Простые и сложные методы прогнозирования туристического спроса. Почему появляются неточные прогнозы
 спроса. Центрированная скользящая средняя

Обычно именно отдел логистики жалуется на отсутствие точных прогнозов, поскольку слишком многое в его работе зависит от них. Но не всегда менеджеры понимают, о какой степени точности можно говорить в данном случае и как можно решать эту проблему.

Прогнозирование спроса или другого по определению есть взгляд в будущее, поэтому оно никогда не будет абсолютно точным. То есть разрабатывать логистическую систему нужно таким образом, чтобы она не полностью зависела от точности прогнозирования спроса, а была гибкой и могла адекватно реагировать на те или иные изменения в спросе. Пронозирование спроса позволяет эффективно наладить работу отдела логистики, так как исходя из прогнозирования спроса логист может составить прогноз поставок, т.е. прогнозирование спроса помогает отделу логистики составить прогноз предложения. При прогнозировании спроса надо быть очень акккуратным, так как любая ошибка в прогнозировании спроса может привести к плачевным результатам. Прогнозирование спроса не должно стать целью, а только средством. Причем каждый день надо обновлять прогнозирование спроса, чтобы оно было актуальным, ведь прогнозирование спроса есть взгляд в будущее продаж, а это очень важно.

И в то же время нельзя считать, что прогнозы ничего не дают. Разумеется, они должны быть неотъемлемой частью работы отдела логистики (планирования). Но чтобы правильно их использовать, нужно знать их основные свойства.сайт ЛОГИСТ рекомендует:

Для оптимизации процессов разгрузки и погрузки, используйте мобильные рампы AUSBAU.

Высокая эффективность, снижение затрат, рост прибыли.

компания "АВ-эксим", эксклюзивные прямые поставки в по Украине, России, Беларусь, Казахстан и др. страны СНГ. Связаться

1. Точность прогнозирования спроса выше для групп продуктов, чем для индивидуальных продуктов. Попытайтесь, например, предсказать рост первого встречного прохожего. Требуется большое везение, чтобы сделать это точно: он может оказаться как баскетболистом, так и карликом. Но прогноз «среднего» роста ста прохожих может быть достаточно точным. Прогноз для группы точнее прогноза для ее отдельного представителя, поскольку в этом случае происходит «взаимопогашение» отклонений: в одном случае прогноз завышен, в другом – занижен, но в целом он вполне приемлем. Это отражено на рис. 1.

Рисунок 1. Точность прогнозов зависимости от анализируемого параметра

2. Точность прогнозов выше для близкой перспективы, чем для дальней. Так, прогнозировать семейный бюджет на следующий месяц гораздо проще, чем на тот же период, но через год. Прогнозирование подобно стрельбе: чем дальше от цели, тем труднее в нее попасть. Часто от руководителя отдела логистики приходится слышать: «Вы только дайте нам заказы на как можно более продолжительный период, и мы обеспечим их на 100%». Однако по указанной причине подобный подход к прогнозированию спроса работает против заказчиков: при разработке плана закупок и производства вероятность ошибки в этом случае резко возрастает.

Менеджеру по планированию производства в действительности не нужно знать, какие наименования он будет производить в какой-то отдаленный период времени. Он должен знать, какие мощности ему потребуются. Этот прогноз менее сложен и вместе с тем более точен, чем детальное прогнозирование спроса.

В таблице 1 представлена матрица прогнозирования спроса в зависимости от уровня детализации и горизонта планирования.

Таблица 1. Матрица прогнозов спроса

Эта таблица позволяет сделать следующие выводы.

Квадранта I нужно избегать.

Квадрант II можно использовать для долгосрочных прогнозов.

Квадрант III можно применять для среднесрочного и краткосрочного прогнозирования спроса с вовлечением клиентов в формирование графика заказов.

Систему управления производством и запасами нужно проектировать таким образом (например, за счет сокращения времени на выполнение заказов), чтобы прогнозирование спроса находилось только в квадранте IV.

ЗАЧЕМ ДЕЛАТЬ ПРОГНОЗИРОВАНИЕ СПРОСА

Существуют условия, при которых делать прогнозирование спроса вообще не целесообразно:

когда приемлемое время на ожидание клиентом, пока выполнится его заказ, превышает время на производство и закупку компонентов; другими словами, клиент готов ждать свой заказ столько времени, сколько организации потребуется для выполнения заказа без предварительного планирования;

если мощности и прочие необходимые ресурсы для выполнения заказов клиентов этих организаций могут быть изменены быстро и не требуют существенных затрат;

когда нет необходимости в финансовом планировании.

Во всех остальных случаях без прогнозирования спроса не обойтись. Однако формировать прогнозы спроса нужно ровно настолько, насколько этого требуют конкретные цели. Каждый из перечисленных ниже параметров прогнозов спроса должен быть обоснован целью его использования и определен до начала формирования прогноза.

– Горизонт планирования. На какой период в будущем должен быть составлен прогноз? 10 лет? 12 месяцев? Неделя?

– Уровень детализации. Должен ли прогноз спроса отражать конечные продукты по заказчикам? Или достаточно суммарного плана по категориям?

– Частота пересмотра. Требуется ли прогноз спроса пересматривать раз в год? Раз в квартал? Раз в месяц? Раз в неделю? Каждый день? Каждый час?

– Интервал прогнозирования. Какие временные промежутки должен отражать прогноз спроса? Годы? Месяцы? Недели? Дни?

МЕТОДЫ ПРОГНОЗИРОВАНИЯ СПРОСА

Существует много классификаций методов прогнозирования спроса. Для удобства можно выделить всего две группы: экспертные и статистические.

