Как делать первый номер огэ химия. Огэ по химии
Мы запускаем спецпроект для девятиклассников, где ребята, которые прошли через все трудности, будут рассказывать свои истории про сдачу ОГЭ и давать советы, на что обратить внимание при подготовке.
Михаил Свешников : «Мы начали готовиться с ноября, решали задачи, рассматривали структуру экзамена. До мая было много времени, и я не сильно переживал. Обычно мы выполняли одно задание в разных тестах (это действительно помогает) и делали задания из второй части. К экзамену у нас было примерно 15-20 решений.
Для меня самым сложным оказалось определение формулы вещества по описанию и написание реакции – последнее задание. На пробных ОГЭ решал его верно не всегда. Накануне я старался все максимально повторить. В день экзамена я не сильно волновался, потому что он был последним и не влиял на аттестат, но и плохо написать не хотелось.
Когда мне дали КИМ, я растерялся, потому что вариант оказался очень сложным, но я сразу же приступил к выполнению заданий, которые знал. Решить то последнее задание так и не получилось.
Мне кажется, что надо начинать готовиться за три-четыре месяца до ОГЭ (вы мало что забудете), решать больше заданий из второй части, потому что, как правило, первая часть проще, чем в пособиях. И последнее – следует быть уверенным в себе.»
Ульяна Кис : «К экзамену готовилась очень много. Учила каждый предмет, выполняла все домашние задания, ходила на факультативы, там мы решали множество тестов и пробников.
Переживания, конечно, были, потому что каждый учитель говорил, что будет очень трудно, надо готовиться день и ночь, следует ходить к репетиторам. Но я самостоятельная, и все, что было непонятно, изучала дома, с помощью видеоуроков и разных сайтов.
И вот приближался тот самый день. У нас была четырехчасовая консультация, где кипели мозги, возможно, ещё и потому, что было лето. Мы разобрали все задания по десять раз и очень волновались.
В день ОГЭ мы пошли сдавать его в другую школу, все дрожим от страха, приходим, показываем паспорт, отмечаемся, нас распределяют по аудиториям, открывают при нас задания и раздают их и... Все оказалось так просто. Никто такого не ожидал. Попались задания, которые мы разбирали на первых трех факультативах. Всё элементарно, и с нами сидели кураторы, которые не следили за каждым твоим движением, как бывало на других экзаменах.
Самое главное – быть спокойным и уверенным, не слушать тех, кто хочет тебя запугать.
Советую готовиться самостоятельно, без репетиторов, которым надо платить крупные суммы.
К экзамену можно написать шпору – маленький листик с самым главным, например, формулами. Если решишь ей воспользоваться, то можно выйти в туалет, посмотреть и вспомнить то, что забыл.
Для тех, кто не хочет готовиться или ничего не понимает, в день экзамена на различных сайтах и в группах выкладывают ответы. Для подстраховки можно и их брать с собой.»
Артем Гуров : «Я не тратил много сил на подготовку – час в неделю дополнительных занятий по химии, на половину из которых я не приходил. Активно готовиться я начал в последний момент, за два-три дня до экзамена. Не могу сказать, что очень сильно переживал, потому что была необъяснимая внутренняя уверенность.
Какие-то эмоции у меня появились за час до экзамена, тогда же я и стал понимать, что может произойти, если я его не сдам. Страх покинул меня через полчаса после начала экзамена, когда прошла некоторая «эйфория».
Единственное, что могу посоветовать девятиклассникам – готовиться заранее. К сожалению, без этого никуда.»
