножать на 9, если вы вдруг забыли таблицу умножения.
Пронумеруем пальцы на руках слева направо от 1 до 10.
Если мы хотим умножить 9 на 5, то загибаем пятый палец слева.
Теперь смотрим на руки. Получается четыре несогнутых пальца до согнутого. Они обозначают десятки. И пять несогнутых пальцев после согнутого. Они обозначают единицы. Ответ: 45.
Если мы хотим умножить 9 на 6, то загибаем шестой палец слева. Получим пять несогнутых пальцев до согнутого пальца и четыре после. Ответ: 54.
Таким образом можно воспроизвести весь столбик умножения на 9.
8. Быстрое умножение на 4
Существует чрезвычайно лёгкий способ молниеносного умножения даже больших чисел на 4. Для этого достаточно разложить операцию на два действия, умножив искомое число на 2, а затем ещё раз на 2.
Посмотрите сами. Умножить 1 223 сразу на 4 в уме сможет не каждый. А теперь делаем 1223 × 2 = 2446 и далее 2446 × 2 = 4892. Так гораздо проще.
9. Быстрое определение необходимого минимума
Представьте, что вы проходите серию из пяти тестов, для успешной сдачи которых вам необходим минимальный балл 92. Остался последний тест, а по предыдущим результаты таковы: 81, 98, 90, 93. Как вычислить необходимый минимум, который нужно получить в последнем тесте?
Для этого считаем, сколько баллов мы недобрали/перебрали в уже пройденных тестах, обозначая недобор отрицательными числами, а результаты с запасом - положительными.
Итак, 81 − 92 = −11; 98 − 92 = 6; 90 − 92 = −2; 93 − 92 = 1.
Сложив эти числа, получаем корректировку для необходимого минимума: −11 + 6 − 2 + 1 = −6.
Получается дефицит в 6 баллов, а значит, необходимый минимум увеличивается: 92 + 6 = 98. Дела плохи. :(
10. Быстрое представление значения обыкновенной дроби
Примерное значение обыкновенной дроби можно очень быстро представить в виде десятичной дроби, если предварительно приводить её к простым и понятным соотношениям: 1/4,1/3, 1/2 и 3/4.
К примеру, у нас есть дробь 28/77, что очень близко к 28/84 = 1/3, но поскольку мы увеличили знаменатель, то изначальное число будет несколько больше, то есть чуть больше, чем 0,33.
11. Трюк с угадыванием цифры
Можно немного поиграть в Дэвида Блэйна и удивить друзей интересным, но очень простым математическим трюком.
- Попросите друга загадать любое целое число.
- Пусть он умножит его на 2.
- Затем прибавит к получившемуся числу 9.
- Теперь пусть отнимет 3 от получившегося числа.
- А теперь пусть разделит получившееся число пополам (оно в любом случае разделится без остатка).
- Наконец, попросите его вычесть из получившегося числа то число, которое он загадал в начале.
Ответ всегда будет 3.
Да, очень тупо, но часто эффект превосходит все ожидания.
Бонус
И, конечно же, мы не могли не вставить в этот пост ту самую картинку с очень крутым способом умножения.
ВВЕДЕНИЕ
Во все времена математика была и остается одним из основных предметов в школе, потому что математические знания необходимы всем людям. Не каждый школьник, обучаясь в школе, знает, какую профессию он выберет в будущем, но каждый понимает, что математика необходима для решения многих жизненных задач: расчеты в магазине, оплата за коммунальные услуги, расчет семейного бюджета и т.д. Кроме того, всем школьникам необходимо сдавать экзамены в 9-м классе и в 11-м классе, а для этого, обучаясь с 1-го класса, необходимо качественно осваивать математику и прежде всего, нужно научиться считать.
Можно ли представить себе мир без чисел? Без чисел ни покупки не сделаешь, ни времени не узнаешь, ни номера телефона не наберёшь. А космические корабли, лазеры и все другие технические достижения?! Они были бы попросту невозможны, если бы не наука о числах.
Две стихии господствуют в математике – числа и фигуры с их бесконечным многообразием свойств и взаимосвязей. В моей работе предпочтение отдано стихии чисел и действий с ними.
Сейчас, на этапе стремительного развития информатики и вычислительной техники, современные школьники не хотят утруждать себя счетом в уме. Поэтому я решил показать не только то, что сам процесс выполнения действия может быть важным, но и интересным занятием.
Цель: изучить приемы быстрого счета, показать необходимость их применения для упрощения вычислений.
В соответствии с поставленной целью были определены задачи:
- Исследовать, применяют ли школьники приемы быстрого счета.
- Изучить приемы быстрого счета, которые можно использовать, упрощая вычисления.
- Составить памятку для учащихся 5-6 классов для применения приемов быстрого счета.
Объект исследования: приемы быстрого счета.
Предмет исследования : процесс вычислений.
Гипотеза исследования: если показать, что применение приемов быстрого счета, облегчает вычисления, то можно добиться того, что повысится вычислительная культура учащихся, и им будет легче решать практические задачи.
При выполнении работы были использованы следующие приемы и методы : опрос (анкетирование), анализ (статистическая обработка данных), работа с источниками информации, практическая работа, наблюдения.
Данная работа относится к прикладным исследованиям , т.к. в ней показывается роль применения приемов быстрого счета для практической деятельности.
При работе над докладом я пользовался следующими методами:
- поисковый метод с использованием научной и учебной литература, а также поиск необходимой информации в сети Интернет;
- практический метод выполнения вычислений с применением нестандартных алгоритмов счета;
- анализ полученных в ходе исследования данных.
Актуальность моего исследования состоит в том, что в наше время все чаще на помощь ученикам приходят калькуляторы, и все большее количество учеников не может считать устно. А ведь изучение математики развивает логическое мышление, память, гибкость ума, приучает человека к точности, к умению видеть главное, сообщает необходимые сведения для понимания сложных задач, возникающих в различных областях деятельности современного человека. Поэтому в своей работе я хочу показать, как можно считать быстро и правильно и что процесс выполнения действий может быть не только полезным, но и интересным занятием. Именно использование нестандартных приемов в формировании вычислительных навыков усиливает интерес учащихся к математике и содействует развитию математических способностей.