Первые основаны на экспертных оценках и по своей природе субъективны. Суть их заключается в переведении различных экспертных мнений в формулы, из которых формируется прогноз. К экспертным методам относятся: метод комиссии, «мозговая атака», анкетный опрос, метод Дельфи.

Статистические методы предполагают применение статистических расчетов для построения будущего на основе прошлого. Типичный пример – методы исчисления средних. Один из них – применение скользящей средней величины. Предположим, компания захотела использовать скользящую среднюю величину за 12 недель для прогноза спроса какого-либо товара. Для этого суммируют продажи за последние 12 недель, сумму делят на 12, получая таким образом среднюю величину. Через 7 дней добавляют продажи за последнюю неделю и отбрасывают первую неделю, получая данные опять за 12 недель. В этом случае мы говорим об использовании простой средней. Пример расчета:

Старый прогноз (месячные продажи) – 100 ед.

Фактические продажи (последний месяц) – 80 ед.

Новый прогноз (простая средняя) – 90 ед.

Один из очевидных недостатков этого метода заключается в том, что фактическим продажам придается такой же вес, как и старому прогнозу. Обычно лучше придать больший вес старому прогнозу и меньший – текущим продажам, так как последние могут представлять собой случайную вариацию, единственную в своем роде.

Весовые коэффициенты логичнее определить в 0,8 и 0,2 (в сумме они обязательно должны равняться 1,0). Тогда среднюю величину исчисляют так:

Старый прогноз – 100 x 0,8 = 80 ед.

Фактические продажи – 80 x 0,2 = 16 ед.

Новый прогноз (взвешенная средняя) – 80 + 16 = 96 ед.

Этот метод называется экспоненциальным сглаживанием. Весовой коэффициент, приданный текущим продажам (в данном случае 0,2) называют альфа-множителем. Экспоненциальное сглаживание представляет собой исчисление взвешенной скользящей средней. Преимущество этого метода в том, что он упрощает вычисления и часто позволяет хранить меньший объем данных. При экспоненциальном сглаживании требуются данные о «старом прогнозе» и альфа-множителе. Еще более важна гибкость метода. Если прогноз занижает действительный спрос, аналитик способен вручную ввести скорректированный прогноз в систему и приступить к сглаживанию. Это значительно удобнее, чем пытаться скорректировать расчет скользящей средней величины.

При использовании регрессионного и корреляционного анализа рассчитывают формулы, которые придают различный вес «индикаторам», связанным с прогнозируемыми товарами или группами товаров. Например, закладка жилых домов оказывает определенное влияние на продажу металлических изделий строительным фирмам. Динамика валового национального продукта (ВНП), вероятно, тоже оказывает влияние. Таким образом, учитывая степень важности влияния того или иного фактора, можно построить формулу для прогноза суммарных продаж металлоизделий для строительства. При этом особенное внимание нужно уделять ведущим индикаторам, то есть тем, значение которых увеличивается или уменьшается до того, как начнут изменяться прогнозируемые продажи. Правда, использование такого рода индикаторов может принести пользу лишь в том случае, если оно опирается на здравый смысл. Влияние факторов, которые были очень существенны в прошлом, может измениться с течением времени, а потому для них нужно будет применять другой весовой коэффициент. И здесь не обойтись без экспертной оценки.

Следует также помнить, что ни один из указанных методов не может компенсировать или учесть воздействие на спрос других факторов. Например, если продавцы металлических изделий из-за финансовых затруднений решили сократить запасы, зависимость между закладкой домов и продажей металлоизделий не даст точного прогноза. Возросшая иностранная конкуренция также может оказать решающее влияние на динамику продаж.

В реальной практике необходимо использовать простые статистические методы в сочетании с разумным экспертным суждением. Кроме того, выбор метода прогнозирования может и должен определяться параметрами необходимого прогноза (горизонт планирования, уровень детализации и пр.). Например, для составления прогноза спроса для бизнес-плана на 10 лет целесообразнее использовать методы экспертных оценок, нежели статистические.

ИЗМЕРЕНИЕ ОШИБКИ ПРОГНОЗА

Для эффективного прогнозирования спроса необходимо регулярно измерять отклонения фактических продаж от прогноза.

Ошибка прогноза (Forecast Error) – это абсолютная разница между фактическим и прогнозируемым спросом. Для измерения отклонений может использоваться стандартное отклонение (SD, сигма) или среднее абсолютное отклонение (MAD).

Стандартное отклонение – это широко известная статистам мера измерения разброса и вариабельности. Но практики прогнозирования спроса предпочитают среднее абсолютное отклонение из-за легкости его расчета: MAD рассчитывается как сумма абсолютных отклонений, разделенная на количество измерений (периодов). Пример приведен в таблице 2, из которой видно, что среднее абсолютное отклонение отражает вариабельность отклонений в течение периода (несмотря на то что общая сумма отклонений равна нулю). Пример иллюстрирует случайные отклонения (random variation). Это такие отклонения, при которых сумма прогнозов за период равна или почти равна сумме фактических продаж.

Таблица 2. Расчет среднего абсолютного отклоненияМесяц Прогноз Факт Отклонение MAD

1 500,00 550 50 50

2 500,00 700 200 200

3 500,00 300 –200 200

4 500,00 400 –100 100

5 500,00 600 100 100

6 500 450 –50 50

Итого 3000 3000 0 117

Кроме случайных, встречаются систематические отклонения в одну сторону, именуемые смещением (BIAS). Пример показан на рис. 2. Смещение оказывает значительное негативное влияние на систему управления производством и запасами. Другими словами, оно означает занижение или завышение прогноза спроса. Кроме очевидной неопределенности, причинами смещения могут быть различные факторы.