Готовимся к ГИА по химии
ЕГЭ-11 - 2019 | |
Когда наступает пора школьных экзаменов (ЕГЭ), волнуются все: ученики, учителя, родители. Всех интересует вопрос: как сдать экзамены более успешно? Надо сказать, что успешность зависит от многих факторов, в том числе и от учеников, учителей иродителей. ЕГЭ – независимый объективный государственный контроль результатов обучения. ЕГЭ - предоставляет равные возможности выпускникам различных регионов и различных типов школ для поступления в вузы РФ. ЕГЭ - дает возможность всем выпускникам подать документы сразу в несколько вузов или в один на разные специальности (согласно последним решениям Минобрнауки РФ – не более чем в пять вузов или не более чем по пяти специальностям), что, несомненно, увеличивает шансы абитуриентов на поступление. |
|
В ЕГЭ-2019 по сравнению с ЕГЭ-2018 нет изменений |
- Физические и химические свойства, получение и применение алкинов
ОГЭ-9 - 2019
ОГЭ (ГИА) по химии – экзамен по выбору, причём, один из сложных. Выбирать его, думая, что экзамен прост - не стоит. Выбирать ГИА по химии необходимо, если Вы планируете сдавать в будущем и ЕГЭ по этому предмету, это поможет проверить свои знания и лучше подготовиться к единому экзамену через два года. Также ГИА по химии зачастую требуется для поступления в медицинские колледжи.
Структура ГИА по химии следующая:
1 часть:
15 общетеоретических вопросов, с четырьмя вариантами ответов, из которых только один правильный и 4 вопроса, предполагающие множественный выбор ответов либо нахождение соответствия;
2 часть:
в ней учащийся должен записать развернутое решение 3-х задач.
Соответствие баллов ГИА (без реального эксперимента) школьным оценкам следующее:
0-8 баллов – 2;
9-17 баллов – 3;
18-26 баллов – 4;
27-34 баллов – 5.
Рекомендации ФИПИ по оценке работ ОГЭ (ГИА) по химии: 27-34 балла заслуживают только те работы, в которых учащийся получил не меньше чем 5 баллов за решение задач из части 2, это же, в свою очередь предполагает выполнение как минимум 2-х задач. Одна задача оценивается в 4 балла, две других – по три балла.
Наибольшие трудности вызывают, конечно, задачи. Именно в них можно легко запутаться. Поэтому, если Вы планируете получить те самые 27-34 баллов за ОГЭ (ГИА) по химии, то необходимо решать задачи. Например, по одной задаче в день.
Длительность ГИА по химии составляет всего 120 минут .
Во время экзамена учащийся может пользоваться:
- таблицей Менделеева,
- электрохимическим рядом напряжений металлов,
- таблицей растворимости химических соединений в воде.
- Разрешено использование непрограммируемого калькулятора.
ОГЭ (ГИА) по химии пользуется заслуженной славой одного из самых сложных экзаменов. Готовиться к нему надо начинать с самого начала учебного года.
Инструкция по выполнению работы
Экзаменационная работа состоит из двух частей, включающих в себя 22 задания.
Часть 1 содержит 19 заданий с кратким ответом, часть 2 содержит 3 (4) задания с развёрнутым ответом.
На выполнение экзаменационной работы отводится 2 часа(120 минут) (140 минут).
Ответы к заданиям 1–15 записываются в виде одной цифры, которая соответствует номеру правильного ответа. Эту цифру запишите в поле ответа в тексте работы.
Ответы к заданиям 16–19 записываются в виде последовательности цифр в поле ответа в тексте работы.
В случае записи неверного ответа на задания части 1 зачеркните его и запишите рядом новый.
К заданиям 20–22 следует дать полный развёрнутый ответ, включающий в себя необходимые уравнения реакций и расчёты. Задания выполняются на отдельном листе. Задание 23 предполагает выполнение эксперимента под наблюдением эксперта-экзаменатора. К выполнению данного задания можно приступать не ранее, чем через 1 час (60 мин) после начала экзамена.
При выполнении работы Вы можете пользоваться Периодической системой химических элементов Д.И. Менделеева, таблицей растворимости солей, кислот и оснований в воде, электрохимическим рядом напряжений металлов и непрограммируемым калькулятором.
При выполнении заданий можно пользоваться черновиком. Записи в черновике не учитываются при оценивании работы.
Баллы, полученные Вами за выполненные задания, суммируются. Постарайтесь выполнить как можно больше заданий и набрать наибольшее количество баллов.
План КИМаОГЭ по химии 9 класс ( МОДЕЛЬ №1) |
||||||||||||||||||||||||||||||||||||||
|
_________________________ |
В этом разделе я систематизирую разборы задач из ОГЭ по химии. Аналогично разделу , вы найдете подробные разборы с указаниями к решению типовых задач по химии в ОГЭ 9 класса. Перед разбором каждого блока типовых задач я даю теоретическую справку, без которой решение данного задания является невозможным. Теории ровно столько, сколько достаточно знать для успешного выполнения задания с одной стороны. С другой стороны, я попытался расписать теоретический материал интересным и понятным языком. Я уверен, что пройдя подготовку по моим материалам, вы не только успешно сдадите ОГЭ по химии, но и полюбите этот предмет.
