Как прогнозировать спрос для разных предприятий. Скользящая средняя за четыре квартала. Прогнозирование спроса в действии: опыт компании Nestle


В современных цепях поставок процесс планирования и прогнозирования спроса будет отличаться в зависимости от выбранной компаниями стратегии спроса/предложения: "производство на склад", "производство на завершающей стадии" и "производство на заказ".

Планирование спроса для "производства на склад" и "производства на завершающей стадии"

Для компаний, осуществляющих производство на склад, планирование необходимо, чтобы создавать оптимальный уровень запасов в сети распределения для максимального удовлетворения клиентов и избегать ситуации дефицита или затоваривания складов. К основным причинам необходимости составления плана спроса можно отнести:

  • а) несбалансированность времени выполнения заказа. Время выполнения заказа превышает время, которое потребитель готов ждать. Предназначение планирования спроса гарантировать наличие продукта в любой момент времени и возможность его поставки клиенту в течение того периода, которого он готов ждать;
  • 6) управление распределением. Точный план спроса используется для принятия многих решений, необходимых для размещения нужного продукта в нужном количестве тогда, когда он нужен, и там, где нужен;
  • в) планирование производственной деятельности и ресурсов.

План спроса позволяет организациям формировать более стабильный и обеспечивающий эффективное производство план и одновременно удовлетворять запросы потребителей.

Планирование спроса – это определение потребностей рынка в товаре цепи поставок. Как мы уже говорили, в рамках данного учебника, в качестве товара могут пониматься как продукция или услуги, так и то и другое вместе. Результатом планирования спроса является максимально точный план по потребностям в готовой продукции для планирования поставок. Спрос и поставки – суть разные понятия.

Разработка плана спроса состоит из пяти этапов.

Этап I. Прогнозирование спроса. Прогноз – первоначальная оценка будущего спроса, основанная на статистических данных за прошлые периоды.

Выделяют четыре основные характеристики прогноза.

  • 1. Горизонт планирования – срок, на какой период в будущем должен быть составлен прогноз. При определении горизонта планирования следует помнить, что точность прогнозов выше для близкой перспективы, чем для отдаленного будущего. Чтобы составлять прогнозы на максимально короткий горизонт времени, организация должна стремиться сокращать время выполнения заказа.
  • 2. Уровень агрегирования. Определяет, что должен отражать прогноз: спрос на ассортимент или на номенклатуру продукции по заказчикам. Точность прогнозирования спроса выше для группы продуктов, чем для индивидуальных продуктов.
  • 3. Частота пересмотров. Прогноз не является статичным, для обеспечения точности прогнозирования необходимо его периодично пересматривать (раз в год, раз в квартал, раз в неделю, каждый день или каждый час).
  • 4. Интервал прогнозирования. Показывает, какие временные промежутки должен отражать прогноз спроса (годы, месяцы, недели, дни).

Неверное прогнозирование спроса может привести к следующим негативным последствиям:

  • избыточный запас. Неточность спроса приводит к увеличению объемов страховых запасов, требующихся для обеспечения желательного уровня обслуживания потребителей, тем самым увеличивая затраты на содержание запасов;
  • ненужные распродажи. При завышении объемов спроса могут оставаться излишки продукции, которые придется реализовывать ниже установленной цены, что приводит к сокращению маржинальной прибыли;
  • дефицит товара. Без обоснованного прогноза спроса организации трудно понять будущие требования своих потребителей. Возможно возникновение ситуации, когда на складе не будет достаточного запаса, позволяющего удовлетворять запросы клиентов.

Следствием перечисленных выше результатов плохих прогнозов является упущенная выгода для всех предприятий, входящих в цепь поставок.

Точность прогноза обеспечивается выбранным методом и моделью прогнозирования. Рассмотрим наиболее часто используемые модели прогнозирования спроса.

  • 1. Модели временных рядов. Модели временного ряда представляют собой экспоненциальное сглаживание, скользящее среднее значение и более сложные модели, которые соотносят одну и более (зависимые) переменные спроса в особой точке времени к значениям тех же самых (независимых) переменных спроса ранее. Модели временного ряда могут применяться в краткосрочном прогнозировании с горизонтами планирования от одной недели до трех месяцев или в прогнозировании на средний срок с горизонтами планирования от трех месяцев до одного года. Модели временного ряда среднего срока должны составлять сезонный, циклический и трендовый факторы в данных временного ряда.
  • 2. Причинно-следственные модели. Причинно-следственные модели используют методы статической регрессии для установления отношений между зависимыми переменными в особой точке в будущем и независимыми переменными, которые могут не только включать в себя те же самые переменные спроса в более ранних точках, но и другие переменные, значения которых затрагивает спрос.
  • 3. Модели новых изделий. Предсказание спроса на новые изделия не может быть связано со статистическими данными, описывающими продажи. Модели новых изделий работают с априорными данными, параметры которых получены на основе информации о существующих аналогах изделия, и описывают ожидаемую форму роста нового продукта. По мере того как рынки для новых изделий обнаруживаются, априорные данные уточняются и обновляются, чтобы улучшить прогнозы. Прогнозы, в свою очередь, используются для того, чтобы анализировать стратегию цепи поставок нового изделия, используя модели оптимизации.
  • 4. Оценочные модели. Оценочные модели используются для прогнозирования спроса на новые изделия, для которых не существует никаких статистических данных и данных, имеющих к ним отношения. К этим моделям относятся метод экспертных оценок, метод Делфи, метод "мозгового штурма".

Высокое качество прогноза составляет хорошую основу для построения планов спроса, но прогноз необходимо регулярно уточнять с учетом внешних видов деятельности, оказывающих влияние на спрос того продукта, в отношении которого составляется прогноз.

Этап II. Учет реальных трендов и влияния сезонности. Прогноз состоит из трех основных компонентов.

1. Тренд (T ) – общая динамика объема продаж (которая может быть положительной, отрицательной или нейтральной):

где В t – средний спрос в период t; Вt-1 – средний спрос в период f-1.

Если Т > 1, то объем продаж постоянно растет; если Т < 1, то сокращается. Если же Т = 1, то объем продаж не меняется.

2. Сезонность (S) – регулярно повторяющийся образец (паттерна), выделяемый в рамках прогноза (например, повышение объема продаж к Новому году и Рождеству, продажа спортивного инвентаря для зимних видов спорта):

где –средний месячный объем спроса, ед.; –средний объем спроса за весь период наблюдений, ед.

Среднее значение коэффициента сезонности для всех периодов составляет 1, но в отдельных месяцах оно может колебаться от 0 до 12. Например, если коэффициент сезонности равен 1,2, то ожидается увеличение продаж на 20% среднего значения за год.

3. Шум (I ) – изменения спроса, которые происходят случайным образом и появление которых возможно прогнозировать.

Таким образом, прогнозное значение объема продаж рассчитывают по следующей формуле:

где В – средняя величина спроса за прошедшие периоды.

Пример 4.1

Ниже указан объем продаж за последние 11 кварталов. Составить на основе этих данных прогноз объема продаж на следующие два квартала.

Решение

Шаг 1. Исключение влияния сезонной вариации методом скользящей средней. Заполним табл. 4.1.

Таблица 4.1. Оценка сезонной вариации

Номер квартала

Объем продаж, ТЫС. руб.

Скользящая средняя за четыре квартала

Центрированная скользящая средняя

Оценка сезонной вариации

Значения 4-го столбца представляют собой округленные до третьей цифры после запятой результаты деления чисел 1-го столбца на числа 3-го столбца и результат.

Затем проведем корректировку коэффициентов сезонности, для чего создадим следующую таблицу (табл. 4.2).

В таблицу вносим оценки сезонной вариации под соответствующим номером квартала в году. В каждом столбце вычисляем среднее значение и результат записываем в строке "Среднее". Сумма чисел в строке "Среднее" равна 3,994.

Чтобы усреднить значения сезонной вариации в целом за год, скорректируем значения в строке "Среднее". Так как значения сезонной вариации – это доли, а число сезонов в году – 4, следовательно, сумма средних коэффициентов сезонности должна быть равна 4. Корректирующий фактор определяется как отношение числа кварталов в году (4) к сумме средних оценок сезонной вариации (3,994).

Таблица 4.2. Корректировка сезонной вариации

Показатель

Номер квартала

Скорректированная сезонная вариация

Таким образом, итоговые коэффициенты сезонности нужно умножить на множитель 4/3,994. В строке "Скорректированная сезонная вариация" указываются окончательные коэффициенты сезонности. Исключим сезонную вариацию из фактических данных, для чего проведем десезонализацию данных. Числа 1-го столбца поделим на числа 2-го столбца, результат округлим до одной цифры после запятой и запишем в 3-й столбец (табл. 4.3).

Таблица 4.3. Десезонализация данных по объему продаж

Номер квартала

Объем продаж, тыс. руб., А

Сезонная вариация, S

AIS =Т I

2

Шаг 2. Определение линии тренда. Уравнение линии тренда имеет вид Т = а + bх.

Для вычисления коэффициентов а и b необходимо воспользоваться в Excel статистическими функциями ОТРЕЗОК (изв_знач_у; изв_знач_х) и НАКЛОН (изв_знач_у; изв_знач_х). Изв_знач_у; изв_ знач_х – это ссылки на ячейки, содержащие значения переменных десезонализированного объема продаж (у) и номера квартала (х ). В результате расчета трендовое значение объема продаж будет иметь следующий вид:

Т = 81,6 + 1,2 (номер квартала).

Шаг 3. Расчет ошибок. Рассчитаем ошибку I и заполним табл. 4.4.

Таблица 4.4. Оценка ошибки прогнозирования

Номер

квартала

Объем продаж, тыс. руб., А

Десезонализированный объем продаж, тыс. руб., AIS= Τ Ι

Трендовое

значение

Ошибка,

2

Из чисел 2-го столбца вычтем числа 3-го столбца и результат запишем в 4-м столбце.

Таким образом, среднее абсолютное отклонение , среднеквадратическая ошибка . Ошибки достаточно малы, составляют около 1%, что гарантирует получение хорошего прогноза.

Шаг 4. Прогноз объема продаж на XII и XIII кварталы. Прогноз объема продаж на XII квартал составит, тыс. руб.:

(81,6 + 1,2 12) 1,41 1 = 135,4.

Прогноз объема продаж на XIII квартал составит, тыс. руб.:

(81,6 + 1,2 13) 0,757 1 = 73,6.

Чтобы прогноз был достаточно точным, необходимо добиться правильного учета уровня тренда и сезонности, включенных в модель. По мере изменения внешних факторов важно, чтобы аспекты, связанные с трендом и (или) сезонностью, в модели уточнялись.

Этап III. Учет стимулов/продвижения продаж при прогнозировании и планировании спроса. При прогнозировании и планировании спроса необходимо учитывать историю стимулирующих маркетинговые мероприятий (рекламные презентации, распродажи со скидкой, бесплатные предложения пробных продуктов, рекламные акции и т.д.) и их влияние на объемы продаж. Такие изменения часто характеризуются возрастанием спроса непосредственно во время рекламной кампании и падением спроса после ее завершения, когда потребители уже разобрали запасы, выделенные на стимулирование продаж.

Для прогнозирования регулярное стимулирование продаж играет роль сезонного фактора. Если же такие мероприятия проводятся нерегулярно, их следует выявлять и учитывать отдельно.

Точность плана спроса зависит и от информации о будущих маркетинговых мероприятиях, включенных в прогноз. Важно, чтобы эти мероприятия были включены в план спроса так, чтобы план обязательно учитывал их воздействие. Если эти мероприятия не включаются, точность плана спроса снижается.

Стимулирование маркетинговых мероприятий, влияющих на точность прогноза и плана спроса, не ограничивается только теми мероприятиями, которые проводит производственное предприятие. Большое влияние на продажи могут оказать стимулирующие мероприятия конкурентов.

Помимо деятельности конкурентов следует учитывать и стимулирующие действия посредников, также сказывающиеся на объеме продаж.

Этап IV. Учет жизненного цикла продукции. Влияние новых продуктов или вывод из ассортимента прежних продуктов также может повлиять на точность прогноза спроса продуктов.

Вывод на рынок нового продукта часто приводит к поглощению им доли рынка у существующих продуктов. Поэтому приблизительный прогноз объема продаж для новых продуктов должен быть известен заранее, так как он является исходным для прогнозирования спроса на существующие продукты.

Подобные действия необходимо учитывать в плане спроса, составляемом по всем релевантным продуктам.