За простыми действиями сложения, вычитания, умножения и деления скрываются тайны истории математики. Случайно услышанные слова «умножение решеткой», «шахматным способом» заинтриговали. Захотелось узнать эти и другие способы вычислений, а также сравнить их с сегодняшними.
Умеете ли вы считать? Вопрос, пожалуй, даже обидный для человека старше трехлетнего возраста. Кто не умеет считать? Каждый ответит, что для этого, особого искусства не требуется. И будет прав. Но вопрос – как считать? Можно считать на калькуляторе, можно считать столбиком в тетради, а можно считать устно, используя приемы быстрого счета. Я очень быстро считаю устно, практически никогда не решаю столбиком, письменно, все потому, что знаю и применяю различные приемы быстрого счета. Из моих одноклассников мало кто умеет считать быстро устно и мне захотелось выяснить, а знают ли они приемы быстрого счета, если нет, то помочь им освоить эти приемы, с этой целью составить для них памятку с приемами быстрого счета.
Для того чтобы выяснить, знают ли современные школьники другие способы выполнения арифметических действий, кроме умножения, сложения, вычитания столбиком и деления «уголком» и хотели бы узнать новые способы, был проведен тестовый опрос.
Для начала, я провел анкетирование в 6-х классах нашей школы. Задавал ребятам простые вопросы. Зачем вообще нужно уметь считать? При изучении каких школьных предметов требуется правильный счет? Знают ли они приемы быстрого счета? Хотели бы научиться быстро считать устно? (Приложение I).
В опросе приняли участие 61 человек. Проанализировав результаты, я сделал вывод, что большинство учеников считает, что умение считать пригодится в жизни и необходимо в школе, особенно при изучении математики, физики, химии, информатики и технологии. Приемы быстрого счета знают несколько учеников и почти все хотели бы научиться быстро считать. (Результаты анкетирования отражены в диаграммах) (Приложение II).
Проведя статистическую обработку данных, я сделал вывод, что не все учащиеся знают приемы быстрого счета, поэтому необходимо сделать для учеников 5-6-х классов памятки с приемами быстрого счета, чтобы использовать их при выполнении вычислений.
Результаты анкетирования:
Вопрос | 5 класс | 6 классы | Всего | ||||
да | нет | не знаю | да | нет | не знаю | ||
А хотели бы узнать? |
Сводная таблица анкетирования:
Вопрос | 5, 6 классы | ||
да | нет | не знаю |
|
Нужно ли уметь выполнять арифметические действия с натуральными числами современному человеку? | |||
Умеете ли вы умножать, складывать, вычитать числа столбиком, делить «уголком»? | |||
Знаете ли вы другие способы выполнения арифметических действий? | |||
А хотели бы узнать? |
По результатам опроса можно сделать вывод, что в большинстве случаев современные школьники не знают других способов выполнения действий кроме таких как умножения, сложения, вычитания столбиком и деления «уголком», так как редко обращаются к материалу, находящемуся за пределами школьной программы.
Глава I. ИСТОРИЯ СЧЁТА
1. КАК ВОЗНИКЛИ ЧИСЛА
Подсчитывать предметы люди научились ещё в древнем каменном веке - палеолите, десятки тысяч лет назад. Как это происходило? Сначала люди лишь на глаз сравнивали разные количества одинаковых предметов. Они могли определить, в какой из двух куч больше плодов, в каком стаде больше оленей и т.д. Если одно племя меняло пойманных рыб на сделанные людьми другого племени каменные ножи, не нужно было считать, сколько принесли рыб и сколько ножей. Достаточно было положить рядом с каждой рыбой по ножу, чтобы обмен между племенами состоялся.
Чтобы с успехом заниматься сельским хозяйством, понадобились арифметические знания. Без подсчета дней трудно было определить, когда надо засевать поля, когда начинать полив, когда ждать потомства от животных. Надо было знать, сколько овец в стаде, сколько мешков зерна положено в амбары.
И вот более восьми тысяч лет назад древние пастухи стали делать из глины кружки – по одному на каждую овцу. Чтобы узнать, не пропала ли за день хоть одна овца, пастух откладывал в сторону по кружку каждый раз, когда очередное животное заходило в загон. И только убедившись, что овец вернулось столько же, сколько было кружков, он спокойно шел спать. Но в его стаде были не только овцы – он пас и коров, и коз, и ослов. Поэтому пришлось сделать из глины и другие фигурки. А земледельцы с помощью глиняных фигурок вели учет собранного урожая, отмечая, сколько мешков зерна положено в амбар, сколько кувшинов масла выжато из оливок, сколько соткано кусков льняного полотна. Если овцы приносили приплод, пастух прибавлял к кружкам новые, а если часть овец шла на мясо, несколько кружков приходилось убирать. Так, еще не умея считать, занимались древние люди арифметикой.
Затем в человеческом языке появились числительные, и люди смогли называть число предметов, животных, дней. Обычно таких числительных было мало. Например, у племени реки Муррей в Австралии было два простых числительных: энэа (1) и петчевал (2). Другие числа они выражали составными числительными: 3= «петчевал–энэа», 4 «петчевал–петчевал» и т. д. Ещё одно австралийское племя – камилороев имело простые числительные мал (1), булан (2), гулиба (3) . И здесь другие числа получались сложением меньших: 4=«булан–булан», 5=«булан–гулиба», 6=«гулиба–гулиба» и т.д.
У многих народов название числа зависело от подсчитываемых предметов. Если жители островов Фиджи считали лодки, то число 10 называли «боло»; если они считали кокосовые орехи, то число 10 называли «каро». Точно так же поступали живущие на Сахалине у берегах Амура нивхи. Ещё в XIX веке одно и то же число они называли разными словами, если считали людей, рыб, лодки, сети, звёзды, палки.
Мы и сейчас используем разные неопределённые числительные со значением «много»: «толпа», «стадо», «стая», «куча», «пучок» и другие.
С развитием производства и торгового обмена люди стали лучше понимать, что общего у трёх лодок и трёх топоров, десяти стрел и десяти орехов. Племена часто вели обмен «предмет за предмет»; к примеру, обменивали 5 съедобных кореньев на 5 рыб. Становилось ясно, что 5 одно и то же и для кореньев, и для рыб; значит, и называть его можно одним словом.