Общая информация об экзамене
ОГЭ по химии состоит из трех частей.
В первой части 15 заданий с одним ответом - это первый уровень и задания в нем несложные, при наличии, конечно, базовых знаний по химии. Данные задачи не требуют расчетов, за исключением 15 задания.
Вторая часть состоит из четырех вопросов - в первых двух - 16 и 17 необходимо выбрать два правильных ответа, а в 18 и 19 соотнести значения или высказывания из правого столбца с левым.
Третья часть - это решение задач . В 20 нужно уровнять реакцию и определить коэффициенты, а в 21 решить расчетную задачу.
Четвертая часть - практическая , несложная, но необходимо быть внимательным и осторожным, как всегда при работе с химией.
Всего на работу дается 140 минут.
Ниже разобраны типовые варианты заданий, сопровожденные теорией, необходимой для решения. Все задания тематические - напротив каждого задания указана тема для общего понимания.
Задание 1.Строение атома. Строение электронных оболочек атомов первых 20 элементов периодической системы Д.И.Менделеева.
Задание 2.Периодический закон и периодическая система химических элементов Д.И. Менделеева.
Задание 3. Строение молекул. Химическая связь: ковалентная (полярная и неполярная), ионная, металлическая.
Задание 4.
Задание 5. Простые и сложные вещества. Основные классы неорганических веществ. Номенклатура неорганических соединений.
Скачать:
Предварительный просмотр:
Задание 1
Строение атома. Строение электронных оболочек атомов первых 20 элементов периодической системы Д.И.Менделеева.
Как определить число электронов, протонов и нейтронов в атоме?
- Число электронов равно порядковому номеру и числу протонов.
- Число нейтронов равно разности между массовым числом и порядковым номером.
Физический смысл порядкового номера, номера периода и номера группы.
- Порядковый номер равен числу протонов и электронов, заряду ядра.
- Номер А - группы равен числу электронов на внешнем слое (валентных электронов).
Максимальное число электронов на уровнях.
Максимальное число электронов на уровнях определяется по формуле N= 2· n 2 .
1 уровень – 2 электрона, 2 уровень – 8, 3 уровень - 18, 4 уровень – 32 электрона.
Особенности заполнения электронных оболочек у элементов А и В групп.
У элементов А - групп валентные (внешние) электроны заполняют последний слой, а у элементов В - групп – внешний электронный слой и частично предвнешний слой.
Степени окисления элементов в высших оксидах и летучих водородных соединениях.
Группы | VIII |
|||||||
С.О. в высшем оксиде = + № гр | ||||||||
Высший оксид | R 2 О | R 2 О 3 | RО 2 | R 2 О 5 | RО 3 | R 2 О 7 | RО 4 |
|
С.О. в ЛВС = № гр - 8 | ||||||||
ЛВС | Н 4 R | Н 3 R | Н 2 R |
Строение электронных оболочек ионов.
У катиона – меньше электронов на величину заряда, у анионов - больше на величину заряда.
Например:
Сa 0 - 20 электронов, Сa2 + - 18 электронов;
S 0 – 16 электронов, S 2- - 18 электронов.
Изотопы.
Изотопы - разновидности атомов одного и того же химического элемента, имеющие одинаковое число электронов и протонов, но разную массу атома (разное число нейтронов).
Например:
Элементарные частицы | Изотопы |
|
40 Ca | 42 Ca |
|
Обязательно уметь по таблице Д.И. Менделеева определять строение электронных оболочек атомов первых 20 элементов.
Предварительный просмотр:
http://mirhim.ucoz.ru
А 2. В 1.
Периодический закон и периодическая система химических элементов Д.И. Менделеева
Закономерности изменения химических свойств элементов и их соединений в связи с положением в периодической системе химических элементов.
Физический смысл порядкового номера, номера периода и номера группы .
Атомный (порядковый) номер химического элемента равен числу протонов и электронов, заряду ядра.