ВОПРОСЫ ПРАКТИКИ

В сентябре 2004 г. компания Sony представила новую, уменьшенную версию приставки Sony PlayStation. При подготовке к запуску продаж новой модели SCPH-70000 летом 2004 г. Sony остановила производство старой модели SCH-5000x с тем, чтобы на складах каналов распределения приставки опустели текущие запасы. Позже в отдельных городах это привело к задержке с продажами новой модели. Так произошло в Великобритании из-за того, что российский нефтяной танкер застрял в Суэцком канале, заблокировав корабль из Китая с грузом приставок PS2, предназначенных для Великобритании; в течение одной из недель ноября продажи приставки в этой стране составили 6000 экземпляров при 70000 продаж за предыдущую неделю. Дефицит поставок ощущался также в Северной Америке в канун Рождества.

Этап V. Оценка плана спроса. Процесс планирования и прогнозирования спроса, как и любой другой бизнес-процесс, должен оцениваться. Основными показателями его эффективности можно считать следующие .

  • 1. Точность прогноза и плана спроса. Она должна определяться в важнейших пунктах процесса разработки. К таким важнейшим пунктам относятся:
    • первоначальный статистический прогноз, на основании которого оценивается качество модели и при необходимости вносятся в модель требующиеся корректировки;
    • план спроса после учета в нем стимулирующих действий, который используется для оценки качества добавленных данных по стимулирующим мероприятий;
    • окончательный вариант плана спроса, когда оценивается его качество.
  • 2. Точность стимулирующих действий и случайных мероприятий, добавленных к прогнозу. Эта точность также должна быть измерена. Когда имеются фактические данные по спросу, влияние мероприятия должно сравниваться с тем влиянием, которое было реально достигнуто. Это позволяет более точно оценить аналогичные будущие мероприятия и события, тем самым обеспечивая точность плана спроса.
  • 3. Незапланированные изменения.

Этап VI. Согласование плана спроса между всеми участниками цепи поставок. При традиционном прогнозировании и планировании спроса, т.е. когда каждая организация планирует спрос самостоятельно, изолированно друг от друга, точность прогноза существенно ниже, чем при согласованном процессе планирования (рис. 4.2, 4.3).

Рис. 4.2.

Рис. 4.3.

Таким образом, в цепи поставок в процессе выработки согласованного плана должны участвовать все организации, составляющие цепь поставок. Типовая схема взаимодействия между производственным предприятием, выпускающим конечный продукт, и дистрибутором в процессе совместного планирования спроса в цепи поставок приведена на рис. 4.4.

Схема планирования, показанная на рис. 4.4, состоит из следующих шагов.

  • 1. Дистрибуторы при взаимодействии с потребителями собирают информацию о предполагаемых объемах потребностей клиентов. В результате формируется план продаж.
  • 2. Параллельно служба маркетинга производственного предприятия исследует спрос, факторы, на него воздействующие, влияние на спрос проведенных и запланированных в будущем стимулирующих маркетинговых мероприятий, активности конкурентов. На основе этих данных с использованием статистических моделей формируется прогноз маркетинга.
  • 3. Представители дистрибуторов и производственного предприятия один раз в плановый период собираются на совместное совещание и вырабатывают совместный план спроса.
  • 4. Совместный план проходит процедуры сравнения с целевыми показателями, оценки выполнимости и утверждения и становится принятым к исполнению планом.

Рис. 4.4.

Таким образом, согласованное планирование спроса позволяет учесть все возможные незапланированные изменения в процессах, выполняемых в производстве и дистрибуции, тем самым повышает точность плана спроса.

Планирование спроса для "производства на заказ"

Компании, производящие и собирающие продукт после получения заказов от клиента, обычно устанавливают три различные временные зоны для обязательств по поставкам (рис. 4.5). Зона твердых заказов содержит только подтвержденные заказы. Зона частичных твердых заказов содержит как подтвержденные заказы, так и, частично, прогноз. Зона прогнозов содержит только прогноз.

Месяц

Рис. 4.5.

Задача планирования спроса при производстве на заказ концентрирует внимание:

  • на подтверждении и уточнении заказов клиентов в зоне твердых заказов;
  • подтверждении и уточнении заказов клиентов и прогнозировании объемов ожидающихся заказов в зоне частичных твердых заказов. Для этой зоны входными данными являются деятельность по квотированию, проекты в активной фазе и т.д.;
  • прогнозировании ожидаемых к получению объемов заказов в зоне прогнозов.

Последовательность действий при планировании спроса для "производства на заказ" такая же, как для "производства на склад"/"завершения на заказ". Различие заключается в отсутствии процесса статистического прогнозирования на уровне единиц хранения запасов.

В этом процессе большую роль играет контакт с клиентами. Нужно получить представление об их планах закупок, понять их отношение к вашим инициативам по выпуску новых продуктов и т.п.

ПРОГНОЗИРОВАНИЕ СПРОСА

Планирование и контроль рабочих процессов в логистике требуют точной оценки тех объемов продукции, с которыми будут выполняться соответствующие операции. Эта оценка обычно выполняется в форме прогнозов продаж или спроса. Впрочем, за прогнозирование спроса несут ответственность не только менеджеры по логистике. Скорее всего, эта задача будет выполняться в отделе маркетинга, экономического планирования или в специальной проектной группе. При определенных условиях, особенно при краткосрочном планировании – например, при планировании запасов или календарном планировании перевозок, – менеджеры по логистике находят необходимым взять эту функцию на себя. Следовательно, эта глава будет посвящена обзору тех методик планирования, которые прямо подходят именно для планирования и контроля рабочих процессов в логистике.

Обсуждение будет касаться преимущественно прогнозирования спроса, что является важным исходным пунктом при планировании и контроле процессов в логистике. С другой стороны, все те методики, которые будут обсуждаться в этой главе, подходят и для определенных типов планирования, таких как планирование запасов, снабжения (или закупок), контроль затрат, прогнозирование цен, затрат и пр.

ПРИРОДА ПРОБЛЕМЫ

Прогнозирование спроса – важнейшая управленческая функция любой компании, которая занимается производством и продажами товаров и услуг. Правильное прогнозирование – это основа успешного планирования и контроля всех основных функциональных подразделений компании – производства, логистики, маркетинга, финансов. Уровень спроса, его структура и временные колебания обуславливают масштабы производства, объем привлеченных инвестиций и в целом – структуру бизнеса компании.

Каждое функциональное подразделение имеет собственные особенности и потребности в прогнозировании. Конкретно в логистике прогнозирование касается таких вопросов, как пространственное и временное прогнозирование спроса, определение степени вариативности спроса.

Пространственное и временное прогнозирование спроса

Временное прогнозирование – это общий момент при прогнозировании любых видов спроса. Изменение спроса во времени является результатом общего роста или снижения спроса, сезонных колебаний спроса, а также случайных колебаний спроса, которые обуславливается множеством факторов. Именно эти три аспекта учитываются при краткосрочном прогнозировании в большинстве случаев.

Помимо временного измерения спрос имеет также и пространственное измерение. Менеджер по сбыту, в функции которого входит управление логистикой товара, должен знать не только КОГДА, но и ГДЕ может возникнуть спрос на товар. Пространственное прогнозирование спроса требуется для определения оптимального местоположения складов, оптимального распределения запасов по складской сети, эффективного управления транспортными потоками.

Методики временного прогнозирования следует наилучшим образом адаптировать под структурные особенности бизнеса и спроса. Например, временное прогнозирование можно осуществлять сперва на уровне фирмы в целом, а затем пропорционально «делить» прогноз по региональным подразделениям (прогнозирование «сверху-вниз»). Или наоборот, сперва прогнозировать спрос на уровне региональных подразделений, а затем агрегировать полученные результаты на уровне фирмы в целом (прогнозирование «снизу-вверх»).

Регулярный и нерегулярный спрос

Менеджеры по сбыту, как правило, объединяют товары по группам для того, чтобы дифференцировать обслуживание запасов или просто для того,

чтобы было удобнее ими управлять. Эти группы, а также отдельные товары имеют разный характер спроса. Если спрос регулярный, устойчивый, то его можно разложить на три составляющие:

Ÿ тренд (есть или нет);

Ÿ сезонные колебания (есть или нет);

Ÿ случайные колебания (как правило, есть).

Хорошо известные и апробированные методики прогнозирования, как правило, применяются для прогнозирования именно регулярного спроса, который обычно бывает на ходовые и перспективные товары.

С другой стороны, в практике продаж всегда попадаются товары, спрос на которые крайне неустойчив. Прогнозировать продажи таких товаров крайне сложно, если вообще возможно. Спрос на такие товары называется неустойчивым, или нерегулярным. К числу таких товаров относят, например, продукцию, которая уже практически снята с производства и востребована лишь небольшим числом покупателей, которые покупают ее по инерции или по старой памяти. Или, например, продукцию, продажи которой зависят от продаж и потребления другой продукции и т. д.

В некоторых случаях товары с нерегулярным спросом достигают 50% от общего объема продаваемых товаров. В этом случае прогнозирование продаж представляет для системы логистики особенно трудную проблему.

Рис. 1а. Регулярный спрос с постоянным средним уровнем колебаний

Рис 1 b Регулярный спрос с растущим трендом

Рис 1c . Регулярный спрос с растущим трендом и сезонностью

Рис. 2. Нерегулярный спрос

Производный и независимый спрос

В большинстве случаев спрос, который генерируется большим количеством покупателей (например, домохозяйств или физических лиц), каждый из которых приобретает лишь небольшое количество товара, является независимым. Такой спрос является массовым, а потому достаточно устойчивым и хорошо прогнозируемым. Он имеет определенные закономерности – общий рост или понижение (тренд), сезонные изменения, – однако все эти закономерности легко просчитываются по результатам обработки статистики продаж в предыдущие периоды.

Производный спрос – это спрос, который генерируется исходя из потребностей самого бизнеса компании. Например, это может быть спрос на сырье или материалы, комплектующие, запчасти, необходимые для нормального обеспечения производственного процесса. В этом случае для расчета потребностей в материалах требуется знать не только план производства готовой продукции , но также и то, из каких составляющих будет изготавливаться эта продукция, какие производственные операции будут при этом выполняться и когда потребуется та или иная поставка конкретных наименований изделий.

Пример . Отдел электрооборудования компании Lear-Siegler производит серию маломощных электродвигателей для промышленных потребителей, которые используют их в таких видах готовой продукции, как очистительные и шлифовальные машины. Хотя это и не очень сложное изделие, каждый электродвигатель включает в себя от 50 до 100 деталей. Календарный план производства двигателей составляется на основе заказов, которые поступают от промышленных фирм с поставкой на какую-нибудь дату в будущем, а также прогноза прямых продаж стандартных электродвигателей прямо со склада производителя. План производства составляется на три месяца вперед. В нем указывается, какие двигатели следует производить, когда и в каком количестве. Менеджер по закупкам должен следить, чтобы все компоненты, необходимые для производства, были своевременно в наличии в соответствии с планом производства.

Существует два подхода к планированию закупок материалов и компонентов, необходимых для производства:

1. Прогноз тех изделий и материалов, которые используются при производстве большинства электродвигателей (медная проволока, листовая сталь, краска), составляется на основе обобщенных данных об их потреблении. Затем они закупаются в необходимых количествах для создания запасов на складе сырья и материалов.

2. Те компоненты, которые стоят дорого или нужны под индивидуальные заказы потребителей, закупаются в соответствии с календарным графиком производства. В данном случае такими компонентами являются ось ротора и подшипники. Закупки этих изделий осуществляются в соответствии с расчетами, которые строятся на основе календарного производственного плана и спецификаций материалов по каждому электродвигателю.

Допустим, что в предстоящем месяце планируется произвести электродвигатели трех разных моделей в объеме 200, 300 и 400 шт. соответственно. Во всех моделях используется одинаковая ось ротора, но в моделях 1 и 2 требуется два подшипника, а в модели 3 – только один подшипник. Следовательно, требуется закупить 900 роторных осей и 1400 подшипников:

1´200 + 1´300 + 1´400 = 900 роторных осей

2´200 + 2´300 + 1´400 = 1400 подшипников

Этот план закупок получен по данным спецификаций материалов по каждой модели электродвигателя и планам производства каждой модели в предстоящем месяце.

Методики прогнозирования, как правило, применяются при прогнозировании независимого спроса. Однако производный спрос может быть оценен только при наличии прогноза независимого спроса на конечную продукцию. Далее при прогнозе производного спроса учитываются такие факторы, как тренды, сезонные и случайные колебания спроса, что позволяет планировать закупки необходимых материалов и комплектующих с большей точностью.

МЕТОДИКИ ПРОГНОЗИРОВАНИЯ

Существует определенное количество методик прогнозирования, которые могут быть использованы в реальной практике коммерческих фирм. Модели прогнозирования можно разбить на три группы:

Ÿ качественные;

Ÿ статистические;

Ÿ факторные.

Эти три группы различаются по степени точности прогноза в долгосрочном и краткосрочном периодах , степени сложности и трудоемкости при расчетах, а также по источнику, из которого черпаются исходные данные для прогнозирования (например, экспертные оценки, маркетинговые исследования, статистика и пр.).