Похожие способы счёта применяли и другие народы. Так возникли нумерации, основанные на счёте пятёрками, десятками, двадцатками.
До сих пор я рассказывал об устном счёте. А как записывали числа? Поначалу, ещё до возникновения письменности, использовали зарубки на палках, насечки на костях, узелки на верёвках. Найденная волчья кость в Дольни – Вестонице (Чехословакия), имела 55 насечек, сделанных более 25 000 лет назад.
Когда появилась письменность, появились и цифры для записи чисел. Сначала цифры напоминали зарубки на палках: в Египте и Вавилоне, в Этрурии и Финики, в Индии и Китае небольшие числа записывали палочками или чёрточками. Например, число 5 записывали пятью палочками. Индейцы ацтеки и майя вместо палочек использовали точки. Затем появились специальные знаки для некоторых чисел, таких, как 5 и 10 .
В то время почти все нумерации были не позиционными, а похожими на римскую нумерацию. Лишь одна вавилонская шестидесятеричная нумерация была позиционной. Но и в ней долго не было нуля, а также запятой, отделяющей целую часть от дробной. Поэтому одна и та же цифра могла означать и 1, и 60, и 3600. Угадывать значение числа приходилось по смыслу задачи.
За несколько столетий до новой эры изобрели новый способ записи чисел, при котором цифрами служили буквы обычного алфавита. Первые 9 букв обозначали числа десятки 10, 20,…, 90, а ещё 9 букв обозначали сотни. Такой алфавитной нумерацией пользовались до 17 в. Чтобы отличить «настоящие» буквы от чисел, над буквами–числами ставили чёрточку (на Руси эта чёрточка называлась «титло»).
Во всех этих нумерациях было очень трудно выполнить арифметические действия. Поэтому изобретение в VI веке индийцами десятичной позиционной нумерации по праву считается одним из крупнейших достижений человечества. Индийская нумерация и индийские цифры стали известны в Европе от арабов, и обычно их называют арабскими.
При записи дробей ещё долгое время целую часть записывали в новой десятичной нумерации, а дробную – в шестидесятеричной. Но в начале XV в. самаркандский математик и астроном аль–Каши стал употреблять в вычислениях десятичные дроби.
Числа, с которыми мы работаем с положительными и отрицательными числами. Но, оказывается, что это не все числа, которые используют в математике и других науках. И узнать о них можно не дожидаясь старшей школы, а гораздо раньше, если изучать историю возникновения чисел в математике.
Глава II. СТАРИННЫЕ СПОСОБЫ ВЫЧИСЛЕНИЯ
2.1. РУССКИЙ КРЕСТЬЯНСКИЙ СПОСОБ УМНОЖЕНИЯ
В России несколько веков назад среди крестьян некоторых губерний был распространен способ, который не требовал знание всей таблицы умножения. Надо было лишь уметь умножать и делить на 2. Этот способ получил название КРЕСТЬЯНСКИЙ (существует мнение, что он берет начало от египетского).
Пример: умножим 47 на 35,
- запишем числа на одной строчке, проведём между ними вертикальную черту;
- левое число будем делить на 2, правое – умножать на 2 (если при делении возникает остаток, то остаток отбрасываем);
- деление заканчивается, когда слева появится единица;
- вычёркиваем те строчки, в которых стоят слева чётные числа; 35 + 70 + 140 + 280 + 1120 = 1645
- далее оставшиеся справа числа складываем – это результат.
2.2. МЕТОД «РЕШЕТКИ»
Выдающийся арабский математик и астроном Абу Абдалах Мухаммед Бен Мусса аль – Хорезми жил и работал в Багдаде. Учёный работал в Доме мудрости, где были библиотека и обсерватория, здесь работали почти все крупные арабские учёные.
Сведений о жизни и деятельности Мухаммеда аль – Хорезми очень мало. Сохранились лишь две его работы – по алгебре и по арифметике. В последний из этих книг даны четыре правила арифметических действий, почти такие же, что используются в наше время.
1 | 3 | ||
0 | 1 | ||
В своей «Книге об индийском счете» учёный описал способ, придуманный в Древней Индии, а позже названный «МЕТОДОМ РЕШЁТКИ» . Этот метод даже проще, чем применяемый сегодня.
Пример: умножим 25 и 63.
Начертим таблицу, в которой две клетки по длине и две по ширине запишем одно число по длине другое по ширине. В клетках запишем результат умножения данных цифр, на их пересечении отделим десятки и единицы диагональю. Полученные цифры сложим по диагонали, и полученный результат можно прочитать по стрелке (вниз и вправо).
Мною рассмотрен простой пример, однако, этим способом можно умножать любые многозначные числа.
Рассмотрю еще один пример: перемножим 987 и 12:
- рисуем прямоугольник 3 на 2 (по количеству десятичных знаков у каждого множителя);
- затем квадратные клетки делим по диагонали;
- вверху таблицы записываем число 987;
- слева таблицы число 12;
- теперь в каждый квадратик впишем произведение цифр, расположенных в одной строчке и в одном столбце с этим квадратиком, десятки ниже диагонали, единицы выше;
- после заполнения всех треугольников, цифры в них складывают вдоль каждой диагонали справой стороны;
- результат читаем по стрелке.
Этот алгоритм умножения двух натуральных чисел был распространен в средние века на Востоке и Италии.
Неудобство этого способа мне хотелось бы отметить в трудоемкости подготовки прямоугольной таблицы, хотя сам процесс вычисления интересен и заполнение таблицы напоминает игру.
2.3. УМНОЖЕНИЕ НА ПАЛЬЦАХ
Древние египтяне были очень религиозны и считали, что душу умершего в загробном мире подвергают экзамену по счёту на пальцах. Уже это говорит о том значении, которое придавали древние этому способу выполнения умножения натуральных чисел (он получил название ПАЛЬЦЕВОГО СЧЕТА ).
Умножали на пальцах однозначные числа от 6 до 9. Для этого на одной руке вытягивали столько пальцев, насколько первый множитель превосходил число 5, а на второй делали то же самое для второго множителя. Остальные пальцы загибали. После этого брали столько десятков, сколько вытянуто пальцев на обеих руках, и прибавляли к этому числу произведение загнутых пальцев на первой и второй руке.