Рисунок 2. Смещение (BIAS)

1. Занижение прогноза спроса может совершаться с целью:

перевыполнения плана продаж и получения премий;

снижения запасов.

2. Завышение прогноза спроса может совершаться с целью:

получения большего бюджета расходов;

поддержания равномерной загрузки производства;

увеличения запасов.

В результате смещения прогнозов спроса в ту или иную сторону возникают самые печальные последствия: невыполнение заказов клиентам в срок, незапланированные простои производства либо переработки, увеличение уровня запасов и т. д. Соответственно необходимо в первую очередь анализировать причины смещений, чтобы избегать их в будущем.

С ЧЕГО НАЧАТЬ?

Эффективное прогнозирование спроса, равно как и любой другой бизнес-процесс, состоит из трех взаимосвязанных элементов: люди, процесс, инструменты.

При проектировании процесса прогнозирования спроса нужно учесть следующие факторы:

каким образом организованы функции маркетинга и продаж;

кто в компании имеет возможность влиять на спрос;

где находится информация, необходимая для формирования прогнозов.

Рассмотрим несколько базовых вариантов организации маркетинга и продаж.

Пример 1. Функции маркетинга и продаж находятся в одном подразделении, руководитель которого подчиняется непосредственно первому лицу организации.

Пример 2. Подразделения маркетинга и продаж обособлены, их руководители подчиняются непосредственно первому лицу организации.

Пример 3. В компании более одного подразделения маркетинга и продаж, каждое из которых подчиняется непосредственно первому лицу организации (например, подразделения разделены по группам клиентов).

В первом случае все просто: процесс прогнозирования спроса находится в зоне ответственности руководителя подразделения маркетинга и продаж. Во втором и третьем примерах передача функций прогнозирования спроса одному из подразделений может спровоцировать дисбаланс в продажах. В этих случаях уместнее сделать ответственным за прогнозирование спроса третью сторону – департамент логистики (цепи поставок). Многие организации, соответствующие второму и третьему примерам, создают даже специальную должность менеджера по планированию спроса (Demand Manager).

Эффективное прогнозирование начинается с повышения качества входящей информации. Сбор входных данных должен быть организован с определенной регулярностью и в определенном формате. В частности, нужно выполнять следующие правила.

1. Необходимо собирать статистические данные с теми же параметрами, которые нужны для прогноза спроса. Если требуется составить прогноз спроса на продукцию, должны использоваться статистические данные, основанные на спросе, а не на отгрузках промежуточным звеньям цепи поставок. Интервал сбора данных должен быть таким же, как интервал для прогнозирования (для прогнозов спроса с разбивкой помесячно следует использовать статистику с разбивкой по месяцам). Группировка товаров в статистических данных должна соответствовать группировке в прогнозе спроса (для прогнозов спроса по категориям следует использовать статистику по категориям).

2. Необходимо фиксировать все события, имеющие отношения к данным. Спрос подвержен влияниям некоторых событий, и эти события следует хранить вместе с прогнозом, составленным с их учетом. Например, колебания спроса могут быть вызваны акциями по его стимулированию, изменением цен или погодными условиями. Фиксировать события необходимо, поскольку их анализ является основой для обсуждения новых прогнозов спроса.

3. Необходимо собирать отдельно статистические данные по разным группам клиентов. Многие компании распределяют продукцию через разные каналы дистрибуции, у каждого из которых свои отличительные характеристики спроса. Например, сетевой магазин может приобретать товар равномерными небольшими партиями два раза в неделю, а крупный региональный оптовик производит крупную закупку дважды в месяц. Поэтапная схема процесса прогнозирования спроса представлена на рис. 3. Циклы прогнозирования лучше всего организовывать раз в месяц: это оптимально с точки зрения временных изменений спроса и затрат на проведение этой работы.

Рисунок 3. Этапы прогнозирования

Таким образом прогнозирование спроса на основании статистических и исторических методов дает общую картину, но никогда прогнозирование спроса не дат четкого ответа СКОЛЬКО, ЧЕГО, КОГДА. Это не цель прогнозирования спроса. Прогнозирование спроса необходимо, чтобы товары, которые будут поставляться, были в рамках общего прогноза. К примеру на зиму можно сделать прогнозирование спроса в теплой обуви, но не значит что это будут именно валенки. Прогнозирование спроса, это как астрологический прогноз - очень близко, но не 100%. В любом случае прогнозирование спроса должно опираться на опыт предприятия в данной области.

ИНСТРУМЕНТЫ

Один из главных инструментов при использовании статистических методов прогнозирования – соответствующее программное обеспечение. Оно не должно быть слишком сложным, а заложенные в основу его работы алгоритмы обязаны быть четкими и понятными. Кроме ПО к инструментам также относится методика составления прогнозов спроса. В частности, при определении методики прогнозирования спроса можно использовать принцип Парето (см. таблицу 3).

Таблица 3. Принцип Парето при определении методики прогнозированияГруппа товаров Факторы, определяющие качество прогноза

Таким образом, основные принципы прогнозирования должны быть следующими.

1. Применение процессного подхода к действиям по разработке, согласованию и утверждению прогнозов спроса.

2. Измерение ошибки прогнозов спроса на регулярной основе; контроль отсутствия смещения.

3. Использование основных характеристик прогнозов при формировании методики прогнозирования спроса

Все методы прогнозирования спроса можно разделить на две группы: качественные и количественные.