Номер периода равен числу заполняемых электронных слоёв.
Номер группы (А) равен числу электронов на внешнем слое (валентных электронов).
Формы существования химического элемента и их свойства | Изменения свойств |
||
В главных подгруппах (сверху вниз) | В периодах (слева направо) |
||
Атомы | Заряд ядра | Увеличивается | Увеличивается |
Число энергетических уровней | Увеличивается | Не изменяется = номер периода |
|
Число электронов на внешнем уровне | Не изменяется = номеру периода | Увеличивается |
|
Радиус атома | Увеличиваются | Уменьшается |
|
Восстановительные свойства | Увеличиваются | Уменьшаются |
|
Окислительные свойства | Уменьшается | Увеличиваются |
|
Высшая положительная степень окисления | Постоянная = номеру группы | Увеличивается от +1 до +7 (+8) |
|
Низшая степень окисления | Не изменяется = (8-№ группы) | Увеличивается от -4 до -1 |
|
Простые вещества | Металлические свойства | Увеличивается | Уменьшаются |
Неметаллические свойства | Уменьшаются | Увеличивается |
|
Соединения элементов | Характер химических свойств высшего оксида и высшего гидроксида | Усиление основных свойств и ослабление кислотных свойств | Усиление кислотных свойств и ослабление основных свойств |
Предварительный просмотр:
http://mirhim.ucoz.ru
А 4
Степень окисления и валентность химических элементов.
Степень окисления – условный заряд атома в соединении, вычисленный исходя из предположения, что все связи в этом соединении ионные (т.е. все связывающие электронные пары полностью смещены к атому более электроотрицательного элемента).
Правила определения степени окисления элемента в соединении:
- С.О. свободных атомов и простых веществ равна нулю.
- Сумма степеней окисления всех атомов в сложном веществе равна нулю.
- Металлы имеют только положительную С.О.
- С.О. атомов щелочных металлов (I(А) группа) +1.
- С.О. атомов щелочноземельных металлов (II(А) группа)+2.
- С.О. атомов бора, алюминия +3.
- С.О. атомов водорода +1 (в гидридах щелочных и щелочноземельных металлов –1).
- С.О. атомов кислорода –2 (исключения: в пероксидах –1, в OF 2 +2 ).
- С.О. атомов фтора всегда - 1.
- Степень окисления одноатомного иона совпадает с зарядом иона.
- Высшая (максимальная, положительная) С.О. элемента равна номеру группы. Это правило не распространяется на элементы побочной подгруппы первой группы, степени окисления которых обычно превышают +1, а также на элементы побочной подгруппы VIII группы. Также не проявляют своих высших степеней окисления, равных номеру группы, элементы кислород и фтор.
- Низшая (минимальная, отрицательная) С.О. для элементов неметаллов определяется по формуле: номер группы -8.
* С.О. – степень окисления
Валентность атома – это способность атома образовывать определенное число химических связей с другими атомами. Валентность не имеет знака.
Валентные электроны располагаются на внешнем слое у элементов А - групп, на внешнем слое и d – подуровне предпоследнего слоя у элементов В - групп.
Валентности некоторых элементов (обозначаются римскими цифрами).
постоянные | переменные |
||
ХЭ | валентность | ХЭ | валентность |
H, Na, K, Ag, F | Cl, Br, I | I (III, V, VII) |
|
Be, Mg, Ca, Ba, O, Zn | Cu, Hg | II, I |
|
Al, В | II, III |
||
II, IV, VI |
|||
II, IV, VII |
|||
III, VI |
|||
I - V |
|||
III, V |
|||
C, Si | IV (II) |
Примеры определения валентности и С.О. атомов в соединениях:
Формула | Валентности | С.О. | Структурная формула вещества |
N III | N N |
||
NF 3 | N III, F I | N +3, F -1 | F - N - F |
NH 3 | N III, Н I | N -3, Н +1 | Н - N - Н |
H 2 O 2 | Н I, О II | Н +1, О –1 | H-O-O-H |
OF 2 | О II, F I | О +2, F –1 | F-O-F |
*СО | С III, О III | С +2, О –2 | Атом «С» передал в общее пользование два электрона, а более электроотрицательный атом «О» оттянул к себе два электрона: У «С» не будет заветной восьмерки электронов на внешнем уровне – четыре своих и два общих с атомом кислорода. Атому «О» придется передать в общее пользование одну свою свободную электронную пару, т.е. выступить в роли донора. Акцептором будет атом «С». |
Предварительный просмотр:
А3. Строение молекул. Химическая связь: ковалентная (полярная и неполярная), ионная, металлическая.