Пример: 8 ∙ 9 = 72
Позже пальцевой счёт усовершенствовали – научились показывать с помощь пальцев числа до 10000.
Движение пальца – это еще один из способов помочь памяти: с помощью пальцев рук запомнить таблицу умножения на 9. Положив обе руки рядом на стол, по порядку занумеруем пальцы обеих рук следующим образом: первый палец слева обозначим 1, второй за ним обозначим цифрой 2, затем 3, 4… до десятого пальца, который означает 10. Если надо умножить на 9 любое из первых девяти чисел, то для этого, не двигая рук со стола, надо приподнять вверх тот палец, номер которого означает число, на которое умножается девять; тогда число пальцев, лежащих налево от поднятого пальца, определяет число десятков, а число пальцев, лежащих справа от поднятого пальца, обозначает число единиц полученного произведения (убедитесь в этом самостоятельно).
Итак, рассмотренные нами старинные способы умножения показывают, что используемый в школе алгоритм умножения натуральных чисел - не единственный и известен он был не всегда.
Однако, он достаточно быстр и наиболее удобен.
Глава III. УСТНЫЙ СЧЕТ – ГИМНАСТИКА УМА
3.1. РАЗЛИЧНЫЕ СПОСОБЫ СЛОЖЕНИЯ И ВЫЧИТАНИЯ
СЛОЖЕНИЕ
Основное правило для выполнения сложения в уме звучит так:
Чтобы прибавить к числу 9, прибавьте к нему 10 и отнимите 1;чтобы прибавить 8, прибавьте 10 и отнимите 2; чтобы прибавить 7, прибавьте10 и отнимите 3 и т.д. Например:
56+8=56+10-2=64;
65+9=65+10-1=74.
СЛОЖЕНИЕ В УМЕ ДВУЗНАЧНЫХ ЧИСЕЛ
Если цифра единиц в прибавляемом числе больше5, то число необходимо округлить в сторону увеличения, а затем вычесть ошибку округления из полученной суммы. Если же цифра единиц меньше, то прибавляем сначала десятки, а потом единицы. Например:
34+48=34+50-2=82;
27+31=27+30+1=58.
СЛОЖЕНИЕ ТРЕХЗНАЧНЫХ ЧИСЕЛ
Складываем слева на право, то есть сначала сотни, потом десятки, а затем единицы. Например:
359+523= 300+500+50+20+9+3=882;
456+298=400+200+50+90+6+8=754.
ВЫЧИТАНИЕ
Чтобы вычесть два числа в уме, нужно округлить вычитаемое, а затем подкорректируйте полученный ответ.
56-9=56-10+1=47;
436-87=436-100+13=349.
ВЫЧИТАНИЕ ЧИСЛА МЕНЬШЕ 100 ИЗ ЧИСЛА БОЛЬШЕ 100
Если вычитаемое меньше 100, а уменьшаемое больше 100, но меньше 200, есть простой способ вычислить разность в уме. 134-76=58
76 на 24меньше 100. 134 на 34 больше 100. Прибавим 24 к 34 и получим ответ: 58.
152-88=64
88 на 12 меньше 100,а 152 больше 100 на 52, значит
152-88=12+52=64
3.2. РАЗЛИЧНЫЕ СПОСОБЫ УМНОЖЕНИЯ И ДЕЛЕНИЯ
Изучив литературу по данной теме, мною был сделан отбор, из множества приемов быстрого счета, я выбрал приемы умножения и деления, которые просты в понимании и применении для любого ученика. Эти приемы я и включил в памятку (Приложение III), которая будет полезна для учеников 5-6-х классов.
- Умножение и деление числа на 4.
Чтобы умножить число на 4, нужно его дважды умножить на 2.
Например:
26·4=(26·2)·2=52·2=104;
417·4=(417·2)·2=834·2=1668.
Чтобы разделить число на 4, нужно его дважды разделить на 2.
Например:
324:4=(324:2):2=162:2=81.
- Умножение и деление числа на 5.
Чтобы умножить число на 5, нужно его умножить на 10 и разделить на 2.
Например:
236·5=(236·10):2=2360:2=1180.
Чтобы разделить число на 5, нужно умножить 2 и разделить на 10, т.е. отделить запятой последнюю цифру.
Например:
236:5=(236·2):10=472:10=47,2.
- Умножение числа на 1,5.
Чтобы умножить число на 1,5, нужно к исходному числу прибавить его половину.
Например: 34·1,5=34+17=51;
146·1,5=146+73=219.
- Умножение числа на 9.
Чтобы умножить число на 9, нужно к нему приписать 0 и отнять исходное число.
Например: 72·9=720-72=648.
- Умножение на 25 числа, делящегося на 4.
Чтобы умножить на 25 число, делящееся на 4, нужно его разделить на 4 и получившееся число умножить на 100.
Например: 124·25=(124:4)·100=31·100=3100.
- Умножение двузначного числа на 11
При умножении двузначного числа на 11, нужно между цифрой единиц и цифрой десятков вписать сумму этих цифр, причем, если сумма цифр больше 10, то единицу нужно прибавить к старшему разряду (первой цифре).
Например:
23·11=253, т.к. 2+3=5, поэтому между 2 и 3 ставим цифру 5;
57·11=627, т.к. 5+7=12, цифру 2 ставим между 5 и 7, а к 5 прибавляем 1, вместо 5 пишем 6.
«Краешки сложи, в серединку положи» - эти слова помогут легко запомнить данный способ умножения на 11.
Такой способ подходит только для умножения двузначных чисел.
- Умножение двузначного числа на 101.
Для того, чтобы число умножить на 101, нужно приписать данное число к самому себе.
Например:34·101 = 3434.
Поясним, 34·101 = 34·100+34·1=3400+34=3434.
- Возведение в квадрат двузначного числа, оканчивающегося на 5.
Чтобы возвести в квадрат двузначное число, оканчивающееся на 5, нужно цифру десятков умножить на цифру, большую на единицу, и к полученному произведению приписать справа число 25.
Например: 35
2
=1225, т.е. 3·4=12 и к 12 приписываем 25, получаем 1225.
- Возведение в квадрат двузначного числа, начинающегося на 5.