Качественные методы

В качественных методах прогнозирование основывается на мнениях и суждениях экспертов, интуиции сотрудников, результатах маркетинговых исследований или сравнении с деятельностью конкурирующих предприятий. Информация такого рода, как правило, не содержит в себе количественных данных, является приблизительной и часто носит субъективный характер.

Разумеется, что из-за этого качественные методы не отвечают строгим научным критериям. Однако в случаях, когда статистические данные не доступны или нет уверенности, что статистические закономерности сохранятся в будущем, у качественных методов просто нет альтернатив. И хотя эти методы нельзя практически стандартизировать и добиться от них высокой точности прогноза, однако они с успехом могут использоваться при оценке рыночных перспектив нового продукта или новой технологии, прогнозировании изменений в законодательстве или правительственной политики и т. д. Как правило, качественные методы используются при средне - и долгосрочном прогнозировании.

Статистические методы

В случаях, когда фирме доступен достаточно большой объем статистических данных и есть уверенность, что тренд или сезонные колебания достаточно стабильны, то статистические методы показывают высокую эффективность при составлении краткосрочных прогнозов спроса на товары. Главной предпосылкой статистических методик является предположение, что будущее является продолжением прошлого. Поскольку статистические данные, как правило, носят количественный характер, то при прогнозировании широко используются различные математические и количественные модели, заимствованные, прежде всего, из области статистики. Точность прогноза на период до 6 месяцев обычно является достаточно высокой. Это объясняется тем, что в краткосрочном периоде тенденции спроса обычно достаточно устойчивы.

Статистические прогнозы напрямую зависят от имеющихся исходных данных. Чем обширнее статистическая база, тем точнее прогноз. По мере поступления новых статистических данных постепенно меняется и прогноз на будущее. Вместе с тем при переломе тенденции статистический прогноз сигнализирует об этом с некоторым запозданием. Это является серьезным недостатком статистических моделей и накладывает на них определенные ограничения при практическом использовании.

Факторные методы

Главной предпосылкой для использования факторных моделей при прогнозировании спроса является тот факт, что динамика спроса обусловлена целым рядом взаимно обусловленных причин, которые иногда можно выявить и проанализировать. Например, на уровень спроса положительно влияет уровень потребительского обслуживания. В этом случае при целенаправленной политике фирмы по повышению уровня сервиса можно ожидать увеличения объема спроса . В таких случаях говорят, что уровень обслуживания потребителей является фактором роста уровня спроса. В случае, когда удается полно и качественно выявить все причинно-следственные связи и описать их, факторные модели позволяют прогнозировать с высокой степенью точности будущие изменения спроса в средне - и долгосрочном периодах.

Факторные модели имеют несколько разновидностей

Ÿ статистические – например, регрессионные или эконометрические модели;

Ÿ дескриптивные – например, при описании объекта по методу «черного ящика», описании жизненного цикла объекта или компьютерном имитационном моделировании.

При прогнозировании результирующих показателей используются в той или иной степени статистические данные по факторным показателям. И на основании прогноза факторных показателей выстраивается прогноз результирующего показателя.

Основной проблемой, затрудняющей применение факторных моделей на практике, является то, что найти, выявить и описать причинно-следственные связи достаточно сложно. Даже если некоторые такие взаимосвязи выявлены, часто оказывается, что в рассматриваемом периоде эти связи не являются определяющими при прогнозировании спроса. Для качественного прогноза с помощью факторной модели требуется выявить и описать все наиболее важные и значимые факторы влияния, но именно это как раз и бывает сложно сделать. Кроме того, для прогноза необходимо иметь статические данные не только по результирующим, но и по факторным показателям, причем за период не менее чем 6 месяцев. Из этих проблем точность факторных моделей, к сожалению, оказывается не слишком высока.

Таблица 1. Методики прогнозирования спроса

Методика, описание, интервал прогнозирования

Дэльфи

Группа экспертов опрашивается с помощью нескольких опросных листов . Результаты одного опроса используются для подготовки следующего опроса. Вся информация, необходимая для прогнозирования, должна быть доступна всем экспертам: владеющие информацией должны передать ее тем, кто не владеет ею. Техника исключает «стадный эффект», когда мнение одних экспертов влияет на мнение других экспертов.

Маркетинговые исследования

Систематические, формализованные и целенаправленные процедуры, направленные на совершенствование и проверку гипотез о реальных рынках.

Интервал прогнозирования: среднесрочный

Панельные исследования

Методика базируется на предположении, что несколько экспертов обеспечивают лучший прогноз, чем один эксперт. Между ними нет никаких секретов, и наоборот, коммуникации поощряются. Прогноз иногда зависит от влияния социальных факторов и может не отражать настоящего консенсуса.

Интервал прогнозирования: среднесрочный

Оценки торгового персонала

Мнения торгового персонала фирмы могут иметь ценность, поскольку продавцы ближе к потребителям и имеют все возможности оценить их потребности и спрос.

Метод сценариев

На основании личных мнений, оценок, видения ситуации и, если возможно, фактов строится несколько сценариев будущих продаж. В основе этих сценариев лежит простое воображение, или видение того или иного сценария будущего. Этот метод, конечно, является ненаучным.

Историческая аналогия

Прогноз продаж основывается на сравнении с выведением на рынок и ростом продаж аналогичных продуктов, о которых уже накоплена соответствующая статистика.

Интервал прогнозирования: среднесрочный и долгосрочный

Скользящие средние

Значения скользящих средних получаются как средняя арифметическая или взвешенная величина, рассчитываемая по некоторому количеству значений из временного ряда . Количество значений временного ряда, которые используется при расчете скользящей средней, выбираются так, чтобы определить основную тенденцию и удалить случайные и сезонные колебания спроса.

Экспоненциальное сглаживание

Методика экспоненциального сглаживания похожа на методику скользящих средних, только последние наблюдения имеют больший вес, чем прошлые наблюдения. Новый прогноз – это старый прогноз плюс некоторая доля последней ошибки прогнозирования. Более сложные модели экспоненциального сглаживания учитывают также тренд и сезонные колебания.

Интервал прогнозирования: краткосрочный

Классический анализ временных рядов

Метод декомпозиции временных рядов на тренд, сезонную и случайную составляющую. Это прекрасный инструмент, с помощью которого можно прогнозировать спрос на период от 3 до 12 месяцев.

Интервал прогнозирования: краткосрочный и среднесрочный

Проекция тренда

Эта методика позволяет выявить тренд с помощью математического уравнения и затем спроецировать его в будущее. Существует несколько вариантов методики: полиномы, логарифмы и пр.

Интервал прогнозирования: краткосрочный и среднесрочный

Метод фокусирования

Позволяет протестировать некоторое количество простых способов прогнозирования, чтобы проверить, какое из них наиболее дает наиболее точный прогноз по данным за 3-месячный период. Имитационное моделирование позволяет выполнить такой тест и проверить различные стратегии прогнозирования временного ряда.

Интервал прогнозирования: среднесрочный

Спектральный анализ

В модели предпринимается попытка разбить временной ряд на несколько фундаментальных компонентов.

ПРОГНОЗИРОВАНИЕ СПРОСА В ЛОГИСТИКЕ

В основном в сфере логистике требуется лишь небольшое количество методик прогнозирования. Поскольку прогнозы – особенно прогноз продаж, – необходимы различным сегментам организации, то прогнозирование обычно сосредотачивается в отделе маркетинга, плановом отделе или отделе экономического анализа . Долгосрочные и среднесрочные прогнозы часто составляются в отделе логистики. Однако потребности отдела логистики обычно ограничиваются краткосрочными прогнозами, которые необходимы для планирования запасов, календарного планирования перевозок, планирования загрузки складских помещений и т. п. Исключение составляют только потребности в каких-то специальных долгосрочных прогнозах.

Учитывая степень сложности, полезности, достоверности и доступности информации, лишь часть методик из тех, которые перечислены в таблице 1, имеет смысл рассматривать подробно. Многочисленные исследования показали, что «простые» модели анализа временных рядов позволяют прогнозировать продажи не хуже или даже еще лучше, чем более сложные и трудоемкие методики. Модель временного ряда относится к разряду факторных моделей и является наиболее распространенной в практике прогнозирования. В целом, усложнение модели прогнозирования не обеспечивает увеличения точности прогноза. Поэтому дальше будут рассмотрены только три наиболее популярные методики анализа временного ряда: экспоненциальное сглаживание, классический анализ временных рядов и множественный регрессионный анализ.

Экспоненциальное сглаживание

Возможно, что экспоненциальное сглаживание – это наиболее популярный метод прогнозирования. Он очень прост, требует минимальных исходных данных, обладает высокой точностью и легко адаптируется под конкретные задачи прогнозирования. Метод является вариантом методики расчета скользящих средних, при котором результаты прошлых наблюдений имеют меньший вес, чем результаты новых, более свежих наблюдений за продажами.

Такая схема распределения весовых коэффициентов может быть задана простым уравнением, в котором прогноз на будущий период составляется на основе прогноза предыдущего периода и фактических продаж в текущем периоде:

НОВЫЙ ПРОГНОЗ = a´(ФАКТИЧЕСКИЙ СПРОС) + (1 – a)´(ПРЕДЫДУЩИЙ ПРОГНОЗ)

В этой формуле a – это весовой коэффициент, или сглаживающая постоянная. Коэффициент a варьируется от 0 до 1. Отметим, что все прошлые наблюдения за продажами включены в прогноз предыдущего периода. Таким образом, вся предыдущая история продаж отражена в одном числовом значении прогноза за предыдущий период.

Пример . Допустим, что прогноз спроса в текущем месяце составляет 1000 шт. Фактический спрос в текущем месяце составил 950 шт. Сглаживающая константа составляет a = 0,3. Ожидаемый спрос в следующем месяце определяется по формуле:

Новый прогноз = 0,3´950 + 0,7´1000 = 985 шт.

Этот новый прогноз будет использоваться в формуле для расчета нового прогноза на второй месяц и т. д.

Для удобства расчетов запишем формулу экспоненциального сглаживания в виде следующей модели:

где t – текущий временной период; Ft – прогноз продаж на период t; Ft+1 – прогноз продаж на период (t+1); a – константа сглаживания; At – продажи в период t.

Пример . Следующий квартальный временной ряд представляют данные о спросе на продукцию за полтора года:

Квартал

Прошлый год

Текущий год

Нам необходимо построить прогноз на третий квартал текущего года. Допустим, что сглаживающая постоянная a = 0,2. Прогноз предыдущего периода рассчитаем как средний уровень спроса в квартал по данным предыдущего года. Следовательно, А0 = (1200 + 700 + 900 + 1100)/4 = 975. Допустим, что прогноз продаж в прошлом году в среднем соответствовал фактическим продажам, т. е. F0 = А0 = 975.

Тогда

F1 = 0,2´A0 + (1 – 0,8)´F0 = 0,2´975 + 0,8´975 = 975

F2 = 0,2´A1 + (1 – 0,8)´F1 = 0,2´1400 + 0,8´975 = 1060

F3 = 0,2´A2 + (1 – 0,8)´F2 = 0,2´1000 + 0,8´1060 = 1048

В итоге получаем следующие результаты:

Квартал

Прошлый год

Текущий год

Выбор оптимального значения сглаживающей константы основывается на оценочных суждениях.

§ Чем выше значение константы a, тем большее влияние на прогноз оказывают последние наблюдения за фактическими продажами. В результате модель более гибко и быстро реагирует на изменения в продажах. Однако слишком высокий уровень a делает модель слишком «нервной», слишком чутко реагирующей на любой случайное колебание спроса без учета основной тенденции развития.

§ Чем ниже значение константы a, тем больший вес в прогнозе имеют прошлые наблюдения за фактическими продажами. В виду этого модель реагирует на изменения в тенденциях развития спроса медленнее, с запозданием. При очень низком значение a модель реагирует на изменения спроса крайне медленно и тяжело, что обеспечивает очень «стабильный» прогноз, но делает его крайне неправдоподобным, не похожим на временной ряд.

Наиболее приемлемые значения константы a варьируются в интервале от 0,01 до 0,3. Более высокие значения a могут использоваться при краткосрочном прогнозировании, когда ожидаются какие-то серьезные изменения на рынке. Например, падение продаж, краткосрочные и агрессивные маркетинговые компании, вывод из продуктовой линии некоторых устаревших продуктов, начало продаж нового продукта, когда нет еще достаточной статистики для прогнозирования спроса и пр.

Основное правило при выборе значения константы a: модель должна отображать основную тенденцию в развитии спроса и сглаживать случайные колебания. Такая константа обеспечивает минимальную ошибку прогнозирования.