Химическая связь – это силы взаимодействия между атомами или группами атомов, приводящие к образованию молекул, ионов, свободных радикалов, а также ионных, атомных и металлических кристаллических решеток.
Ковалентная связь – это связь, которая образуется между атомами с одинаковой электроотрицательностью или между атомами с небольшой разницей в значениях электроотрицательности.
Ковалентная неполярная связь образуется между атомами одинаковых элементов – неметаллов. Ковалентная неполярная связь образуется, если вещество простое, например, O 2 , H 2 , N 2 .
Ковалентная полярная связь образуется между атомами разных элементов – неметаллов.
Ковалентная полярная связь образуется, если вещество сложное, например, SO 3 , H 2 O, НСl, NH 3 .
Ковалентная связь классифицируется по механизмам образования:
обменный механизм (за счёт общих электронных пар);
донорно-акцепторный (атом - донор обладает свободной электронной парой и передаёт её в общее пользование с другим атомом - акцептором, у которого имеется свободная орбиталь). Примеры: ион аммония NH 4 + , угарный газ СО.
Ионная связь образуется между атомами, сильно отличающимися по электроотрицательности. Как правило, когда соединяются атомы металлов и неметаллов. Это связь между разноименно зараженными ионами.
Чем больше разница ЭО атомов, тем связь более ионная.
Примеры: оксиды, галогениды щелочных и щелочноземельных металлов, все соли (в том числе соли аммония), все щёлочи.
Правила определения электроотрицательности по периодической таблице:
1) слева направо по периоду и снизу вверх по группе электроотрицательность атомов увеличивается;
2) самый электроотрицательный элемент – фтор, так как инертные газы имеют завершенный внешний уровень и не стремятся отдавать или принимать электроны;
3) атомы неметаллов всегда более электроотрицательны, чем атомы металлов;
4) водород имеет низкую электроотрицательность, хотя расположен в верхней части периодической таблицы.
Металлическая связь – образуется между атомами металлов за счет свободных электронов, удерживающих положительно заряженные ионы в кристаллической решетке. Это связь между положительно заряженными ионами металлов и электронами.
Вещества молекулярного строения имеют молекулярную кристаллическую решетку, немолекулярного строения – атомную, ионную или металлическую кристаллическую решетку.
Типы кристаллических решеток:
1) атомная кристаллическая решетка: образуется у веществ с ковалентной полярной и неполярной связью (C, S, Si), в узлах решетки находятся атомы, эти вещества являются самыми твердыми и тугоплавкими в природе;
2) молекулярная кристаллическая решетка: образуется у веществ с ковалентной полярной и ковалентной неполярной связями, в узлах решетки находятся молекулы, эти вещества обладают небольшой твердостью, легкоплавкие и летучие;
3) ионная кристаллическая решетка: образуется у веществ с ионной связью, в узлах решетки находятся ионы, эти вещества твердые, тугоплавкие, нелетучие, но в меньшей степени, чем вещества с атомной решеткой;
4) металлическая кристаллическая решетка: образуется у веществ с металлической связью, эти вещества обладают теплопроводностью, электропроводностью ковкостью и металлическим блеском.
Предварительный просмотр:
http://mirhim.ucoz.ru
А5. Простые и сложные вещества. Основные классы неорганических веществ. Номенклатура неорганических соединений.
Простые и сложные вещества.
Простые вещества образованы атомами одного химического элемента (водород Н 2 , азот N 2 , железо Fe и т.д.), сложные вещества - атомами двух и более химических элементов (вода H 2 O – состоит из двух элементов (водород, кислород), серная кислот H 2 SO 4 – образована атомами трёх химических элементов (водород, сера, кислород)).
Основные классы неорганических веществ, номенклатура.
Оксиды – сложные вещества, состоящие из двух элементов, один из которых кислород в степени окисления -2.