Для возведения в квадрат двузначного числа, начинающегося на пять, нужно прибавить к 25 вторую цифру числа и приписать справа квадрат второй цифры, причем если квадрат второй цифры – однозначное число, то перед ним надо приписать цифру 0.
Например:
52
2
= 2704, т.к. 25+2=28 и 2
2
=04;
58
2
= 3364, т.к. 25+8=33 и 8
2
=64.
3.3. ИГРЫ
Отгадывание полученного числа.
- Задумайте какое-нибудь число. Прибавьте к нему 11; умножьте полученную сумму на 2; от этого произведения отнимите 20; умножьте полученную разность на 5 и от нового произведения отнимите число, в 10 раз больше задуманного вами числа. Я отгадываю: вы получили 10. Верно?
- Задумайте число. Утрой его. Вычти из полученного 1. Полученное умножьте на 5. К полученному прибавьте 20. Разделите полученное на 15. Из полученного результата вычтите задуманное. У вас получилось 1.
- Задумайте число. Умножьте его на 6. Вычтите 3. Умножьте на 2. Прибавьте 26. Вычтите удвоенное задуманное. Разделите на 10. Вычтите задуманное. У вас получилось 2.
- Задумайте число. Утройте его. Вычтите 2. Умножьте на 5. Прибавьте 5. Разделите на 5. Прибавьте 1. Разделите на задуманное. У вас получилось 3.
- Задумайте число, удвойте его. Прибавьте 3. Умножьте на 4. Вычтите 12. Разделите на задуманное. У вас получилось 8.
Угадывание задуманных чисел.
- Предложите своим друзьям задумать любые числа. Пусть каждый прибавит к своему задуманному числу 5.
- Полученную сумму пусть умножит на 3.
- От произведения пусть отнимет 7.
- Из полученного результата пусть вычтет ещё 8.
- Листок с окончательным результатом пусть каждый отдаст вам. Глядя на листок, вы тут же говорите каждому, какое число он задумал.
(Чтобы угадать задуманное число, результат, написанный на бумажке или сказанный вам устно, разделить на 3).
ЗАКЛЮЧЕНИЕ
Мы вступили в новое тысячелетие! Грандиозные открытия и достижения человечества. Мы много знаем, многое умеем. Кажется чем-то сверхъестественным, что с помощью чисел и формул можно рассчитать полёт космического корабля, «экономическую ситуацию» в стране, погоду на «завтра», описать звучание нот в мелодии. Нам известно высказывание древнегреческого математика, философа, жившего в IV веке д.н.э. – Пифагора– «Всё есть число!».
Описывая старинные способы вычислений и современные приёмы быстрого счёта, я попытался показать, что как в прошлом, так и в будущем, без математики, науки созданной разумом человека, не обойтись.
Изучение старинных способов вычислений показало, что это арифметические действия были трудными и сложными из-за многообразия способов и их громоздкости выполнения.
Современные способы вычислений просты и доступны всем.
При знакомстве с научной литературой обнаружил более быстрые и надежные способы вычислений.
Возможно, что с первого раза у многих не получится быстро, с ходу выполнять эти или другие подсчеты. Пусть сначала не получится использовать прием, показанный в работе. Не беда. Нужна постоянная вычислительная тренировка. Из урока в урок, из года в год. Она поможет приобрести полезные навыки устного счета.
Немецкого ученого Карла Гаусса называли королем математиков. Его математическое дарование проявилось уже в детстве. Однажды в школе (Гауссу было 10 лет) учитель предложил классу сложить все числа от 1 до 100. Пока он диктовал задание, у Гаусса уже был готов ответ. На его грифельной доске было написано: 101·50=5050. Как он вычислил? Очень просто – он применил прием быстрого счета, он складывал первое число с последним, второе с предпоследним и т.д. таких сумм всего 50 и каждая равна 101, поэтому он смог почти мгновенно дать правильный ответ.
1+2+…+50+51+...+99+100=(1+100)+(2+99)+…+(50+51)=101·50=5050. Этот пример, лучше всего показывает, что можно считать быстро и правильно практически устно всем школьникам, для этого всего лишь нужно знать приемы быстрого счета.
Результаты своей работы я оформил в памятку, которую предложу всем своим одноклассникам, также размещу её на школьном тематическом стенде «Это интересно!». Возможно, что с первого раза не у всех получится быстро, с ходу выполнять вычисления с применением этих приемов, даже если сначала не получится использовать прием, показанный в памятке, ничего страшного, просто нужна постоянная вычислительная тренировка. Она и поможет приобрести полезные навыки быстрого счета.
Проведя статистическую обработку данных, были получены следующие результаты:
- Уметь считать нужно, потому, что это пригодится в жизни, считают 93% учащихся, чтобы хорошо учиться в школе – 72%, чтобы быстро решать – 61%, чтобы быть грамотным – 34% и не обязательно уметь считать – всего 3%.
- Навыки хорошего счета необходимы при изучении математики, считают 100% учащихся, а также при изучении физики – 90%, химии – 80%, информатики – 44%, технологии – 36%.
- Приемы быстрого счета знают 16% (много приемов), 25% (несколько приемов), не знают приемов быстрого счета – 59% учащихся.
- Применяют приемы быстрого счета 21% учащихся, иногда применяют – 15%.
- Хотели бы узнать приемы быстрого счета 93% учащихся.
Выводы:
- Знание приемов быстрого счета позволяет упрощать вычисления, экономить время, развивает логическое мышление и гибкость ума.
- В школьных учебниках практически нет приемов быстрого счета, поэтому результат данной работы – памятка для быстрого счета будет очень полезной для учащихся 5-6 классов.
СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ
- Ванцян А.Г. Математика: Учебник для 5 класса. - Самара: Издательский дом «Фёдоров», 1999г.
- Кордемский Б.А., Ахадов А.А. Удивительный мир чисел: Книга учащихся,- М. Просвещение, 1986г.
- Минских Е.М. «От игры к знаниям», М., «Просвещение», 1982г.