Корректировка прогноза с учетом тренда

Простое экспоненциальное сглаживание удобно использовать в том случае, если отсутствует устойчивая тенденция к увеличению или уменьшению спроса, т. е. средний уровень спроса достаточно стабилен во времени. Если же в продажах обнаруживается, например, тренд к повышению спроса, то каждый новый прогноз будет устойчиво меньше фактического спроса.

К счастью, прогноз можно откорректировать, введя в методику дополнительную формулу, с помощью которой рассчитывается тренд. Для этого к экспоненциальному уравнению необходимо добавить еще одну формулу, которая будет учитывать тренд:

где St – начальный прогноз в пери од t, Тt – тренд в период t, Ft+1 –прогноз на период t+1 с учетом тренда, b – сглаживающая постоянная для тренда.

Пример

Квартал

Прошлый год

Текущий год

Для начала рассчитаем прогноз на первый квартал текущего года. В качестве исходных значений при расчетах будем использовать S0 = 975 (средний спрос за квартал по данным предыдущего года) и T0 = 0 (тренд отсутствует). Допустим, что сглаживающие постоянные a = 0,2 и b = 0,3. Теперь начнем расчеты.

Прогноз на первый квартал текущего года:

S0 = 975, T0 = 0 ® F1 = 975 + 0 = 975

Прогноз на второй квартал текущего года:

S1 = 0,2´1400 + 0,8´(975 + 0) = 1060

Т1 = 0,3´(1 060 – 975) + 0,7´0 = 25,5

F2 = 1060 + 25,5 = 1085,5

Прогноз на третий квартал текущего года:

S2 = 0,2´1000 +0,8´(1060 + 25,5) = 1068,4

Т2 = 0,3´(1068,4 – 1060) + 0,7´25,5 = 20,37

F2 = 1068,4 + 20,37 = 1088,77

В итоге получаем:

Квартал

Прошлый год

Текущий год

Корректировка прогноза с учетом тренда и сезонности

При прогнозировании можно учесть не только тренд, но и сезонные колебания спроса. Прежде чем использовать модель, которая рассмотрена в следующем примере, следует проверить временной ряд на выполнение следующих двух условий:

1. Сезонные пики и падения спроса должны четко проглядываться на статистическом ряде, т. е. они должны быть больше, чем случайные колебания спроса (так называемый «шум»).

2. Сезонные пики и падения спроса должны устойчиво повторяться из года в год.

Если эти два условия не соблюдаются, то есть сезонные колебания неустойчивы, незначительны и трудно отличаются от «шума», то использовать модель для точного прогноза спроса на следующий временной период будет крайне трудно. Если условия выполняются и в модели устанавливается высокое значение сглаживающей постоянной, чтобы учитывать большую амплитуду колебаний спроса, то имеет смысл усложнить модель.

В этой новой модели прогноз строится с учетом корректировок тренда и сезонности, которые отображаются в форме индексов. Это позволяет достичь высокой точности прогноза.

Уравнения усложненной модели:

где Тt – тренд в период t, St – начальный прогноз в период t, Ft+1 – прогноз на период t+1 с учетом тренда и сезонности, It –индекс сезонных колебаний в период t, L – временной период, в течение которого совершается полный сезонный цикл, g – сглаживающая постоянная для сезонного индекса.

Пример . Рассчитаем прогноз на третий квартал текущего года с учетом тренда:

Квартал

Прошлый год

Текущий год

Для начала рассчитаем прогноз на первый квартал текущего года. В качестве исходных значений при расчетах будем использовать St-1 = 975 (средний спрос за квартал по данным предыдущего года) и Tt-1 = 0 (тренд отсутствует). Допустим, что сглаживающие постоянные a = 0,2 и b = 0,3, а g = 0,4. Теперь начнем расчеты.

Прогноз на первый квартал текущего года:

S0 = 975 и T0 = 0. Тогда:

F1 = (975 + 0) ´ 1,23 = 1200, потому что I1 = 1200 / 975 = 1,23

Прогноз на второй квартал текущего года:

S1 = 0,2´1400 / 1,23 + 0,8´(975 + 0) = 1007,5

I1 = 0,4´1400 / 1007,5 + 0,6´1,23 = 1,29

Т1 = 0,3´(1007,5 – 975) + 0,7´0 = 9,75

F2 = (1007,5 + 9,75)´0,72 = 730,3, потому что I2 = 700 / 975 = 0,72

Прогноз на третий квартал текущего года:

S2 = 0,2´1000 / 0,72 +0,8´(1007,5 + 9,75) = 1092,4

I2 = 0,4´1000 / 1092,4 + 0,6´0,72 = 0,8

Т2 = 0,3´(1092,4 – 1007,5) + 0,7´9,75 = 32,3

F2 = (1092,4 + 32,3)´0,92 = 1005, потому что I3 = 900 / 975 = 0,92

В итоге получаем:

Квартал

Прошлый год

Текущий год

Ошибка прогнозирования

Поскольку будущее никогда нельзя в точности предугадать по прошлому, то прогноз будущего спроса всегда будет содержать в себе ошибки в той или иной степени. Модель экспоненциального сглаживания прогнозирует средний уровень спроса. Поэтому следует построить модель так, чтобы уменьшить разность между прогнозом и фактическим уровнем спроса. Эта разность называется ошибкой прогнозирования.

Ошибка прогнозирования выражается такими показателями, как среднеквадратическое отклонение, вариация или среднее абсолютное отклонение. Раньше среднее абсолютное отклонение использовалось в качестве основного измерителя ошибки прогнозирования при использовании модели экспоненциального сглаживания. Среднеквадратическое отклонение отвергли из-за того, что рассчитывать его сложнее, чем среднее абсолютное отклонение, и у компьютеров на это просто не хватало памяти. Сейчас у компьютеров достаточно памяти, и теперь среднеквадратическое отклонение используется чаще.

Ошибку прогнозирования можно определить с помощью следующей формулы:

ОШИБКА ПРОГНОЗА = ФАКТИЧЕСКИЙ СПРОС – ПРОГНОЗ СПРОСА

Если прогноз спроса представляет собой среднее арифметическое фактического спроса, то сумма ошибок прогнозирования за определенное количество временных периодов будет равна нулю. Следовательно, значение ошибки можно отыскать путем суммирования квадратов ошибок прогнозирования, что позволяет избежать взаимного устранения положительных и отрицательных ошибок прогнозирования. Эта сумма делится на количество наблюдений и затем из нее извлекается квадратный корень. Показатель корректируется с уменьшением одной степени свободы, которая теряется при составлении прогноза. В результате, уравнение среднеквадратического отклонения имеет вид:

,

где SE – средняя ошибка прогнозирования; Ai – фактический спрос в период i; Fi – прогноз на период i; N – размер временного ряда.

Форма распределения ошибок прогнозирования является важной, когда формулируются вероятностные утверждения о степени надежности прогноза. Две типовые формы распределения ошибок прогнозирования показаны на рисунке 3.

Полагая, что модель прогнозирования отражает средние значения фактического спроса достаточно хорошо и отклонения фактических продаж от прогноза относительно невелики по сравнению с абсолютной величиной продаж, то вполне вероятно предположить нормальное распределение ошибок прогнозирования. В тех же случаях, когда ошибка прогнозирования сопоставима по величине с величиной спроса , имеет место скошенное, или усеченное нормальное распределение ошибок прогноза.

Определить тип распределения в конкретной ситуации можно с помощью теста на соответствие критерию согласия хи-квадрат. В качестве альтернативы можно использовать другой тест, с помощью которого можно определить, является ли распределение симметричным (нормальным) или экспоненциальным (разновидность скошенного распределения):

При нормальном распределении около 2% наблюдаемых значений превышают значение, равное сумме среднего и удвоенного значения среднеквадратического отклонения. При экспоненциальном распределении около 2% наблюдаемых значений превышают среднее на величину среднеквадратического отклонения, умноженного на коэффициент 2,75. Следовательно, в первом случае используется нормальное распределение, а во втором случае – экспоненциальное.

Пример . Снова вернемся к нашему примеру. В базовой модели экспоненциального сглаживания были получены следующие результаты:

Квартал

Прошлый год

Текущий год

Оценим стандартную ошибку прогнозирования по данным за первый и второй кварталы текущего года, по которым нам известны фактические и прогнозные значения. Допустим, что спрос имеет нормальное распределение относительно прогноза. Рассчитаем границы доверительного интервала с вероятностью 95% для третьего квартала.

Стандартная ошибка прогнозирования:

Используя таблицу А (см. Приложение I), определяем коэффициент z95% = 1,96 и получаем границы доверительного интервала по формуле:

Y = F3 ± z(SE) =1005 ± 1,96´298 = 1064 ± 584,2

Следовательно, с 95%-й вероятностью границы доверительного интервала прогноза спроса на третий квартал текущего года составляют значения:

420,8 < Y < 1589,2

Отслеживание ошибки прогнозирования

Одним из существенных преимуществ модели экспоненциального сглаживания при краткосрочном прогнозировании является возможность постоянной адаптации прогноза с учетом самых последних наблюдений во временном ряде. При этом точность прогнозирования напрямую зависит от значения сглаживающей константы в каждый конкретный период времени. Следовательно, усложненная процедура прогнозирования должна включать в себя регулярное отслеживание средней ошибки прогнозирования и соответствующую корректировку значения сглаживающей постоянной. Если временной ряд достаточно постоянный, то можно устанавливать низкие значения константы. В период больших колебаний спроса следует установить высокое значение константы. Но не следует ограничиваться каким-то одним значением, если изменение константы может привести к уменьшению ошибки прогнозирования, особенно в случае высокой динамики временного ряда.

Популярным методом отслеживания ошибки прогнозирования является метод усреднения отслеживающего сигнала. Отслеживающий сигнал – это результат сравнения, получаемого обычно в виде соотношения, текущий ошибки прогнозирования со средним значениям прошлых ошибок прогнозирования. В результате этого вычисления сглаживающая экспоненциальная константа может быть пересчитана или переопределена, если полученное соотношение превосходит ранее определенный контрольный уровень.

В целом, наилучшей сглаживающей константой является та, которая минимизирует ошибку прогнозирования так, как это было бы при стабильном временном ряде. Изменяя значение константы по мере того, как временной ряд пополняется новыми значениями, позволяет уменьшить ошибку прогнозирования. Адаптирующиеся модели, которые пересчитывают значения сглаживающей константы постоянно, работают хорошо в случае, когда временной ряд меняется быстро, но они малоэффективны в условиях стабильных продаж. Наоборот, модели, в которых пересчет сглаживающей константы происходит только в случае, когда ошибка прогнозирования превосходит некий контрольный уровень, хорошо работают в условиях стабильности, когда возможны резкие и неожиданные скачки временного ряда. Пример такой адаптирующейся модели показан на рисунке 5.

КЛАССИЧЕСКИЙ АНАЛИЗ ВРЕМЕННЫХ РЯДОВ

Анализ временных рядов – это модель прогнозирования, которая используется на практике на протяжении многих лет. В него включается спектральный анализ, классический анализ временных рядов и анализ Фурье. В данной главе рассматривается классический анализ временных рядов в виду его простоты и популярности. К тому же он обеспечивает же ту же точность прогнозирования, как и более сложные методы.

Классический анализ временных рядов базируется на предположении, что статистический ряд можно разложить на четыре составляющие: тренд, сезонные колебания, циклические колебания и случайные колебания.

§ Тренд представляет долгосрочные изменения в продажах, обусловленные такими факторами, как рост населения, расширение рынков, изменения потребительских предпочтений, улучшение качества продукции и сервисного обслуживания и т. п. Виды трендовых кривых представлены на рисунке …

§ Сезонные колебания представляют собой регулярные всплески и падения продаж, которые повторяются с регулярностью в 12 месяцев. Причины, вызывающие эти перепады, включают в себя изменение спроса в зависимости от времени года, рост продаж накануне праздников, а также сезонное предложение товаров (например, овощи, фрукты).

§ Циклические колебания представляют собой долгосрочные (более 1 года) волнообразные изменения спроса.

§ Случайные колебания (остаток) отражает влияние на продажи всех прочих факторов, которые оказались неучтенными в тренде, сезонных и циклических колебаниях.

Если временной ряд достаточно хорошо описывает ся первыми тремя кривыми, то остаток должен представлять собой случайную величину.

Рис. 1. Примеры трендов с приложением математических формул

В классическом анализе временных рядов прогнозирование спроса осуществляется путем перемножения четырех значений:

F = T ´ S ´ C ´ R,

где F – прогноз спроса (в товарных или денежных единицах), T – линия тренда, S – индекс сезонных колебаний, C – индекс циклических колебаний, R – индекс случайных колебаний.