Качественные методы прогнозирования субъективны, основаны на суждении экспертов и лиц, принимающих решения, или даже на интуиции. Как правило, эти методы применяются в следующих случаях:

  • для долго- и среднесрочного прогнозирования, так как:

в такой перспективе весьма вероятны изменения спроса, которые не носят чисто инерционного характера, а могут отражать существенное изменение условий на том или ином рынке сбыта (макроэкономические изменения, изменение структуры рынка, значительное усиление или ослабление важных участников рынка и т.п.);

при долгосрочном прогнозировании необходимо опираться на поведенческие данные, полученные проведением маркетинговых исследований;

  • для прогнозирования спроса на новую продукцию, не имеющую аналогов, что делает недоступным применение метода исторической аналогии;
  • профили спроса и связи нестабильны;
  • есть необходимость основываться на мнении руководителей или экспертов по субъективным причинам;
  • когда нет возможности даже для краткосрочного прогнозирования применить количественные методы (например, когда нет необходимого для применения количественных методов объема исходных данных или когда прогноз должен быть получен очень быстро, и нет времени на то, чтобы выполнить необходимый количественный анализ).

Качественные методы имеют определенные недостатки, которые необходимо осознавать при их применении:

  • в силу субъективности прогноза есть большая вероятность смещения прогноза, то есть его систематического отклонения от факта в ту или иную сторону;
  • как правило, неполнота документирования – редко, когда получение прогноза таким способом сопровождается развернутыми объяснениями экспертов о том, почему они выбрали именно такой прогноз, а не иной.
  • они не практичны, когда необходимо подготовить прогноз спроса для сотен или даже тысяч номенклатурных позиций продукции — человек не в состоянии оперировать такими объемами информации;
  • есть опасность доминирования одной точки зрения над остальными (например, точки зрения руководителя или ведущего признанного эксперта) при консолидации экспертных мнений (например, при применении метода консенсус-панели), и не факт, что эта доминирующая точка зрения окажется ближе к истине.

Количественные методы можно разделить на две подгруппы: экстраполяционные и регрессионные.

Экстраполяционные методы (основанные на продлении наблюдающейся тенденции в будущее) основаны на нескольких важных предположениях:

  • будущее будет похоже на прошлое, не произойдет никаких существенных изменений в расстановке сил на рынке;
  • есть качественные ряды исходных данных достаточной длины;
  • профиль спроса в будущем будет таким же, как и в прошлом.

Существует множество различных экстраполяционных методов: метод скользящей средней, метод экспоненциального сглаживания, метод экстраполяции тренда, нейросетевые модели и др.

В рядах динамики могут выделяться следующие основные профили (компоненты):

  • тренд, показывающий основное направление движения ряда динамики;
  • сезонная компонента, показывающая колебания сезонного характера (лето, зима; последние недели месяца, последние дни недели, и т.п.);
  • случайная компонента — то, что невозможно спрогнозировать в принципе;
  • циклическая компонента — выделяется для очень длинных рядов динамики и на практике редко используется на предприятиях, поскольку требует накопления многолетней статистики и относительно неизменных условий.

Любой из экстраполяционных методов подразумевает, что для прогнозирования спроса достаточно опираться на данные о спросе в прошедших плановых периодах. Эти данные, как правило, хранятся в базах данных предприятия (в ERP-системе или СКЬ-системе), поэтому экстраполяционные методы относительно недороги в их использовании.

Регрессионные методы основаны на построении причинно-следственных связей между величиной спроса и факторами, на нее влияющими. Факторы могут при этом иметь как демографический, так и экономический характер. Для применения регрессионных методов необходимы ряды данных достаточной длины, причем как данные о спросе, так и данные о факторах, влияющих на спрос. Для вычисления прогнозных значений спроса строится модель регрессии, связывающая факторы и результативный признак. Можно сказать, что эти методы самые сложные и дорогостоящие, поскольку они требуют сбора и обработки не только внутренней, но и внешней для предприятия информации на регулярной основе. Построение модели регрессии (однофакторной или, в более сложном случае, многофакторной) требует нескольких шагов:

  • выделение состава факторов (обычно этот шаг выполняется экспертами);
  • проверка факторов на предмет меры их влияния на результативный признак;
  • проверка факторов на их взаимную корреляцию (связь) с целью отсева лишних факторов, действующих однонаправленно;
  • построение регрессионной зависимости;
  • прогнозирование значений каждого из факторов регрессионной модели на будущий плановый период (будущие плановые периоды);
  • формирование прогноза результативного признака (то есть спроса) на основе применения модели регрессии.

Из приведенного выше списка очевидно, что регрессионные методы требуют большого объема исходной информации и немалых навыков ее статистической обработки. Поэтому применяют эти методы в бизнесе, как правило, тогда, когда прогноз, полученный более простыми и дешевыми методами, не дает устраивающее предприятие качество.

Прогнозирование спроса осуществляется с помощью качественных и количественных методов (в том числе нормативно-целевого метода).

Для краткосрочных и среднесрочных прогнозов применяются качественные методы (экспертной оценки; оценки уровня продажи, высказанные ведущими торговыми фирмами; анкетирование потребителей) и количественные методы (использование коэффициента эластичности спроса; метод геометрической прогрессии; трендовая модель; многофакторные корреляционные и регрессионные модели, в том числе множественной линейной регрессии).

Для долгосрочных прогнозов применяется нормативно-целевой метод, который также можно отнести к группе количественных методов прогнозирования спроса.

Рассмотрим некоторые из указанных типовых методов прогнозирования спроса.

Особое значение в прогнозировании спроса имеет показатель его эластичности, выражающий зависимость одного фактора от состояния другого, например, зависимость количества товара от денежных доходов или цены товара. Обычно используется коэффициент эластичности спроса, который выражает величину изменения спроса (в процентах) при изменении цены товара (доходов населения) на 1%.

Коэффициент эластичности спроса Э рассчитывается по формуле:


где y – спрос на товар;

x - цена или доходы;

D - изменение показателя.