- Свечников А.А. Числа, фигуры, задачи. М., Просвещение, 1977г. Да Нет Не знаю https://accounts.google.com
Не секрет, что есть некоторые люди, умеющие производить средне-сложные арифметические операции в уме с завидной скоростью. Для них не составляет труда, например, перемножить два двухзначных числа или поделить несколько трехзначных величин друг на друга. Они делают это быстро и без помощи дополнительных устройств и даже не пользуются записями, то есть производят вычисления в уме! Понятное дело, для многих не составляет труда вопрос о том, как научиться быстро считать в уме – это ежедневная практика, вынужденная работа или род деятельности. Но это не означает, что любой из нас, желающий узнать, как научиться считать в уме, обязан закончить математический ВУЗ. Итак, речь сегодня пойдет о том, как научиться считать. Быстро считать!
Учимся считать быстро, необходимая подготовка
Без сомнений, ваш опыт и тренировка способностей сыграют важную роль в развитии подобных способностей. Но это ни в коем случае не означает того, что навык быстрого счета доступен только людям с опытом. Считать в уме – это путь рационализации, опирающийся на базовую арифметику. Следуя нашим советам о том, как быстро научиться считать, вы сможете удивлять окружающих скорым решением примеров, которые не все могут решить даже при помощи калькулятора.
Что же необходимо Вам, чтобы быстро овладеть техникой моментального подсчета «в уме»? Основные составляющие успеха можно разделить на три группы:
- Предрасположенности и способности. Хорошим подспорьем станет ваш аналитический склад ума. Умение удерживать в памяти несколько величин единовременно обязательно.
- Непосредственно алгоритмы Вашего мышления. Научиться считать быстро можно лишь путем строгой алгоритмизации своих действий, их рационализацией и умением подобрать необходимый метод в конкретной ситуации. О ситуациях и прочем мы поговорим чуть позже.
- Тренировка и практика навыков. Никто не отменял важности этих действий ни в одном направлении деятельности, а особенно в деятельности умственной. Чем больше вы будете тренироваться и выполнять различных вычислений, тем лучше у вас это будет получаться.
Следует обратить внимание на третий фактор развития навыка быстрого счета. Даже прекрасно ориентируясь во всех существующих алгоритмах, вам навряд ли удастся научиться считать быстро, если будет отсутствовать достаточное количество практики.
Хитрости и базовые алгоритмы, как быстро считать
Рассмотрим несколько общепринятых упрощений счета, с их помощью вам удастся научиться считать быстро. Обращу ваше внимание также на то, что никто не запрещает вам импровизировать – математика тем и замечательна, что при всей своей точности и строгости не запрещает действовать красиво, подобно искусству. А навык считать быстро – это именно искусство! Итак, некоторые хитрости, как научиться считать быстро.
Допустим, вам необходимо произвести сложение многозначных слагаемых. Легко! Слагайте разрядами: к большему числу прибавьте старший разряд меньшего числа, затем уже суммируйте с младшими разрядами. Допустим, вам надо сложить 361 и 523. Сразу удержать в памяти будет не просто, согласитесь? Поэтому наш ход действий будет таков:
- Меньше число определили – 361.
- Что такое 361? Это 300+60+1. Сложно оспорить, если стремиться быть рациональным.
- К 523 прибавим сначала 300. Получаем 823.
- Затем прибавим 60 – получаем 883.
- И в завершении - наша единичка, прибавленная к сумме, полученной ранее, даст нам результат 884.
Вот видите, было куда проще держать 3 числа в голове, чем единовременно складывать два трехзначных! У нас начинает получаться считать быстро в уме!
То же самое проделывайте и с вычитанием, но только лишь последовательным отнятием разрядов мы не добьемся необходимой скорости! Можно несколько схитрить, добавив в наш арсенал еще один навык – нарастить/отнять до круглого (удобного числа).
Например, вам необходимо отнять 93 от 250. Ну неудобно же!
А что такое 93? Правильно, это 100-7!
250 – 100 = 150.
Делаем поправку на наше «исправление» числа. Если мы добавляли – необходимо добавить к частному, и наоборот. В нашем случае мы «нарастили» число 93 до 100, прибавив 7. Значит, к частному добавляем 7.
Проверьте на калькуляторе. Заметно больше времени ушло на набор цифр, чем на вычисление? Это признак того, что вам уже неплохо дается навык, как считать быстро в уме!
Теперь с умножением. Ускорить счет можно разными путями. Например, при перемножении чисел разбивайте множители на множители второго уровня.
Например:
Куча путей к решению! И тут ваш алгоритм может отличаться от путей других людей – не пугайтесь, на то мы, гении, народ и уникальный =)
Можно так: 12 = 3х4. Умножаем 150 х 4 = 600, затем 600 х 3 = 1800.
Я не задумываясь, стал считать так: 12 = 10 + 2. А теперь элементарно: (150 х 10) + (150 х2). Все это элементарные школьные правила, которые мы, к сожалению, забываем. Несложно заметить, что в этом случае считать практически не придется – дописать ноль к 150, получив полторы тысячи, да умножить 150 на 2, получив 300. Результат тот же, 1800.
Исходя из опыта быстрого умножения, несложно догадаться, как быстро делить числа в уме. Можно вновь пойти разными путями, от параллельного деления на упрощенный делитель делимого до округления делимого вплоть до элементаризации деления с поправкой.
Например:
Для начала отбросьте одинаковое кол-во нулей. В этом примере это просто - 39:4. Наш мозг гораздо охотнее оперирут с маленькими числами, чем с многоразрядными величинами.
Вы наверняка заметили, что число 39 так и хочется округлить до 40. Ну так что нам мешает? (39+1):4 = 10.
Но изменив делимое, нам необходимо откорректировать ответ. Итак, очевидно, что он будет меньше 10, так как мы прибавляли к делимому некое число 1. Теперь нам нужно отнять от 10 результат деления числа-корректора на делитель (4). Если бы мы отнимали, то процедура была бы обратной, это само собой разумеется.
Итак, 1:4 = 0.25
Ответ: 9.75 (9 3 / 4)
Гораздо проще нашему мозгу воспринимать натуральные дроби, то есть представляем 0.25 как 1/4 (одна четвертая, четверть), и дальше будет совсем легко быстро посчитать в уме результат!
Помните, не так сложно понять, как быстро научиться считать. Куда сложнее быстро подобрать метод к конкретной ситуации, но это решается с помощью колоссальной практики.
Все о пользе устного счета для развития, основные методики освоения счета в уме для детей дошкольного и младшего школьного возраста. Игры и секреты успешных занятий.