На практике в модели оставляют только тренд и сезонные колебания. Это объясняется тем, что в условиях хорошей прогнозируемости спроса индекс случайных колебаний равен единице (R = 1,0). Кроме того, во многих случаях достаточно сложно выявить многолетние циклические колебания, основываясь на анализе случайных колебаний. Поэтому индекс циклических колебаний также полагается единице (C = 1,0). И это допущение не имеет таких уж серьезных последствий, поскольку модель часто приходится корректировать по мере того, как поступают все новые и новые данные. Эффект циклических колебаний просто компенсируется регулярными корректировками модели.

Линия тренда может быть определена несколькими способами, например, методом скользящих средних (то есть практически «на глаз»), или методом суммы квадратов разностей.

Сумма квадратов разностей – это популярная математическая методика , которая позволяет подобрать такой тренд, при котором сумма квадратов разностей между фактическими и модельными значениями временного ряда сводится к минимуму. Методика применима к любым линиям тренда, как линейным, так и нелинейным.

Например, для линейного тренда (T = a + b´t, где t – это время, T – средний уровень спроса) коэффициенты a и b определяются с помощью следующих двух формул:

где N – размер временного ряда (количество периодов t во временном ряде); Dt – фактический спрос в период t; - средний спрос за N временных периодов; - среднее значение величин t за период N.

Нелинейные тренды имеют более сложную математическую структуру, и потому они здесь не рассматриваются.

Сезонная составляющая модели представлена в виде индекса, значение которого меняется в каждом из периодов в пределах горизонта прогнозирования . Этот индекс представляет собой отношение фактического спроса за данный период к среднему спросу. Средний спрос можно рассчитать как среднее арифметическое спроса за определенный период, методом скользящих средних или с помощью тренда. Например, можно воспользоваться следующей формулой:

где St – сезонный индекс периода t; Tt – величина тренда, рассчитанного по формуле Tt = a + b´t.

В результате прогноз продаж для периода t в будущем рассчитывается по формуле:

,

где Ft – прогноз продаж для периода t; L – количество периодов, которые охватывают один сезонный цикл.

Все эти идеи могут быть проиллюстрированы с помощью следующего примера.

Пример . Производитель одежды для молодых женщин должен принять решение о том, когда и в каких объемах ему делать закупки, опираясь на прогноз продаж своей продукции. В году он выделил пять сезонов, значимых для планирования и продвижения своей продукции: лето, межсезонье, осень, новогодние праздники и весна. У него есть статистика продаж примерно за 2,5 года (см. таблицу 1). Прогноз нужно сделать, как минимум, на два сезона вперед, чтобы можно было спланировать закупки и производство. В данном примере прогнозным периодом считаются новогодние праздники, хотя данные о продажа в промежуточный, осенний период пока еще неизвестны.

Первая задача – найти линию тренда. Используя формулу T = a + b´t, рассчитаем коэффициенты:

Следовательно, линия тренда имеет вид:

Значения сезонного индекса рассчитаны по выше приведенной формуле и представлены в колонке 6. В данном примере значения сезонного индекса посчитаны за все 2,5 года, поскольку сезонные отклонения не сильно различаются из года в год. Если сезонные отклонения из года в год имеют разные значения, то для каждого сезона рассчитывается свой индекс отклонения как среднее значение за несколько лет.

Прогноз продаж в новогодние праздники составляет величину:

Прогноз продаж в осенний период может быть составлен похожим образом.

Таблица 1. Прогноз продаж женской одежды, тыс. $

Сезон

Период

Продажи

Dt ´ t

t 2

Тренд (T t )

Прогноз

Межсезонье

Праздники

Межсезонье

Праздники

Межсезонье

Праздники

Итого

/* Прогнозное значение. Например, T13 =,08 + 486,13(13) =

/** F13 = T13´S13-5 или=´ 1,04

Здесь: N = 12; SDt´t = 1 ; St2 = 650; `D = (/ 12) = $14 726,92; `t = (78 / 12) = 6,5.

МНОЖЕСТВЕННЫЙ РЕГРЕССИОННЫЙ АНАЛИЗ

В моделях, которые рассматривались до сих пор, время было единственным фактором, который учитывался при прогнозировании. Другие факторы в той степени, в какой они объясняют изменения спроса, также могут быть включены в расчет. Множественный регрессионный анализ представляет собой статистическую методику, которая позволяет определить взаимосвязь между спросом и набором определенных переменных. Благодаря такому анализу эти переменные используются при прогнозировании спроса так же, как и время. Данные о значениях независимых переменных в процессе регрессионного анализа преобразуется в значения коэффициентов регрессионного уравнения, с помощью которого рассчитывается прогноз спроса.

Пример . Вернемся к проблеме прогнозирования продаж женской одежды, которая рассматривалась в предыдущем разделе. Альтернативой анализу временных рядов является регрессионный анализ. Желательно, чтобы независимые переменные регрессионной модели предшествовали по времени результату, то есть продажам одежды. Это значит, что значения переменных должны быть доступны для анализа заблаговременно до наступления прогнозного периода. Одна такая регрессионная модель была построена для периода летних продаж:

F = - 3,016 + 1,211X1 + 5,75X2 + 109X3,

где F – оценка средних продаж в летний период (в тысячах долларов); X1 – время в годах (1986 = 1); X2 – количество заявок на закупку одежды, поступивших в течение сезона (из книги заказов); X3 – чистое изменение задолженности покупателей, рассчитываемое по месяцам (в процентах).

Данная модель объясняет 99% (R = 0,99) общей вариации спроса и имеет статистическую погрешность в пределах 5%. Это обеспечивает высокую точность прогнозирования. Например, фактические продажи летом 1991 г. составили $20 Независимые переменные в 1991 г. имели значения: X1 = 6, X2 = 2732, X3 = 8,63. Подставляем эти значения в регрессионное уравнение и получаем прогноз продаж: $20

Для построения такой регрессионной модели требуются значительные знания по статистике. Однако можно воспользоваться и уже готовыми программными продуктами, такими как Statistics 6.0, которые позволяют произвести расчет параметров модели методом наименьших квадратов и оценить степень ее точности. Однако при пользовании такими программными пакетами следует проявлять определенную осторожность, так как они не гарантируют получение достоверной модели. Важно достоверно знать и понимать, как именно статистический алгоритм лежит в основе расчета параметров модели, потому что разные алгоритмы нередко дают разные результаты, и это сказывается на точности прогнозирования. Ответить на этот вопрос можно, но только разобравшись с математической начинкой программы.

ОСОБЕННОСТИ ПРОГНОЗИРОВАНИЯ ПРОДАЖ В ЛОГИСТИКЕ

При прогнозировании продаж в логистике иногда приходится сталкиваться с некоторыми специфическими проблемами, к числу которых относятся прогнозирование спроса на новые продукты и услуги, нерегулярный спрос, прогнозирование по регионам, а также оценка ошибки прогнозирования. Хотя эти проблемы встречаются не только в логистике, однако они оказывают большое влияние на решения, принимаемые в этой сфере.

Прогнозирование спроса на новые продукты и услуги

В логистике часто приходится решать проблему прогнозирования спроса на продукцию, по которой пока еще нет достаточно большой статистики продаж. Для решения этой проблемы используются несколько различных подходов, которые помогут преодолеть этот ранний период в продвижении продукта на рынке.

Во-первых, начальный прогноз можно получить из отдела маркетинга, пока не будет накоплена достаточная статистика продаж. Обычно маркетологи лучше знают, сколько средств требуется на продвижение товара, какой будет потребительская реакция на товар и какие будут ожидаемые продажи. Этот прогноз должен охватывать период не менее шести месяцев, чтобы можно получить достаточно представительную статистику для последующего прогнозирования.

Во-вторых, прогноз продаж можно построить на основании статистики о продажах схожих продуктов. Известно, что многие компании полностью обновляют свою продуктовую номенклатуру в среднем каждые пять лет. Однако некоторые товары оказываются принципиально новыми. Их появление связано с изменениями в размерах, стиле продукции или просто с радикальным пересмотром номенклатуры как элемента маркетинговой политики фирмы. Такие товары прогнозируются только на основании оценочных данных, получаемых из отдела маркетинга.

В-третьих, для прогнозирования можно использовать модель экспоненциального сглаживания, установив коэффициент a на уровне 0,5 и выше. По мере того, как будет накапливаться все больше и больше статистики, этот показатель можно снизить до нормального уровня.

Нерегулярный спрос

О проблеме нерегулярного спроса уже шла речь в начале этого раздела. При нерегулярном спросе случайные колебания столь велики, что не позволяют выявить тренд или сезонную составляющую спроса. У такого спроса может быть несколько причин:

§ продажи осуществляются редко, но очень крупными партиями;

§ продажа товара зависит от продаж других продуктов и услуг;

§ слишком велики сезонные и иные перепады в продажах в течение одного года, что не позволяет выявить тренд;

§ продажи обусловлены случайными факторами, такие как спекуляция, слухи, кратковременная мода и пр.

Нерегулярный спрос трудно прогнозировать с помощью математических методов вследствие большого разброса временного ряда. Однако все же можно дать несколько советов, что лучше делать при нерегулярном спросе.

Во-первых, следует выявить причины нерегулярности спроса и с учетом этого фактора построить прогноз продаж. Также следует отделить продукты с нерегулярным спросом от тех, который показывают устойчивый тренд, и использовать для каждой категории разные, наиболее подходящие методы прогнозирования.

Пример . Производитель химической продукции выпускает средство для очистки яблок во время сбора урожая. В зависимости от урожая яблок, продажи этого средства значительно колеблются из года в год. Для прогнозирования продаж этого средства использовалась модель экспоненциального сглаживания, как и для всех прочих продуктов. Вследствие этого запасы продукции данного средства на складах оказывались существенно больше, либо существенно меньше спроса, который предъявлялся на рынке. Причиной этого было то, что компания при прогнозировании не разделяла продукцию с регулярным и нерегулярным спросом. Ситуация можно исправить, если прогноз строить с учетом того главного фактора, который определяет спрос на товар, т. е. исходя из того, какой урожай яблок ожидается в этом году.

Во-вторых, не следует слишком быстро реагировать на изменения в продажах такого рода продуктов или услуг, если, конечно, нет серьезных причин полагать, что спрос действительно изменился. Лучше всего использовать простую модель прогнозирования, которая не слишком быстро реагирует на изменения. Например, это может быть экспоненциальное сглаживание с низким уровнем коэффициента a или регрессионная модель с шагом прогнозирования 1 год.

В-третьих, поскольку нерегулярный спрос часто наблюдается у товаров с небольшим объемом продаж, можно не уделять слишком много внимания точности прогноза. Например, если прогноз используется для определения уровня запасов, то более экономично будет создать небольшой дополнительный запас, чем использовать более сложные и точные методики прогнозирования.

Прогнозирование по регионам

Хотя до сих пор обсуждение касалось только вопросов прогнозирования продаж во времени, однако прогнозирование продаж в разрезе по регионам также заслуживает внимания. Необходимо решить, как будут прогнозироваться продажи: в целом по всему рынку, по отдельным районам и регионам или же по территориям, которые примыкают к конкретным заводам или складским комплексам. Очень важно обеспечить высокую точность прогнозирования, если оно ведется отдельно по каждому региону. Обобщающий прогноз по всему рынку оказывается, как правило, более точным, чем сумма отдельных прогнозов по регионам. Поскольку это так, то, возможно, лучше будет построить общий прогноз по рынку, чтобы затем его пропорционально разбить по регионам, чем вести раздельное прогнозирование по каждому региону. Впрочем, как показывает практика, однозначного ответа на вопрос, какой подход лучше, не существует. Следовательно, нужно иметь в виду оба варианта и использовать их в зависимости от конкретной ситуации.

Ошибка прогнозирования

В конце главы поговорим об одном очень важном инструменте прогнозирования. Было рассмотрено уже много моделей и методик прогнозирования. У каждой есть свои плюсы и минусы, поэтому лучше всего использовать при прогнозировании сразу несколько моделей, что позволит получить более точный и стабильный прогноз на будущее.

Пример . Вернемся к проблеме прогнозирования продаж женской одежды, которая обсуждалась выше. Производитель выделил в году пять сезонов продаж. Нет никакой гарантии, что для каждого сезона наилучшей будет одна и та же методика прогнозирования. Фактически, для прогнозирования использовалось четыре разных модели. Во-первых, использовалась модель множественной регрессии (R), которая учитывала факторы: 1) количество потребительских заявок; 2) изменения задолженности покупателей. Во-вторых, два варианта модели экспоненциального сглаживания (ES1, ES2). И в-третьих, собственный прогноз компании, который основывается на мнениях и оценках персонала (MJ). Средняя ошибка прогнозирования, полученная по каждому методу в разрезе по сезонам, показана на следующем рисунке:

/* в среднем за три сезона; /** в среднем за два сезона.

Объединить полученные прогнозы в один можно методом взвешенных коэффициентов, которые зависят от средней ошибки прогнозирования каждого метода. В этом случае не придется отказываться ни от одного из методов и впадать в зависимость от какой-то одной методики, которая кажется наиболее достоверной.