Следует отметить, что использование коэффициента есть своего рода упрощение понятия эластичности. При более точной трактовке эластичность рассматривается как предел соотношения между относительным приращением функции у: (зависимой переменной) и относительным приращением независимой переменной х: , когда D ® 0 обозначается символом Е (у) и выражается формулой:

Соответственно коэффициент эластичности характеризует приближенный процент функции (повышение или понижение), соответствующий приращению независимой переменной на 1%.

В практическом использовании коэффициент эластичности спроса от дохода показывает относительное изменение спроса (соответственно потребления, сбыта, продажи) при изменении денежных доходов на единицу. Здесь используется лишь один решающий фактор. Считается, что остальные факторы явления остаются неизменными и их влиянием можно пренебречь, т.е. от их воздействия абстрагируются. Точно так же характеризуется эластичность спроса от цены товара. Этот показатель имеет еще большее значение в прогнозных расчетах, чем эластичность спроса от доходов. Коэффициент эластичности спроса от цены показывает относительное изменение спроса при изменении цены товара на единицу. Понятно, что в данном случае зависимость этих двух составляющих будет обратной: чем выше цена, тем меньше спрос. В экономических расчетах во избежание путаницы минусовый знак при коэффициенте принято отбрасывать, но при этом каждый специалист об этом всегда помнит.

Определение коэффициента эластичности спроса от цены следует производить в количественном, а не стоимостном измерении спроса. В условиях фиксированных цен на товары это условие не имело значения. При подвижных ценах это обстоятельство надо учитывать обязательно.

Все товары по эластичности делятся на две группы: эластичного спроса и неэластичного спроса.

Специалисты выделяют еще третью группу, в которой эластичность равна единице.

В первую группу входят товары с коэффициентом выше 1. Снижение цены на такой товар и рост доходов населения ведут к увеличению количества продаваемых товаров и соответственно к росту прибыли от их продажи, так как при меньшей цене прирост продажи бывает достаточным для компенсации потерь от снижения цены. К таким товарам относятся: качественные одежда и обувь, кондитерские изделия, товары длительного пользования и ряд других. Причем чем выше коэффициент эластичности спроса, тем сильнее зависимость продажи товара от цены или доходов.

Во вторую группу (неэластичного спроса) входят товары с коэффициентом ниже 1. Снижение цены на такие товары может быть выгодно покупателям, но невыгодно фирме, так как обычно ведет к уменьшению ее прибыли при сокращающемся или неизменном объеме продажи товаров. Снижение доходов населения также почти не оказывает влияния на величину спроса. К таким товарам относятся: хлеб, соль, спички, основные молокопродукты, овощи и некоторые другие, т.е. товары первой необходимости.

Коэффициент эластичности спроса от доходов может быть и с отрицательным знаком. Это означает, что с ростом денежных доходов спрос на данный товар уменьшается. К таким товарам обычно относятся те, которые отличаются низкой питательной ценностью, являются малокалорийными или не отражают высокую степень готовности товара к потреблению.

Различают эластичность: а) дуговую, т.е. среднюю на отрезке кривой, и б) точечную, т.е. представленную в заданной точке. К этому делению эластичности близко, но не идентично, иное ее различие: деление коэффициентов эластичности на статические и динамические. Статический коэффициент эластичности рассчитывается за определенный период, обычно до 1 года. Динамический коэффициент эластичности исчисляется за более длительный период. Прогностическая ценность статических коэффициентов невелика, так как они не отражают процесса развития спроса во времени. Динамические коэффициенты эластичности исчисляются на основе данных об изменении спроса и того или иного его определяющего фактора за ряд лет. Такие коэффициенты эластичности рассчитываются от года к году. Они более пригодны для прогнозирования спроса, так как в них отражается тенденция изменения спроса во времени.

Расчет коэффициента эластичности требует специальных знаний теории и методик, которыми обычно обладают специалисты научных организаций и институтов, прогнозирующих экономические показатели. Это методики подробно излагаются в специальной литературе. Однако есть и более простой прием расчета коэффициента эластичности спроса, основанный на мнении эксперта, которым может выступить опытный продавец данного товара. Такой работник всегда может хотя бы примерно назвать величину изменения продажи товара при изменении его цены в условиях сложившейся конъюнктуры рынка.

Пример 1. Определить коэффициент эластичности спроса на электробатарейки, продаваемые по цене 5 руб. за штуку. В среднем за неделю магазин продает их 15 штук. Если снизить цену на батарейки до 4,3 руб., то, по мнению продавца, за неделю можно будет продать их уже 18 штук. На основе этой информации можно определить статический коэффициент эластичности спроса на батарейки от цены.

Расчет. Коэффициент эластичности спроса от цены в данном случае составит:

Вывод. При снижении цены на батарейки на 1% прирост спроса на них при сложившихся условиях продажи может составить 1,43%.

Полученный коэффициент эластичности может быть использован для составления прогноза продажи товара на следующую неделю или месяц. Однако надо помнить, что эластичность спроса не есть нечто постоянно заданное. Она может меняться при изменениях условий продажи. И тогда надо определять коэффициент эластичности заново.

Рассмотрим пример прогнозирования спроса на товар при известном коэффициенте эластичности спроса.

Пример 2. Определить прогноз на товар «А» при коэффициенте эластичности спроса от цены 1,21. Число покупателей в регионе может составить 400 тыс. человек. Сложившийся уровень продажи товара составляет 5 кг на человека за период. Намечается снижение цены товара на 4%.

Расчет. 1. Определяется рост спроса на товар «А» при снижении его цены на 4%.

4 х 1,21 = 4,84% ,

100% + 4,84% = 104,84%.

2. Определяется новый уровень потребления товара «А» одним покупателем после уменьшения цены:

5 х 1,0484 = 5,242 (кг).