Номенклатура оксидов
Названия оксидов состоят из слов «оксид» и названия элемента в родительном падеже (с указанием в скобках степени окисления элемента римскими цифрами): CuO – оксид меди (II), N 2 O 5 – оксид азота (V).
Характер оксидов:
ХЭ | основный | амфотерный | несолеобразующий | кислотный |
металл | С.О.+1,+2 | С.О.+2, +3, +4 амф. Ме – Ве, Аl, Zn, Cr, Fe, Mn | С.О.+5, +6, +7 |
|
неметалл | С.О.+1,+2 (искл. Cl 2 O) | С.О.+4,+5,+6,+7 |
Основные оксиды образуют типичные металлы со С.О. +1, +2 (Li 2 O, MgO, СаО, CuO и др.). Основными называются оксиды, которым соответствуют основания.
Кислотные оксиды образуют неметаллы со С.О. более +2 и металлы со С.О. от +5 до +7 (SO 2 , SeO 2 , Р 2 O 5 , As 2 O 3 , СO 2 , SiO 2 , CrO 3 и Mn 2 O 7 ). Кислотными называются оксиды, которым соответствуют кислоты.
Амфотерные оксиды образованы амфотерными металлами со С.О. +2, +3, +4 (BeO, Cr 2 O 3 , ZnO, Al 2 O 3 , GeO 2 , SnO 2 и РЬО). Амфотерными называются оксиды, которые проявляют химическую двойственность.
Несолеобразующие оксиды – оксиды неметаллов со С.О.+1,+2 (СО, NO, N 2 O, SiO).
Основания (основные гидроксиды ) - сложные вещества, которые состоят из
Иона металла (или иона аммония) и гидроксогруппы (-OH).
Номенклатура оснований
После слова «гидроксид» указывают элемент и его степень окисления (если элемент проявляет постоянную степень окисления, то её можно не указывать):
КОН – гидроксид калия
Сr(OH) 2 – гидроксид хрома (II)
Основания классифицируют:
1) по растворимости в воде основания делятся на растворимые (щелочи и NH 4 OH) и нерастворимые (все остальные основания);
2) по степени диссоциации основания подразделяют на сильные (щелочи) и слабые (все остальные).
3) по кислотности, т.е. по числу гидроксогрупп, способных замещаться на кислотные остатки: на однокислотные (NaOH), двухкислотные , трехкислотные .
Кислотные гидроксиды (кислоты) - сложные вещества, которые состоят из атомов водорода и кислотного остатка.
Кислоты классифицируют:
a) по содержанию атомов кислорода в молекуле - на бескислородные (Н C l) и кислородсодержащие (H 2 SO 4 );
б) по основности, т.е. числу атомов водорода, способных замещаться на металл - на одноосновные (HCN), двухосновные (H 2 S) и т.д.;
в) по электролитической силе - на сильные и слабые. Наиболее употребляемыми сильными кислотами являются разбавленные водные растворы HCl, HBr, HI, HNO 3 , H 2 S, HClO 4 .
Амфотерные гидроксиды образованы элементами с амфотерными свойствами.
Соли – сложные вещества, образованные атомами металлов, соединёнными с кислотными остатками.
Средние (нормальные) соли - сульфид железа(III).
Кислые соли - атомы водорода в кислоте замещены атомами металла частично. Они получаются при нейтрализации основания избытком кислоты. Чтобы правильно назвать кислую соль, необходимо к названию нормальной соли прибавить приставку гидро- или дигидро- в зависимости от числа атомов водорода, входящих в состав кислой соли.
Например, KHCO 3 – гидрокарбонат калия, КH 2 PO 4 – дигидроортофосфат калия
Нужно помнить, что кислые соли могут образовывать двух и более основные кислоты, как кислородсодержащие, так и бескислородные кислоты.
Основные соли - гидроксогруппы основания (OH − ) частично замещены кислотными остатками. Чтобы назвать основную соль, необходимо к названию нормальной соли прибавить приставку гидроксо- или дигидроксо- в зависимости от числа ОН - групп, входящих в состав соли.
Например, (CuOH) 2 CO 3 - гидроксокарбонат меди (II).
Нужно помнить, что основные соли способны образовывать лишь основания, содержащие в своём составе две и более гидроксогрупп.