Для иллюстрации метода взвешенных коэффициентов, рассмотрим осенний период продаж. Средняя ошибка прогнозирования по методам, а также порядок расчета взвешенных коэффициентов представлены в следующей таблице (см. ниже).

Наконец, получив весовые коэффициенты, с их помощью можно рассчитать итоговый прогноз продаж, который составляет $20 210 тыс. Расчет показан во второй таблице (см. ниже).

Таблица 1

Ошибка прогнозирования

Доля ошибки прогнозирования

Инверсия

Весовые коэффициенты

Таблица 2

Модель прогнозирования

Прогноз продаж

Весовые коэффициенты

Взвешенная пропорция

Мнения персонала фирмы (MJ)

Регрессионная модель (R)

Экспоненциальное сглаживание (ES1)

Экспоненциальное сглаживание (ES2)

Сумма


Для подбора нелинейных трендов следует обратиться к специальной литературе по статистике. Можно также воспользоваться функцией «Подбор параметра» или «Поиск решения», которая поддерживается в программе Microsoft Excel (см. справку).

Прогнозирование спроса осуществляется с помощью качественных и количественных методов (в том числе нормативно-целевого метода).

Для краткосрочных и среднесрочных прогнозов применяются качественные методы (экспертной оценки; оценки уровня продажи, высказанные ведущими торговыми фирмами; анкетирование потребителей) и количественные методы (использование коэффициента эластичности спроса; метод геометрической прогрессии; трендовая модель; многофакторные корреляционные и регрессионные модели, в том числе множественной линейной регрессии).

Для долгосрочных прогнозов применяется нормативно-целевой метод, который также можно отнести к группе количественных методов прогнозирования спроса.

Рассмотрим некоторые из указанных типовых методов прогнозирования спроса.

Особое значение в прогнозировании спроса имеет показатель его эластичности, выражающий зависимость одного фактора от состояния другого, например, зависимость количества товара от денежных доходов или цены товара. Обычно используется коэффициент эластичности спроса, который выражает величину изменения спроса (в процентах) при изменении цены товара (доходов населения) на 1%.

Коэффициент эластичности спроса Э рассчитывается по формуле:


где y – спрос на товар;

x - цена или доходы;

D - изменение показателя.

Следует отметить, что использование коэффициента есть своего рода упрощение понятия эластичности. При более точной трактовке эластичность рассматривается как предел соотношения между относительным приращением функции у: (зависимой переменной) и относительным приращением независимой переменной х: , когда D ® 0 обозначается символом Е (у) и выражается формулой:

Соответственно коэффициент эластичности характеризует приближенный процент функции (повышение или понижение), соответствующий приращению независимой переменной на 1%.

В практическом использовании коэффициент эластичности спроса от дохода показывает относительное изменение спроса (соответственно потребления, сбыта, продажи) при изменении денежных доходов на единицу. Здесь используется лишь один решающий фактор. Считается, что остальные факторы явления остаются неизменными и их влиянием можно пренебречь, т.е. от их воздействия абстрагируются. Точно так же характеризуется эластичность спроса от цены товара. Этот показатель имеет еще большее значение в прогнозных расчетах, чем эластичность спроса от доходов. Коэффициент эластичности спроса от цены показывает относительное изменение спроса при изменении цены товара на единицу. Понятно, что в данном случае зависимость этих двух составляющих будет обратной: чем выше цена, тем меньше спрос. В экономических расчетах во избежание путаницы минусовый знак при коэффициенте принято отбрасывать, но при этом каждый специалист об этом всегда помнит.

Определение коэффициента эластичности спроса от цены следует производить в количественном, а не стоимостном измерении спроса. В условиях фиксированных цен на товары это условие не имело значения. При подвижных ценах это обстоятельство надо учитывать обязательно.

Все товары по эластичности делятся на две группы: эластичного спроса и неэластичного спроса.

Специалисты выделяют еще третью группу, в которой эластичность равна единице.

В первую группу входят товары с коэффициентом выше 1. Снижение цены на такой товар и рост доходов населения ведут к увеличению количества продаваемых товаров и соответственно к росту прибыли от их продажи, так как при меньшей цене прирост продажи бывает достаточным для компенсации потерь от снижения цены. К таким товарам относятся: качественные одежда и обувь, кондитерские изделия, товары длительного пользования и ряд других. Причем чем выше коэффициент эластичности спроса, тем сильнее зависимость продажи товара от цены или доходов.

Во вторую группу (неэластичного спроса) входят товары с коэффициентом ниже 1. Снижение цены на такие товары может быть выгодно покупателям, но невыгодно фирме, так как обычно ведет к уменьшению ее прибыли при сокращающемся или неизменном объеме продажи товаров. Снижение доходов населения также почти не оказывает влияния на величину спроса. К таким товарам относятся: хлеб, соль, спички, основные молокопродукты, овощи и некоторые другие, т.е. товары первой необходимости.

Коэффициент эластичности спроса от доходов может быть и с отрицательным знаком. Это означает, что с ростом денежных доходов спрос на данный товар уменьшается. К таким товарам обычно относятся те, которые отличаются низкой питательной ценностью, являются малокалорийными или не отражают высокую степень готовности товара к потреблению.

Различают эластичность: а) дуговую, т.е. среднюю на отрезке кривой, и б) точечную, т.е. представленную в заданной точке. К этому делению эластичности близко, но не идентично, иное ее различие: деление коэффициентов эластичности на статические и динамические. Статический коэффициент эластичности рассчитывается за определенный период, обычно до 1 года. Динамический коэффициент эластичности исчисляется за более длительный период. Прогностическая ценность статических коэффициентов невелика, так как они не отражают процесса развития спроса во времени. Динамические коэффициенты эластичности исчисляются на основе данных об изменении спроса и того или иного его определяющего фактора за ряд лет. Такие коэффициенты эластичности рассчитываются от года к году. Они более пригодны для прогнозирования спроса, так как в них отражается тенденция изменения спроса во времени.

Расчет коэффициента эластичности требует специальных знаний теории и методик, которыми обычно обладают специалисты научных организаций и институтов, прогнозирующих экономические показатели. Это методики подробно излагаются в специальной литературе. Однако есть и более простой прием расчета коэффициента эластичности спроса, основанный на мнении эксперта, которым может выступить опытный продавец данного товара. Такой работник всегда может хотя бы примерно назвать величину изменения продажи товара при изменении его цены в условиях сложившейся конъюнктуры рынка.

Пример 1. Определить коэффициент эластичности спроса на электробатарейки, продаваемые по цене 5 руб. за штуку. В среднем за неделю магазин продает их 15 штук. Если снизить цену на батарейки до 4,3 руб., то, по мнению продавца, за неделю можно будет продать их уже 18 штук. На основе этой информации можно определить статический коэффициент эластичности спроса на батарейки от цены.

Расчет. Коэффициент эластичности спроса от цены в данном случае составит:

Вывод. При снижении цены на батарейки на 1% прирост спроса на них при сложившихся условиях продажи может составить 1,43%.

Полученный коэффициент эластичности может быть использован для составления прогноза продажи товара на следующую неделю или месяц. Однако надо помнить, что эластичность спроса не есть нечто постоянно заданное. Она может меняться при изменениях условий продажи. И тогда надо определять коэффициент эластичности заново.

Рассмотрим пример прогнозирования спроса на товар при известном коэффициенте эластичности спроса.

Пример 2. Определить прогноз на товар «А» при коэффициенте эластичности спроса от цены 1,21. Число покупателей в регионе может составить 400 тыс. человек. Сложившийся уровень продажи товара составляет 5 кг на человека за период. Намечается снижение цены товара на 4%.

Расчет. 1. Определяется рост спроса на товар «А» при снижении его цены на 4%.

4 х 1,21 = 4,84% ,

100% + 4,84% = 104,84%.

2. Определяется новый уровень потребления товара «А» одним покупателем после уменьшения цены:

5 х 1,0484 = 5,242 (кг).

3. Определяется возможный объем продажи товара «А» в расчете на весь контингент покупателей:

5,242 х 400000 = 2096800 (кг или 2097 т).

Вывод. Прогноз спроса на товар «А» после снижения цены на 4% составляет 2097 т.

Зная новую цену товара «А», можно определить спрос на него в стоимостной форме и соответственно объем розничного товарооборота по региону, а в дальнейшем, с учетом доли рынка товара – и по отдельным фирмам.

Пример 3. Составить прогноз продажи товара «В» при коэффициенте эластичности спроса от цены 1,08. В регионе возможен рост цены товара с 15 до 17 руб. Фактический товарооборот товара составил в регионе за прошлый год 80 тыс. руб.

Расчет. 1. Определяется процент роста цены товара «В»:

17: 15 х 100% = 113,3% ,

тогда прирост цены составит 13,3% .

2. Определяется уменьшение спроса на товар под влиянием роста цены:

1,08 х 13,3 = 14,364% ,

т.е. спрос на товар составит: 100% - 14,364% = 85,636%.

3. Определяется прогноз продажи товара «В» в регионе после увеличения цены:

80000 х 0,85636 = 68,509 (тыс. руб.).

Вывод. После увеличения цены товара «В» с 15 до 17 руб. можно ожидать, что объем его продажи составит 68,5 тыс. руб. при сложившейся конъюнктуре рынка.

Зная емкость рынка товара «В» в регионе и долю рынка товара (ведущих фирм региона) в каждом районе региона (на всем рынке), можно определить возможный объем его продажи по районам и ведущим фирмам региона при условии неизменности среды хозяйствования.

Когда в развитии спроса проявляется устойчивая тенденция к его повышению или снижению, то состояние ряда динамики можно прогнозировать по средним темпам изменения. В основе этого метода лежит предположение, что ряд показателей развития спроса во времени представляет собой геометрическую прогрессию. Это означает, что каждый последующий член динамического ряда a равен предыдущему, умноженному на средний коэффициент темпа изменения k .

Другим методом краткосрочного прогнозирования спроса является трендовая модель, основой которой также являются временные (динамические) ряды. Изучение временных рядов – важная область исследований экономической динамики времени. Ряды могут быть, во-первых, моментными и интервальными и, во-вторых, эволюторных и стационарных процессов.

Для моментного ряда характерна величина явления по состоянию на определенную дату, а для интервального – величина явления по состоянию за определенный период;

Эволюторный процесс временного ряда содержит тренд, чего нет при стационарном процессе.

Временные (динамические) ряды могут быть в виде: тренда, лага, периодических колебаний.

Тренду, как уже отмечалось, присуща длительная «вековая» тенденция. У лага имеется запаздывание одного явления от другого, связанного с ним. Периодические колебания зависят от сезона, циклов и иных повторяющихся изменений. Для выявления тенденций указанных видов временных рядов используются такие методы их математико-статистической обработки, как экстраполяция, выравнивание и анализ автокорреляции.

Трендовая модель наиболее популярна в прогнозировании. Она основана на том, что объем и особенно структура спроса характеризуются определенной степенью инерционности, т.е. потребление с запаздыванием приспосабливается к изменившимся условиям. Инерционность означает в данном случае невозможность произвольно в короткое время существенно изменить не только структуру, но и привычки потребления населения. Трендовая модель прогнозирования – это уравнение, формализующее закономерности развития спроса в базисном периоде. Модель применяется в том случае, если установлено, что найденные закономерности будут действовать на определенном отрезке времени в будущем.

В этом случае ряд динамики рассматривается как функция времени и с известным приближением описывается различными математическими уравнениями.

Из трендовых моделей в прогнозировании спроса наиболее широко используются следующие виды:

а) уравнение прямой

б) логарифмическая функция

в) экспоненциальная функция

г) параболическая функция

y = a + bx + cx .

д) логистическая функция

Прогноз спроса на базе трендовых моделей основывается на допущении, что все факторы, действовавшие в базисном периоде, и взаимосвязь этих факторов останутся неизменными и в прогнозном периоде. Однако такое условие в жизни часто нарушается. Поэтому метод трендовых моделей в прогнозировании спроса можно применять с упреждением на один, максимум на два интервала динамического ряда с детальным учетом всех факторов, влияющих на формирование покупательского спроса.

В таком явлении, как спрос, когда наблюдается одновременное влияние многих разнородных факторов, тесно взаимодействующих друг с другом, довольно трудно создать точную модель с хорошо интерпретирующими функциональными связями.

Простейшая модель спроса основывается на выделении одного главного фактора, его определяющего: доходов, цены или объема сбыта (продажи). Такая модель в силу своего упрощения называется эскизной. Примерами эскизных моделей служат те, в которых главным фактором выступает, например, эластичность спроса или экстраполяция спроса как функции времени.