3. Определяется возможный объем продажи товара «А» в расчете на весь контингент покупателей:

5,242 х 400000 = 2096800 (кг или 2097 т).

Вывод. Прогноз спроса на товар «А» после снижения цены на 4% составляет 2097 т.

Зная новую цену товара «А», можно определить спрос на него в стоимостной форме и соответственно объем розничного товарооборота по региону, а в дальнейшем, с учетом доли рынка товара – и по отдельным фирмам.

Пример 3. Составить прогноз продажи товара «В» при коэффициенте эластичности спроса от цены 1,08. В регионе возможен рост цены товара с 15 до 17 руб. Фактический товарооборот товара составил в регионе за прошлый год 80 тыс. руб.

Расчет. 1. Определяется процент роста цены товара «В»:

17: 15 х 100% = 113,3% ,

тогда прирост цены составит 13,3% .

2. Определяется уменьшение спроса на товар под влиянием роста цены:

1,08 х 13,3 = 14,364% ,

т.е. спрос на товар составит: 100% - 14,364% = 85,636%.

3. Определяется прогноз продажи товара «В» в регионе после увеличения цены:

80000 х 0,85636 = 68,509 (тыс. руб.).

Вывод. После увеличения цены товара «В» с 15 до 17 руб. можно ожидать, что объем его продажи составит 68,5 тыс. руб. при сложившейся конъюнктуре рынка.

Зная емкость рынка товара «В» в регионе и долю рынка товара (ведущих фирм региона) в каждом районе региона (на всем рынке), можно определить возможный объем его продажи по районам и ведущим фирмам региона при условии неизменности среды хозяйствования.

Когда в развитии спроса проявляется устойчивая тенденция к его повышению или снижению, то состояние ряда динамики можно прогнозировать по средним темпам изменения. В основе этого метода лежит предположение, что ряд показателей развития спроса во времени представляет собой геометрическую прогрессию. Это означает, что каждый последующий член динамического ряда a равен предыдущему, умноженному на средний коэффициент темпа изменения k .

Другим методом краткосрочного прогнозирования спроса является трендовая модель, основой которой также являются временные (динамические) ряды. Изучение временных рядов – важная область исследований экономической динамики времени. Ряды могут быть, во-первых, моментными и интервальными и, во-вторых, эволюторных и стационарных процессов.

Для моментного ряда характерна величина явления по состоянию на определенную дату, а для интервального – величина явления по состоянию за определенный период;

Эволюторный процесс временного ряда содержит тренд, чего нет при стационарном процессе.

Временные (динамические) ряды могут быть в виде: тренда, лага, периодических колебаний.

Тренду, как уже отмечалось, присуща длительная «вековая» тенденция. У лага имеется запаздывание одного явления от другого, связанного с ним. Периодические колебания зависят от сезона, циклов и иных повторяющихся изменений. Для выявления тенденций указанных видов временных рядов используются такие методы их математико-статистической обработки, как экстраполяция, выравнивание и анализ автокорреляции.

Трендовая модель наиболее популярна в прогнозировании. Она основана на том, что объем и особенно структура спроса характеризуются определенной степенью инерционности, т.е. потребление с запаздыванием приспосабливается к изменившимся условиям. Инерционность означает в данном случае невозможность произвольно в короткое время существенно изменить не только структуру, но и привычки потребления населения. Трендовая модель прогнозирования – это уравнение, формализующее закономерности развития спроса в базисном периоде. Модель применяется в том случае, если установлено, что найденные закономерности будут действовать на определенном отрезке времени в будущем.

В этом случае ряд динамики рассматривается как функция времени и с известным приближением описывается различными математическими уравнениями.

Из трендовых моделей в прогнозировании спроса наиболее широко используются следующие виды:

а) уравнение прямой

б) логарифмическая функция

в) экспоненциальная функция

г) параболическая функция

y = a + bx + cx .

д) логистическая функция

Прогноз спроса на базе трендовых моделей основывается на допущении, что все факторы, действовавшие в базисном периоде, и взаимосвязь этих факторов останутся неизменными и в прогнозном периоде. Однако такое условие в жизни часто нарушается. Поэтому метод трендовых моделей в прогнозировании спроса можно применять с упреждением на один, максимум на два интервала динамического ряда с детальным учетом всех факторов, влияющих на формирование покупательского спроса.

В таком явлении, как спрос, когда наблюдается одновременное влияние многих разнородных факторов, тесно взаимодействующих друг с другом, довольно трудно создать точную модель с хорошо интерпретирующими функциональными связями.

Простейшая модель спроса основывается на выделении одного главного фактора, его определяющего: доходов, цены или объема сбыта (продажи). Такая модель в силу своего упрощения называется эскизной. Примерами эскизных моделей служат те, в которых главным фактором выступает, например, эластичность спроса или экстраполяция спроса как функции времени.

Более сложным подходом отличается аналитическая модель спроса в потреблении, которая строится с использованием методов математической статистики на основе информации о структуре доходов населения, цен на товары и других факторов. Например, для прогнозирования спроса на предметы длительного пользования (холодильники, телевизоры, стиральные машины и т.д.) нужны данные о наличии и возрасте таких предметов, уже имеющихся у населения, составе семей и др.

Рассмотрим характеристику известной модели Энгеля. Однофакторная модель спроса от доходов, называемая кривой Энгеля (по имени немецкого ученого, впервые изучившего группу этих кривых), позволяет установить, какую долю своих доходов семьи определенного сегмента рынка выделяют на приобретение тех или иных благ (товаров и услуг). Их еще называют функциями потребления.

В обобщенной форме эти кривые выражаются формулой:


где S – средние доходы;

Объем потребления i-го блага (спроса).