Двойные соли - в их составе присутствует два различных катиона, получаются кристаллизацией из смешанного раствора солей с разными катионами, но одинаковыми анионами.
Смешанные соли - в их составе присутствует два различных аниона.
Гидратные соли (кристаллогидраты ) - в их состав входят молекулы кристаллизационной воды . Пример: Na 2 SO 4 ·10H 2 O.
Вряд ли найдется выпускной экзамен сложнее, чем ОГЭ или ЕГЭ по химии. Этот предмет приходится сдавать будущим биологам, химикам, медикам, инженерам и строителям. Сегодня мы поговорим о том, что необходимо знать для того, чтобы получить высокие баллы, и какими пособиями пользоваться лучше всего.
Книги и пособия для подготовки
Эксперты ЕГЭ и ОГЭ рекомендуют при подготовке опираться на учебники профильного уровня. Материала стандартного базового учебника для успешной сдачи экзамена недостаточно. Практика показывает, что школьники, проходившие профильный курс химии, чувствуют себя во время экзамена довольно уверенно. Таких учебников написано несколько, но по содержанию и подаче они примерно одинаковы.
Рекомендуем обзавестись сборником типовых экзаменационных заданий — официальное издание ФИПИ (с голограммой) и парой книг других авторов. В них подробно разбираются задания, показываются способы их решения, даются алгоритмы и ответы для самоконтроля. Чем больше вариантов вы прорешаете, тем больше ваши шансы удачно сдать экзамен.
Повторение — мать ученья
Это важная составляющая качественной подготовки. Химия — сложная наука о веществе, не зная элементарных тем начального курса, вы не поймете более сложные. Конечно, на повторение всей программы может не хватить времени, поэтому лучше уделить больше внимания именно тем вопросам, которые вызывают наибольшее затруднения.
По мнению преподавателей центра «Мерлин», школьники чаще допускают ошибки в заданиях, связанных с темами:
- механизмы образования молекулярных связей;
- водородная связь;
- закономерности протекания химических реакций;
- физико-химические свойства растворов, электролитическая диссоциация, реакции в растворах электролитов;
- влияние разбавления раствора на степень диссоциации (закон разбавления Оствальда);
- гидролиз солей;
- атмосферные соединения;
- основные классы соединений;
- промышленное производство и область применения.
Выявить пробелы помогут те же типовые экзаменационные задания и тесты. Не получается? Обратитесь за помощью к учителю химии или запишитесь на подготовительные курсы.
Ставьте опыты
Химия — это наука, построенная на реальных экспериментах с веществами. Лучше понять ту или иную тему помогут опыты. Для этого необязательно покупать набор реактивов и лабораторные принадлежности. В Интернете много интересных, хорошо снятых видео, посвященным химическим реакциям. Не поленитесь найти их и посмотреть.
На экзамене будьте внимательны!
Большинство ошибок допускается ребятами именно из-за невнимательности. Приучайте себя не пропускать ни одного слова, читая задание, обращать внимание на формулировку и то, сколько ответов должно быть.
- Читайте вопрос до конца, вдумайтесь в его смысл. В формулировке часто скрывается небольшая подсказка.
- Начинайте с легких вопросов, где вы не сомневаетесь в правильности ответов, потом переходите к более сложным заданиям, где нужно подумать.
- Если какой-то вопрос слишком трудный, пропустите его, не теряйте времени, позже вы сможете вернуться к нему.
- Задания друг с другом не связаны, поэтому сосредоточьтесь только на том, которое выполняете в данный момент.
- При затруднении попробуйте сначала исключить явно неправильные ответы. Проще выбрать вариант из двух-трех оставшихся, чем путаться в пяти-шести ответах.
- Обязательно оставьте время для проверки работы, чтобы вы успели быстро просмотреть задания и исправить допущенные ошибки. Недописанное слово или цифра могут стоить вам балла.
Химия — трудный предмет, и готовиться к экзамену лучше всего под руководством опытного преподавателя, на то, что вы справитесь с такой ответственной задачей, рассчитывать не рекомендуется. Только учитель может указать вам на «незаметные» ошибки и помочь восполнить пробелы, объяснить сложный материал простым, доступным языком.