От всего остального живого мира человека отличает интеллектуальное превосходство. Для того, чтобы оно стало очевидным не только для самого себя, но и для окружающих, мозг необходимо постоянно тренировать. Одним из методов тренировки мозга является устный счет.
Лучший возраст для начала обучения
Большинство специалистов считают, что лучшим возрастом является период от 3 до 5 лет. К 4 годам малыш без труда способен освоить элементарные арифметические действия (складывание и вычитание). Уже к пяти годам ребенок может без труда научиться решать простые примеры и задачи.
Подготовка к обучению
Прежде всего у ребенка должно сформироваться понятие числа. Для малыша эта категория является абстрактным понятием. На первых порах ребенку сложно объяснить, что такое число или цифра.
В качестве обучающего материала может быть выбрано все что угодно: любимые кубики, мячики, мягкие игрушки, машинки и т.д. Важно, чтобы малыш понимал, что с ними можно не только играть, но их возможно посчитать.
Это не должно быть в форме скучного и навязчивого урока, ребенок это просто не поймет. Все должно выглядеть словно игра, как бы «между прочим».
Важно не упустить время, когда ребенок воспринимает все как увлекательную игру, тогда обучение станет для него приятным занятием.
Не забывайте главное правильно — занятий должны быть интересными и приносить удовольствие!
Как правильно учить?
- Обучение ребенка основам математического счета должно происходить только в игровой форме и при желании малыша.
- Обучение счету должно вестись в увлекательной игровой форме и непрерывно (каждый день). Задействуется зрительная и тактильная память малыша.
- Занятия должны быть выстроены в четком алгоритме и иметь систему. Допустим, сначала происходит закрепление понимания «один» и «много», затем «больше» и «меньше».
- Важно объяснить разницу между понятиями «больше», «меньше», «равно».
- В игровой форме, например, спускаясь по лестнице, научите ребенка порядковому счету от 1 до 10;
- Покажите ребенку на предметах, как соотносятся произносимые цифры с реальным количеством;
- Попробуйте на элементарных жизненных ситуациях объяснить ребенку, как происходит увеличение или уменьшение количества предметов, например, к одной машине приехала еще одна, получилось две машины и т.д.
Учимся считать до 10
Необходимо в повседневную жизнь ребенка ввести понимание количества, для этого требуется постоянно акцентировать внимание на предметах, с упоминанием их числа.
Полезно разучивать с ребенком считалочки, стихи в которых упоминаются цифры.
Для обучения ребенка счету от 1 до 10 необходимо использовать различный обучающий материал.
В настоящее время много анимационных обучающих видео, в которых в понятной для ребенка форме любимые мультипликационные герои играя обучают малыша счету.
Здесь используется зрительная память ребенка, также информация воспринимается на слух.
Мнение эксперта
Имитируя действия мультипликационных героев, малыш учится считать.Также следует заниматься по печатным пособиям.
Полезным в подготовке к обучению счету до 10 может стать совместное с ребенком изготовление обучающего материала. Можно вместе вырезать кружки или кубики, а затем их считать. Совместные творческие задания помимо обучения, способствуют объединению семьи.
Несложные задания, помогут малышу не только изобразить вышеуказанные числа и сформировать о них представление, но и потренировать мелкую моторику, зрительно-моторную координацию и внимание.
Учимся считать до 20
Кроме механического способа заучивания дальнейшего счета, такими же методами, как и применялись при изучении счета от 1 до 10, ребенку нужно объяснить понятия «десяток» и «единица».
Мнение эксперта
Клименко Наталья Геннадьевна — психолог
Практикующий психолог муниципальной женской консультации
Все должно быть в форме игры, а не скучного занятия. Для этого можно взять 20 конфет и 2 коробки. Нужно предложить ребенку в одну коробку, считая вслух, сложить 10 конфет.
Взрослый должен рассказать малышу, что это называется «десяток». Придвинув к коробке с «десятком» пустую коробку, нужно складывать туда остальные конфеты поочередно, и произносить вслух счет: 11, 12, 13 и так до 20.
Эту игру можно сопроводить с демонстрацией карточек, на которых будут изображены изучаемые числа.
Важно объяснить ребенку, что после 10, все числа будут состоять из двух цифр.
Первое из которых «десяток» (первая коробка с конфетами), а второе единица (вторая коробка с конфетами).
Ребенок должен понять систему, по которой все цифры идут одна за другой: 11 после 10, 12 после 11 и т.д.
Нужно продолжать активно использовать обучающие мультфильмы, считалочки, песенки, раскраски с заданиями и т.д. — все то, что применялось при изучении счета от 1 до 10.
Когда у ребенка сформируется понимание «десятка» и «единицы», то можно осваивать счет дальше до 100.
Не забывайте уделять внимание и другим
Методики обучения в разном возрасте
Для детей 2-3 лет
Необходимо привить ребенку в игровой форме понимание счета и начальные навыки применения его к предметам. Например, считаем пальчики на одной ручке, просим принести один, два… предмета. Прививаем понятия: «много», «мало», «большой», «маленький».
Для детей 4-5 лет
Нужно использовать желание малыша помочь родителям в домашних делах.
Вместе складывая игрушки в коробку можно их сосчитать или попросить ребенка подать одну или несколько тарелок со стола.
Постепенно у малыша должно быть сформировано понятие «один» и «много», «меньше», «больше», «шире», «уже».
Также ненавязчиво малыша нужно знакомить с пониманием формы предметов: круглый мяч или квадратный кубик и т.д.
Контактное обучение гораздо эффективнее, в этот момент малыш ощущает предмет, включается несколько зон восприятия объекта и обучение проходит легче.
Малыши сравнивают «много» и «один». Разные предметы нужно сравнивать, чтобы выработать понимание их свойств, не перегружая малыша характеристиками предмета. Постепенно ребенок должен сам объединять разные предметы по одному признаку (маленькие -большие, длинные — короткие).
На занятиях широко используются игровые приемы и дидактические игры (предлагается накладывать предметы на картинки, карточки образца и пр.).
Для детей 5-6 лет
Дети учатся сравнивать смежные множества поэлементно, т. е. сравнивать множества, отличающиеся по количеству элементов на один.