Более сложным подходом отличается аналитическая модель спроса в потреблении, которая строится с использованием методов математической статистики на основе информации о структуре доходов населения, цен на товары и других факторов. Например, для прогнозирования спроса на предметы длительного пользования (холодильники, телевизоры, стиральные машины и т.д.) нужны данные о наличии и возрасте таких предметов, уже имеющихся у населения, составе семей и др.

Рассмотрим характеристику известной модели Энгеля. Однофакторная модель спроса от доходов, называемая кривой Энгеля (по имени немецкого ученого, впервые изучившего группу этих кривых), позволяет установить, какую долю своих доходов семьи определенного сегмента рынка выделяют на приобретение тех или иных благ (товаров и услуг). Их еще называют функциями потребления.

В обобщенной форме эти кривые выражаются формулой:


где S – средние доходы;

Объем потребления i-го блага (спроса).

Формы кривых могут быть различны. Далее, как и при экстраполяции, зная динамический ряд показателя спроса в зависимости от доходов, можно определить прогноз спроса на товар в будущем. В практике среднесрочного прогнозирования спроса всегда были популярны многофакторные корреляционные и регрессионные модели. Эти модели выступают как функции спроса, в которых в качестве переменных используются факторы, определяющие динамику спроса. Приведем математическую форму записи такой модели:

у = f (x, z, d и т.д.).

В многофакторных моделях спрос на определенный товар характеризуется как функция нескольких независимых переменных. Суть экономического предсказания заключается в том, чтобы на базе имеющихся объемных и структурных параметров потребления за прошлый и настоящий периоды определить траекторию развития спроса на будущий период и исчислить его важнейшие параметры. Многофакторная модель позволяет точнее отразить процесс формирования спроса, чем трендовые однофакторные модели. Среди многофакторных моделей особое признание получила множественная линейная регрессия. Такую форму связи тем или иным способом необходимо привести к линейному виду, единственным требованием которого является достаточная близость теоретической кривой к эмпирическим значениям ряда. Оценка близости производится посредством исчисления среднеквадратического отклонения. Критерий пригодности модели спроса может быть формально записан как:


Предположение о линейном характере связи между спросом и формирующими его факторами, допустимое при разработке кратко- и среднесрочных прогнозов, становится неприемлемым, когда речь идет о периоде, превышающем 7-8 лет. Долгосрочные прогнозы требуют перехода к нелинейным типам взаимосвязей, предполагающим наличие скачков, перегибов и проч., т.е. от экстраполяционных методов надо переходить к интерполяционным. С расширением горизонта прогнозирования уменьшается зависимость будущего развития от достигнутого состояния и сложившихся тенденций. Поэтому генетические методы в прогнозировании постепенно уступают место нормативно-целевым. Эти методы можно охарактеризовать и как методы обоснования альтернативных путей перехода от сложившихся тенденций к желательным.

Долгосрочные прогнозы спроса используют нормативы обеспеченности населения материальными и духовными благами. В настоящее время в практике прогнозирования спроса широко применяются различные нормативы потребления важнейших продуктов питания, изделий легкой промышленности, предметов культурно-бытового назначения. Эти нормы разрабатываются специальными организациями, они характеризуют научно обоснованное представление общества об идеальном потреблении того или иного товара. Напомним, что прогнозирование с помощью нормативного метода сводится к тому, чтобы на основе известных значений крайних членов ряда (последнего фактического и нормативного) определить возможный уровень потребления в различные периоды внутри этого ряда.

При прогнозировании спроса продовольственных и непродовольственных товаров применяются разные подходы.

Для продовольственных товаров характерна сравнительная стабильность потребления в целом. Сложившийся уровень потребления продуктов питания обычно меняется постепенно за счет изменения привычек и вкусов населения. Например, можно довольно-таки точно спрогнозировать спрос на хлебобулочные и кондитерские изделия, мясопродукты, рыбопродукты, сахар, овощи и фрукты. Сложившиеся тенденции увеличения или снижения потребления этих товаров обычно не подвержены резким колебаниям по годам. Возможны лишь сезонные колебания и изменение потребления при резком изменении политико-экономического состояния страны.

Для прогнозирования потребления непродовольственных товаров требуется учет следующих факторов:

¨ величины рационального гардероба;

¨ перспективной нормы потребления товара;

¨ износа имеющегося товара у населения для его замены;

¨ дополнительной потребности в товаре для обеспечения им естественного прироста населения до среднего уровня, сложившегося в обществе.

Прогнозирование спроса представляет собой определение возможного будущего спроса на товары и услуги в целях лучшего приспособления субъектов хозяйствования и складывающейся конъюнктуре рынка. Прогноз спроса- это теоретически обоснованная система показателей о еще неизвестном объеме и структуре спроса. Прогнозирование связывает накопленный в прошлом опыт об объеме и структуре спроса с предсказанием будущего их состояния.

Прогноз спроса рассматривается как прогноз физического объема реализации товара (услуги). Он может дифференцироваться по категориям потребителей и регионам. Прогнозирование может осуществляться по любому периоду упреждения. Главный акцент в краткосрочном прогнозе делается на количественный, качественный и ценовой оценках изменений объема и структуры спроса; учитываются временные и случайные факторы. Долгосрочные прогнозы спроса определяют прежде всего возможный физический объем продажи товара(услуги) и динамику изменения цен.

При постановке задач прогнозирования спроса необходимо иметь в виду, что они решаются по мере выявления основных закономерностей и тенденций развития спроса в прошлом, настоящем и при условии сохранениях в определенном будущем. Поэтому важно правильно выбрать и обосновать период для анализа процесса изучения формирования спроса.

Процесс формирования спроса населения, как уже отмечалось, представляет собой сложное экономическое явление. В торговых предприятиях завершается процесс обращения товаров, путем приобретения определенных товаров покупатели удовлетворяют свои потребности. В фокусе торгового предприятия реализуется воздействие всей массы факторов платежеспособного спроса. Однако при изучении поведения конкретного потребителя трудно разделить воздействие каждого из социально-экономических факторов, выявить их особенности на уровне торгового предприятия, количественно определить их воздействие. В то же время на данном уровне управления при общем воздействии на формирование и развитие спроса факторов экономического характера значительное влияние на конечные результаты продажи товаров оказывают организация торгового процесса и снабжения товарами, реклама, поведение покупателей. Кроме того, трудно получить исходные данные о комплексе факторов, формирующих спрос в районе деятельности предприятия. Поэтому, как правило, торговые предприятия располагают и вынуждены оперировать данными о продаже товаров, более или менее репрезентативно отражающими процесс удовлетворения спроса. Их можно также использовать для исследования процесса формирования спроса покупателей района деятельности как во внутригрупповом, так и детальном ассортименте. Ожидаемый спрос можно представить в виде следующих составляющих:

где Рп - реализованный спрос;

Сц - неудовлетворенный спрос

Но данная формула не отражает влияния таких факторов, как сезонные (переодические) и случайные колебания спроса, вызванные такими объективными причинами, как разрыв между производством и потреблением или сезонным характером спроса на определенные товары. Например, спрос на зимнюю обувь значительно возрастает в осенний период и падает в летний. Поэтому сезонные колебания обязательно учитываются и накладываются на тенденции развития микроспроса.

Влияние же случайных факторов колебания спроса, вызванных непредсказуемыми изменениями экономической ситуации в экономике в целом или стихийными бедствиями, предсказать практически невозможно, поэтому надо учитывать, что область распределения возможных фактических значений спроса будет находиться в определенном интервале (а не обязательно совпадать с прогнозом), гарантирующем определенную вероятность прогноза.

Анализ и прогнозирование тенденции развития спроса являются объектами использования методов экономического прогнозирования. Однако выбирать метод прогнозирования необходимо с учетом особенностей формирования спроса в зависимости от конкретных целей прогнозирования и уровня управления торговлей и сферой услуг.

Прогнозирование спроса может осуществляться различными методами, в частности можно выделить три основные группы:

1. методы экономико-математического моделирования (экстрополяцион-ные методы)

2. нормативные методы

3. методы экспертных оценок.

Прогнозирование спроса необходимо государству для осуществления контроля над частным сектором, для повышения эффективности работы налоговых служб, а также для поощрения или попыток ограничения этого прогнозного спроса. Необходимо сказать, что здесь речь будет идти о рыночном (совокупном) спросе, который `"выражается в таком количестве товара, которое будет куплено определенной группой покупателей в определенном регионе в определенный период на определенных торговых предприятиях""(Ф. Котлер Управление маркетингом М.: ""Экономика"", 1980, стр. 84). Рыночный спрос может быть выражен в натуральных, стоимостных или относительных величинах. Прогноз рыночного спроса делается на определенный период, чем больше этот период, тем сложнее делать прогноз.

На рыночный (совокупный) спрос влияет огромное количество факторов: экономические, социально-культурные, демографические, технологические и многие другие. Все эти факторы должны быть учтены при прогнозировании. Необходимо также отметить, что от уровня спроса зависит потребление, и на него действуют те же факторы, что и на спрос. Конечная цель прогнозирования спроса - оценить то количество товаров и услуг которые будут куплены (а не только то - которое могут и хотят приобрести потребители).

Потребление составляет значительную часть ВВП государства, поэтому ""колебания в потреблении являются важнейшими элементами подъемов и спадов в экономике""3. Изменения в потреблении могут усилить воздействие экономический потрясений, также и величина мультипликатора бюджетно-налоговой политики определяется предельной склонностью к потреблению. Функция потребления утверждает, что потребление зависит от располагаемого дохода:

Располагаемый доход равен совокупному доходу (Y) за вычетом налогов (Т). Совокупный доход, в свою очередь может состоять из заработной платы, дохода на акции предприятий, каких-либо дополнительных денежных поступлений, а также сюда следует включать различные льготы, социальные пособия и т.д. На первом этапе Исследования предположим, что весь доход идет на потребление.

Из формулы видно, что государство может влиять на потребление путем повышения или понижения ставок подоходного налога. Исходя из имеющегося уровня совокупного дохода, государство может прогнозировать уровень спроса в зависимости от ставок подоходного налога при прочих равных условиях (т.е. без воздействия к.-л. других факторов).

Т. е. Прогнозируемый уровень спроса равен функции от уровня подоходного налога. Чем больше процентная ставка налога, тем меньше человек будет потреблять, тем меньше будет прогнозируемый спрос.

На следующем этапе исследования следует рассмотреть влияние уровня цен на товары и услуги. Очевидно, что уровень цен оказывает сильнейшее влияние на потребление и уровень спроса на товары и услуги. Повышение уровня цен оказывает примерно такое же влияние, как и понижение уровня располагаемого дохода, т.е. существует обратная зависимость между уровнем цен и уровнем спроса. Соответственно, в нашей формуле появляется новая переменная Р - уровень цен.

Прогнозируемый уровень спроса является функцией от процентной ставки подоходного налога и уровня цен.

Любопытно, что Р. Барр считал ценообразование в советской экономике одним из важнейших компонентов планирования. Он писал: Систему советских цен можно понять лишь в свете планирования экономики; она служит одновременно для содействия развитию экономики и для регулирования спроса и предложения на потребительские товары.(Раймон Барр Политическая экономия М., Международные отношения, 1995, Т.1,стр. 601) В случае излишка предложения понижение цен позволяет увеличить покупательную способность населения; в обратном случае спрос будет сдерживать повышение цен. Однако в рыночной экономике государство не может прямо повысить или понизить цены. Для этого используются косвенные методы: повышение-понижение налогов (на предприятия, на отдельные виды товаров и услуг, на доходы населения), увеличение-уменьшение социальных пособий и выплат, создание льгот и т.д.

Рассмотрим эти показатели относительно прогнозирования спроса. Налоги, которыми государство облагает предприятия, прямо влияют на уровень цен, а через него на спрос и потребление. Однако обычно цены повышаются не на всю величину налога, а на какую-то его часть, также при прогнозировании необходимо учитывать то, что с момента повышения (понижения) налога и соответственного уменьшения (увеличения) спроса проходит определенное время. Такое же воздействие на цены, а затем на спрос оказывают налоги, которыми облагаются определенные товары и услуги, а также налог с оборота. В советское время последняя ставка составляла 88% для водки, 40 - для икры и сигарет, 25 - для радиоприемников и 2% - для автомобилей.

Следующие категории, которые необходимо учитывать - это социальные выплаты и пособия, а также различные льготы. Повышение уровня социального обеспечения повышает покупательскую способность отдельных слоев населения и понижает покупательскую способность других (т.к. деньги для выплаты пособий берутся из налогов, соответственно или увеличиваются налоги или страдают другие направления государственного финансирования). Таким образом наша формула приобрела следующий вид:

ПУС = f(Т,f(З,Тпр,Приб),СО)

где f(З,Тпр,Приб) = Р, т.е. уровень цен равняется функции от уровня затрат, от налогов на предприятие и от прибыли.

СО - социальное обеспечение.