Формы кривых могут быть различны. Далее, как и при экстраполяции, зная динамический ряд показателя спроса в зависимости от доходов, можно определить прогноз спроса на товар в будущем. В практике среднесрочного прогнозирования спроса всегда были популярны многофакторные корреляционные и регрессионные модели. Эти модели выступают как функции спроса, в которых в качестве переменных используются факторы, определяющие динамику спроса. Приведем математическую форму записи такой модели:

у = f (x, z, d и т.д.).

В многофакторных моделях спрос на определенный товар характеризуется как функция нескольких независимых переменных. Суть экономического предсказания заключается в том, чтобы на базе имеющихся объемных и структурных параметров потребления за прошлый и настоящий периоды определить траекторию развития спроса на будущий период и исчислить его важнейшие параметры. Многофакторная модель позволяет точнее отразить процесс формирования спроса, чем трендовые однофакторные модели. Среди многофакторных моделей особое признание получила множественная линейная регрессия. Такую форму связи тем или иным способом необходимо привести к линейному виду, единственным требованием которого является достаточная близость теоретической кривой к эмпирическим значениям ряда. Оценка близости производится посредством исчисления среднеквадратического отклонения. Критерий пригодности модели спроса может быть формально записан как:


Предположение о линейном характере связи между спросом и формирующими его факторами, допустимое при разработке кратко- и среднесрочных прогнозов, становится неприемлемым, когда речь идет о периоде, превышающем 7-8 лет. Долгосрочные прогнозы требуют перехода к нелинейным типам взаимосвязей, предполагающим наличие скачков, перегибов и проч., т.е. от экстраполяционных методов надо переходить к интерполяционным. С расширением горизонта прогнозирования уменьшается зависимость будущего развития от достигнутого состояния и сложившихся тенденций. Поэтому генетические методы в прогнозировании постепенно уступают место нормативно-целевым. Эти методы можно охарактеризовать и как методы обоснования альтернативных путей перехода от сложившихся тенденций к желательным.

Долгосрочные прогнозы спроса используют нормативы обеспеченности населения материальными и духовными благами. В настоящее время в практике прогнозирования спроса широко применяются различные нормативы потребления важнейших продуктов питания, изделий легкой промышленности, предметов культурно-бытового назначения. Эти нормы разрабатываются специальными организациями, они характеризуют научно обоснованное представление общества об идеальном потреблении того или иного товара. Напомним, что прогнозирование с помощью нормативного метода сводится к тому, чтобы на основе известных значений крайних членов ряда (последнего фактического и нормативного) определить возможный уровень потребления в различные периоды внутри этого ряда.

При прогнозировании спроса продовольственных и непродовольственных товаров применяются разные подходы.

Для продовольственных товаров характерна сравнительная стабильность потребления в целом. Сложившийся уровень потребления продуктов питания обычно меняется постепенно за счет изменения привычек и вкусов населения. Например, можно довольно-таки точно спрогнозировать спрос на хлебобулочные и кондитерские изделия, мясопродукты, рыбопродукты, сахар, овощи и фрукты. Сложившиеся тенденции увеличения или снижения потребления этих товаров обычно не подвержены резким колебаниям по годам. Возможны лишь сезонные колебания и изменение потребления при резком изменении политико-экономического состояния страны.

Для прогнозирования потребления непродовольственных товаров требуется учет следующих факторов:

¨ величины рационального гардероба;

¨ перспективной нормы потребления товара;

¨ износа имеющегося товара у населения для его замены;

¨ дополнительной потребности в товаре для обеспечения им естественного прироста населения до среднего уровня, сложившегося в обществе.

  • Почему прогнозы спроса оказываются неточными
  • Как выстроила процесс прогнозирования спроса компания Nestle

Руководители розничных и дистрибьюторских компаний часто не удовлетворены объемом продаж, а также избытком или дефицитом товарных позиций. Отправная точка для изменения ситуации – прогнозирование спроса. Чем прогноз точнее, тем меньше будет на складе запасов непродаваемых товаров, востребованные же всегда будут в наличии. Кроме того, компания сможет вовремя вводить в ассортимент новые товары и убирать устаревшие, устанавливать конкурентоспособные розничные цены и оптимизировать цепочку поставки. 


Как формируется прогноз спроса

Все данные о фактических продажах, проведенных и планируемых маркетинговых акциях, изменениях розничных цен и других событиях нужно проанализировать. Самый простой инструмент для этого – программа Excel. Тем самым компания получит статистические прогнозы спроса. Далее их выборочно корректирует аналитик и передает на согласование соответствующим подразделениям: отделам продаж, закупок, маркетинга и др. Итоговый прогноз утверждает руководство компании.

Формирование прозноза спроса

e&g t;

Почему появляются неточные прогнозы
 спроса

Прогнозы компании оказываются неточными по четырем причинам:

  • вариативность спроса;
  • субъективность корректировок;
  • неопытность аналитиков;
  • недостаточная функциональность программного обеспечения. 


Вариативность спроса

Например, спрос на сотовые телефоны или одежду чаще всего импульсивен, а значит, неравномерен в разных магазинах – объем продаж зависит от того, насколько умело продвигается товар. Соответственно, при планировании надо учитывать, какие рекламные акции будет проводить магазин, и корректировать прогноз в зависимости от ожидаемых результатов. Иное дело хлеб – этот товар пользуется спросом в любой ситуации. Поэтому достаточно рассчитать статистический прогноз, корректировки не требуются.