Основные способы - накладывание, прикладывание, сравнение. В результате этой деятельности дети должны научиться устанавливать равенство из неравенства, добавляя один элемент, т. е. увеличивая, или убирая, т. е. уменьшая, множество.
Для учеников 1 класса
Прежде всего ребенок осваивает счет группами по 2, по 3, по 5, постепенно его подводят к пониманию десятичной системы исчисления.
В этом возрасте большое внимание уделяется устному счету, для чего применяют обучающие способы с игровым уклоном.
Методика позволяет операции сложения и вычитания в пределах 100 довести до автоматизма, при чем в уме.
Самые интересные приемы
- Ребенок дошкольного и младшего школьного возраста быстро утомляется, поэтому умение считать нужно прививать в игровой форме.
- Малыш может долго не усваивать материал, нельзя нервничать и кричать, оскорблять ребенка.
- Ребенка нужно поощрять за успехи похвалой.
- Занятия должны быть регулярными и частыми, с четко обозначенной целью.
- Выбирать методику занятий нужно исходя их индивидуальных особенностей ребенка.
Как научиться быстро считать в уме взрослому
- Научиться сосредотачивать внимание на деталях и мысленно проговаривать их.
- Следует не прибегая к калькулятору решать элементарные математические задачи, например, в магазине. У математических действий есть свои особенности, но они не сложные. Надо один раз разобраться, а потом тренироваться. Это должно происходить систематически 5-10 раз в день.
- Освоить простые методики устного счета и ставить себе ежедневные задачи по тренировке мозга. В Интернете множество мобильных приложений с заданиями по тренировке мозга.
В следующем видео о том, как можно научиться считать в уме, расскажет математик.
Чувство числа, минимальные навыки счета - такой же элемент человеческой культуры, как речь и письмо. И если вы легко считаете в уме, то ощущаете иной уровень управления реальностью. Кроме того, подобное умение развивает мыслительные способности: концентрацию на предметах и вещах, память, внимание к деталям и переключение между потоками познания. И если вас интересует, как научиться быстро считать в уме, секрет прост: нужно постоянно тренироваться.
Тренировка памяти: миф или реальность?
В математике все просто для тех смышленых личностей, которые щелкают уравнения как семечки. Другим людям сложнее научиться Но нет ничего невозможного, все реально, если много тренироваться. Существуют следующие математические действия: вычитание, сложение, умножение, деление. Каждое из них имеет свои особенности. Чтобы понять все сложности, нужно один раз разобраться в них, а далее будет все намного проще. Если вы будете тренироваться по 10 минут каждый день, то через несколько месяцев выйдете на приличный уровень и познаете истину счета математических чисел.
Многим людям непонятно, как можно варьировать цифрами в уме. Как стать властелином цифр, чтобы это выглядело не глупо и незаметно со стороны? Когда под рукой нет калькулятора, мозг начинает интенсивно обрабатывать информацию, стараясь посчитать необходимые числа в уме. Но не у всех людей получается добиться желаемых результатов, так как каждый из нас - это индивидуальная личность со своими пределами возможностей. Если вы хотите понять, в уме, то вам следует изучить всю необходимую информацию, вооружившись ручкой, блокнотом и терпением.
Таблица умножения спасет ситуацию
Мы не будем говорить о тех людях, у которых уровень IQ выше 100, к таким индивидам особые требования. Поговорим о среднестатистическом человеке, который с помощью таблицы умножения может научиться многим манипуляциям. Итак, как быстро считать в уме без потери здоровья, сил и времени? Ответ прост: вызубрите таблицу умножения! На самом деле здесь нет ничего трудного, главное - иметь напор и терпение, а цифры сами сдадутся перед вашей целью.
Для такого занятного дела нужен будет смышленый напарник, который сможет вас проверить и составит вам компанию в этом требующем терпения процессе. Человек, который знает, в уме даже самого ленивого ученика. Как только вы сможете оперативно умножать, вести устный подсчет будет для вас обыденным делом. К сожалению, волшебных методов не существует. Как быстро вы сможете овладеть новым навыком, зависит только от вас. Упражнять свой мозг можно не только с помощью таблицы умножения, существует более увлекательное занятие - это чтение книг.
Книги и отсутствие калькулятора тренируют ваш мозг
Чтобы как можно быстрее научиться вести вычислительную деятельность устно, нужно постоянно закалять свой мозг новой информацией. Но как научиться быстро считать в умеза короткое время? Тренировать память можно только полезными книгами, благодаря которым универсальной будет не только работа вашего мозга, но и, как бонус, - улучшение памяти и получение полезных знаний. Но чтение книг — это не предел тренировок. Только когда вы сможете забыть о калькуляторе, ваш мозг начнет быстрее перерабатывать информацию. Старайтесь считать в уме при любом случае, продумывайте сложные математические примеры. Но если вам тяжело все это делать самостоятельно, то заручитесь поддержкой профессионала, который быстро вас всему научит.
Вам может быть сложно понять, как научиться быстро считать в уме,когда не дружишь с математикой и нет хорошего учителя, который смог бы облегчить задачу. Но не стоит пасовать перед трудностями. Изучив все необходимые рекомендации, вы с легкостью сможете быстро научиться считать в уме и удивить своих сверстников новыми способностями.
- Умение работать с большими числами - выход за рамки общего развития.
- Знание «хитростей» счета поможет вам быстро преодолеть все препятствия.
- Регулярность важнее интенсивности.
- Не стоит торопиться, старайтесь поймать свой ритм.
- Делайте акцент на правильных ответах, а не на скорости запоминания.
- Проговаривайте действия вслух.
- Не расстраивайтесь, если у вас не выходит, ведь главное - это начать.
Никогда не сдавайтесь перед трудностями
В ходе тренировки у вас может появиться много вопросов, на которые вы не знаете ответов. Это вас не должно пугать. Ведь вы не можете на первых порах знать, как быстро считать без предварительной подготовки. Дорогу осилит только тот, кто всегда идет вперед. Трудности должны только закалять вас, а не тормозить желание присоединиться к людям с нестандартными возможностями. Даже если вы уже на финишной прямой, возвращайтесь к самому легкому, тренируйте свой мозг, не давайте ему возможности расслабиться. И помните, чем больше вы будете проговаривать информацию в слух, тем быстрее будете запоминать.