Очень много исследований посвящено рассмотрению регулирования спроса. Один из исторических прецедентов управления спросом представляет чрезвычайный интерес с точки зрения развития макроэкономической теории. В период, предшествовавший первой мировой войне, экономика промышленно развитых стран функционировала в условиях золотого денежного стандарта. Однако во время войны многие страны были вынуждены от него отказаться, так как должны были печатать деньги для оплаты издержек, вызванных войной. Однако в 1925 году Великобритания приняла решение вернуться к нему. Для этого правительство проводило жесткую ограничительную денежную политику, одновременно с этим ревальвировало фунт стерлингов, в результате чего его долларовая стоимость выросла на 10% (Дж. Д. Сакс, Ф. Ларрен Б. Указ. соч., стр. 93-95). Эти действия вызвали резкое падение совокупного спроса. А результатом падения совокупного спроса стало резкое падение производства и рост безработицы. Эту политику критиковал Кейнс. Правительство Великобритании строило свои прогнозы, относительно совокупного спроса и предложения, исходя из классической теории, по которой вследствие падения спроса и соответственно падения цен (то к чему привела политика Черчилля), номинальная заработная плата должна была бы сократиться на достаточную величину (цены бы упали, на туже величину сократился бы и уровень заработной платы, в результате чего удалось бы избежать падения объема выпуска и роста безработицы). Кейнс доказывал, что этого не может. Работники не согласятся на уменьшение заработной платы, а согласятся на это только в случае резкого роста безработицы.

Выше были представлены экономические факторы прогнозирования спроса. Однако нельзя ограничиваться только ими при прогнозировании совокупного спроса.

Необходимо также учитывать политические факторы, причем как внутриполитические, так и внешнеполитические. Если в стране политическая ситуация накалена, то у жителей данной страны возникают сомнения относительно будущего. В результате этого велика вероятность того, что спрос населения будет завышен, т.к. жители будут стараться закупить товаров про запас. Соответственно, при зная это государство должно регулировать этот повышенный спрос - повышая цены, увеличивая налоги и т.д. Однако нельзя только экономическими мерами бороться с этим - должна проводиться успокаивающая компания в средствах массовой информации, сама острая ситуация должна быть разрешена как можно быстрее.

Следующий важный фактор - это международная обстановка. Возможно этот фактор не слишком сильно влияет на спрос населения на обычные товары и услуги, однако это влияет на спрос на такие специфический товар, как военная техника. Это не значит, что население стремится покупать ""черные акулы"", ""акации"", ""МиГи"", - это означает, что население предъявляет спрос на эти ""товары"" к государству.

Географические особенности сильно влияют на структуру спроса. Действительно, трудно предположить, что в Австралии будут пользоваться спросом теплые вещи, тогда как в России спрос на них будет велик. Географические условия необходимо учитывать не только при прогнозировании спроса, но и при производстве товара (его конструктивные особенности д.б. различны для каждой отдельной страны). Например, практически все автомобилестроительные концерны поставляют в Россию автомобили приспособленные для российский условий. .

На первый взгляд, вопрос звучит абсурдно, но если внимательнее разобраться, то можно выявить следующее: «если у товара значительное число фактов нулевых продаж (спрос на товар редкий), то все методы точечного прогнозирования (в том числе и сложные), будут давать плохой результат»

Выходом из ситуации может стать применение специальных методов математического моделирования, позволяющих рассчитать накопительную вероятность возникновения спроса. То есть оценить не стараясь угадать число проданного, а посмотреть с какой вероятность может быть продан тот или иной объем товара. Это позволит нам понять, сколько товара необходимо хранить, чтобы обеспечить тот или иной уровень сервиса.

При упрощении механизм следующим образом. Специальное программное обеспечение проводит серию экспериментов (100 000 раз) о возможном спросе на товар на период поставки (в западной практике - lead time LT). Анализируется, сколько раз случился спрос разного объема. После этого строится накопительная вероятность распределения спроса (не более какого объема товара будет продано с разной вероятностью)

После этого учитывается уровень сервиса и рассчитывается оптимальный товарный запас, как значение спроса, соответствующее накопительной вероятности, равной уровню сервиса.

Более наглядно это можно посмотреть на следующем графике или таблице: (из программы Forecast NOW!):

Рис. 1 Уровень сервиса и оптимальный товарный запас на примере программы Forecast NOW!

Вероятность Сумма,%

Объём,ед

На рисунке светло-синим построена накопительная вероятность. Оптимальный запас находится на пересечении выставленного уровня сервиса и накопительной вероятности.

Таким образом, применение подобных методов поможет сразу рассчитать оптимальный товарный запас для товаров редкого спроса.

Важным вопросом остается критерий отнесения товаров к редкому спросу:

Для этого считается среднее расстояние в днях между соседними фактами продаж. Если это число больше 1.25 дней, то перед нами редкий спрос, если меньше - гладкий.

История продаж товара:

Среднее расстояние между соседними фактами продаж = ((3-1)+(4-3)+(7-4)+(8-7))/4 = 1,75 >1,25 -> спрос редкий

Но для товаров гладкого спроса без прогнозирования спроса не обойтись:

Для чего нужно прогнозировать спрос

Работа любого торгового предприятия неизбежно связана с проблемой оптимизации товарных запасов. Избыток товаров приводит к дополнительным финансовым издержкам, а недостаток - к потере постоянных покупателей и снижению объемов продаж. В обоих случаях происходит недополучение возможной прибыли, что в условиях острой конкуренции может стать причиной банкротства предприятия.

Одной из важнейшей составляющих поддержания оптимального ассортимента товаров является оперативное и долгосрочное прогнозирование спроса. Конечно, при планировании закупок можно ничего и не прогнозировать, используя как источник исходной информации устоявшийся или возникший уровень спроса. Однако такой устаревший подход в условиях динамично изменяющегося рынка и "избалованного" покупателя трудно назвать эффективным (за исключением небольших поселений, где имеется всего один магазин).

Прогнозирование спроса позволяет не только разработать оптимальный план закупок, но и эффективно управлять ресурсами предприятия. Так, например, зная, что в следующем месяце возникнет повышенный спрос не мороженое, можно будет заранее принять на работу продавцов, закупить холодильное оборудование и предусмотреть дополнительное финансирование. Если же все подобные мероприятия начать проводить в пик сезона, то все усилия могут оказаться напрасными и, даже убыточными.

Как прогнозировать спрос

Чтобы спрогнозировать спрос, разработано огромное количество теорий и специальных инструментов.

Специальное ПО

Так, например, при планировании закупок для супермаркета не обойтись без специализированного программного обеспечения. Основная проблема здесь в огромном ассортименте товаров, который просто физически невозможно "удержать в голове". Кроме того, специальное ПО позволяет автоматизировать процесс подготовки заявок, что при больших объемах закупок дает возможность сэкономить массу времени.

Microsoft Excel

При небольшом ассортименте товаров отличные результаты в прогнозировании спроса можно получить с помощью стандартного приложения Microsoft Excel. Специальные статистические функции, такие как, например, ТЕНДЕНЦИЯ и РОСТ, позволяют без ввода сложных формул мгновенно обработать большие массивы информации. Богатые оформительские возможности Microsoft Excel помогут представить полученные данные не только в табличном виде, но и в более наглядном - в форме графиков и диаграмм.

Вручную

Прогноз спроса на отдельные позиции товаров можно составлять и вручную. Так, например, если товар является новинкой, то даже самые мудреные статистические формулы и ранее накопленная информация не помогут предугадать его популярность. В таких случаях приходится надеяться не на расчеты, а на интуицию и на дополнительные факторы (мнения покупателей, рекламная поддержка и т.п.).

Формулы и методы прогнозирования спроса

Методы, используемые при прогнозировании спроса, отличаются большим разнообразием - от наивных (предполагается, что спрос в следующем месяце будет такой же, как и в прошедшем) до применения в расчетах сложных экономических и математических теорий и их программных реализаций (нейронные сети).

Метод Простой средней

Простейшим из подобных методов является использование вычислений по формуле "простого среднего". Прогноз спроса на следующий период при этом способе высчитывается как среднее арифметическое показателей спроса за все предыдущие периоды. Недостатком этого метода является его высокая "консервативность" - устаревшая информация о прежних продажах помешает проявиться последним тенденциям спроса.

Метод скользящего среднего

Более оперативно на изменение спроса реагирует метод "скользящее среднее". Расчет при этом производится не на основании данных за весь срок наблюдения, а за несколько последних периодов.

Ключевым вопросом является определение «окна скольжения» - за сколько последних периодов необходимо проводить усреднение. Чем больше этот период, тем больше совпадает прогноз по скользящему среднему с простым средним.

Определить период можно эмпирически на основании ошибки прогноза (RMSE) - рассчитать эту ошибку для разных периодов и выбрать оптимальный.

Очевидно, что оптимальным является период в 4 дня.

Интересной вариацией метода является расчет скользящей средней по определенным дням (то есть - для всех понедельников считается скользящая средняя за n последних понедельников, и т.д.) Такой метод может подойти товаров, обладающих ярко выраженной внутри недельной сезонностью (например, хлеб).

Метод средневзвешенной

Сочетанием вышеописанных методов является "метод взвешенного скользящего среднего". В этой модели вычисляется средневзвешенное значение на основании нескольких периодов, но более отдаленным периодам придаются меньшие веса. Таким образом, для расчетов можно брать более длительные наблюдения, но ограничить влияние на расчеты неактуальных данных.

Метод экспоненциального сглаживания

К сожалению, вышеперечисленные методы расчетов "по среднему" позволяют получить лишь очень приближенные результаты. Более точного прогноза можно добиться при использовании моделей "экспоненциального сглаживания" и "экспоненциального сглаживания с трендом". В первом методе последний прогноз объема продаж, корректируется на основе ошибки прогноза, допущенной в последнем периоде. При втором методе расчетов (называемом еще методом "двойного экспоненциального сглаживания") учитываются данные с трендами - благодаря этому данный метод может использоваться даже для среднесрочного прогнозирования.

Метод "Хольта-Уинтерса"

Для учета сезонности и общего тренда спроса применяется модель "Хольта-Уинтерса" (трехпараметрическое экспоненциальное сглаживание). Чтобы получить прогноз спроса в этом методе необходимо правильно подобрать три параметра. Для этого можно использовать как специальные алгоритмы, так и ограничиться простым перебором.

Метод Авторегрессии

При желании получить еще более совершенные прогнозы можно использовать модели "авторегрессии". Эта методика позволяет провести очень подробный анализ имеющихся данных, выявить любые тенденции и отсеять случайные влияния. Однако, в отличие от предыдущих методов, подбор множества параметров потребует от пользователя очень много усилий и времени.

Нейронные сети, генетические алгоритмы

Следует отметить, что чем более сложные методы прогнозирования используются, тем труднее их практическое применение и тем выше вероятность возникновения ошибок. Анализ огромных объемов информации, подбор оптимальных параметров, оперативный учет колебаний рынка - все это порой находится на пределе человеческих возможностей. Наиболее перспективным в решении этой проблемы является использование алгоритмов "нейронных сетей". В этой методике специальная программа после предварительного обучения способна самостоятельно найти лучшее решение - при этом пользователю не нужно вникать во все премудрости используемых теорий. Кроме того "нейронные сети" способны учесть скрытые тенденции и создать достоверный прогноз в такой нестабильной ситуации, где ранее прогнозирование считалось вообще невозможным.

По проведенным специалистами проекта «Forecast NOW» исследованиям прогнозирование нейронными сетями дает лучший результат, чем по всем вышеприведенным методам:

По оси Х показано количество товаров при анализе, по Y- а сколько процентов нейронные сети оказывается лучше, чем другой алгоритм в относительном выражении.

Рис. 2 Нейронные сети + Генетические алгоритмы (ГА) и экспоненциальное сглаживание


Рис. 3 Нейронные сети + Генетические алгоритмы (ГА) и авторегрессия


Рис. 4 Нейронные сети + Генетические алгоритмы (ГА) и метод Хольта Винтерса

Из рисунков видно, что прогнозирование нейронными сетями дает значительно лучший результат.

Выводы

Для прогнозирования спроса нужно:

  1. Определить характер спроса на товар (если гладкий - прогнозирование нужно, если редкий - прогнозирование не нужно, можно рассчитывать оптимальный запас методами математического моделирования)
  2. Определить способы прогнозирования спроса (если товарный ассортимент небольшой, то можно вручную или при помощи Excel, если большой - лучше использовать специальное программное обеспечение
  3. Определить методы прогнозирования спроса (для некоторых товаров хорошо работают стандартные методы (см про скользящее среднее), в общем случае лучшие результаты достигаются нейронными сетями
  4. Важно помнить, что прогнозирование спроса - лишь первое звено цепочки поставок, и даже самый точный прогноз спроса в случае неправильного управления запасами и пополнением не сможет обеспечить эффективность всей цепочки поставок.