Субъективность корректировок

Нередко в компанию приходит эксперт с большим опытом и «на глаз» определяет спрос. Однако такого рода «экспертные» оценки зачастую ошибочны. Например, в американской компании по продаже электронной техники RadioShack обнаружили, что в 70% случаев прогноз, скорректированный специалистом, оказывается менее точным, чем статистический прогноз, полученный на основе средних значений еженедельных продаж за последние пять недель (так называемый прогноз по скользящим средним). 


Кроме того, разные подразделения, которые корректируют прогнозы, часто действуют несогласованно или намеренно искажают цифры, чтобы затем иметь возможность переложить ответственность друг на друга. Классический пример – противоборство отделов продаж и закупок. Первые утверждают, что низкие продажи обусловлены отсутствием товара на складе, а вторые заявляют, что не закупают товар, поскольку менеджеры все равно не могут его продать. Соответственно, департамент продаж старается завысить прогноз, а департамент закупок, наоборот, занизить. Это не лучшим образом сказывается на точности прогнозов.


Неопытность аналитиков

По моим наблюдениям, аналитики или специалисты по планированию делают менее точные корректировки, чем категорийные менеджеры, которые отлично знают товар. Кроме того, ошибки в прогнозах нередко возникают по банальной причине, когда аналитик не владеет в должной мере техниками прогнозирования. Как показало исследование компании Fildes & Goodwin, ручные изменения прогнозных значений на небольшие величины не приводят к существенному повышению точности прогноза, а в ряде случаев даже снижают ее. В исследовании участвовали четыре компании, деятельность которых связана с цепочками поставок; они корректировали вручную до 75% своих статистических прогнозов 1 .


Неточность программных инструментов

Существует множество видов спроса. Он может быть устойчивым сезонным, устойчивым несезонным, неустойчивым сезонным, неустойчивым несезонным и прерывистым. Отдельно выделяется спрос на товары с коротким жизненным циклом. Помимо всего этого, на спрос влияет множество внешних событий: маркетинговые акции, изменение розничных цен, смена товарных линеек, активность конкурентов и пр. Сочетания этих событий могут быть как взаимодополняющими, так и взаимоисключающими. Не все программные инструменты способны учитывать эти нюансы при формировании статистических прогнозов, и отсюда следуют неточности.

  • Удобное прогнозирование продаж поможет сделать программа автоматизации бизнеса Класс365

Определите природу спроса. Универсального алгоритма, который бы гарантировал точные прогнозы для всех видов товаров, не существует. Но есть важное правило – первым делом нужно понять природу спроса на товар: он импульсивный или естественный? Определив это, вам будет проще подобрать правильные методы для управления продажами. 


Используйте эталонный прогноз спроса. Вопрос, насколько точен статистический прогноз, возникает уже в самом начале процесса прогнозирования. Чтобы понять, эффективны ли меры по корректировке прогноза, необходимо иметь эталонный прогноз для сравнения. Тогда статистический прогноз, допустим, на завтра сравнивается с эталоном. Таким прогнозом может служить скользящее среднее значение, например, за последние семь дней. Вы можете выбрать и другой эталон – главное, руководствоваться следующими принципами: 


  • построение эталонного прогноза не должно отнимать много времени;
  • алгоритм должен быть очень простым и подходить для всех видов спроса. Например, он должен одинаково стабильно прогнозировать спрос на товары с циклом продаж в одну неделю и на товары с циклом продаж в несколько лет.

Результаты дальнейших корректировок статистического прогноза необходимо сравнивать именно с эталонным. Введение эталонного прогноза изменит процесс предсказания будущего спроса (см. рис. 2 ).


Устанавливайте адекватные цели прогнозирования
 спроса. Вот пример неверно сформулированной цели: точность прогноза должна быть не менее 80% для всех товаров. Правильнее сформулировать цель следующим образом: точность итогового прогноза должна быть выше точности эталонного. Или так: точность итогового прогноза должна быть выше точности используемого на текущий момент.


Казалось бы, в последних формулировках цель выглядит более размытой, но зато она позволяет учитывать особенности спроса на разные товары. Например, в подразделении по продаже мобильных телефонов компании Mobistar долгое время не могли преодолеть планку в 30% по точности прогнозов ввиду редких и импульсивных продаж товаров. Развертывание системы статистического прогнозирования временных рядов позволило повысить точность прогнозов до 50%. Дальнейшее выстраивание процесса согласования итогового прогноза с экспертами из других отделов помогло поднять точность прогнозов до 60%. Текущий уровень точности прогнозов составляет порядка 70%, и этот результат был достигнут за счет повышения качества данных 2 .


Если же цели слабо связаны с реальностью, сотрудники начинают подстраивать прогнозы под имеющиеся данные. Это лишает смысла всю работу по прогнозированию.

Не копируйте цели конкурентов. Часто при прогнозировании спроса розничные сети смотрят на конкурентов. Однако это не всегда оправданно. Цели по точности прогнозов должны учитывать размеры компании, специфику ее процессов, географическое положение, широту ассортимента и т. д. То есть региональной розничной сети небольших или средних размеров не следует ориентироваться на точность прогнозирования федеральной сети из списка топ-10. Вместе с тем у более крупных конкурентов полезно позаимствовать сведения об организации бизнес-процессов и их автоматизации. 


  • Категорийный менеджмент в рознице: 3 принципа увеличения продаж

Занимайтесь товарами, которые приносят максимальную прибыль, но показывают самую низкую точность прогнозов продаж. Если Вам удастся хотя бы немного повысить точность прогноза продаж товаров, приносящих основную маржу, Вы получите существенный финансовый эффект за счет сокращения издержек. Если же Вы повысите, пусть даже до 100%, точность прогноза продаж на товары с небольшой выручкой, эффект будет значительно меньше. Если же есть два товара, сопоставимые по выручке, разумнее сосредоточить усилия на повышении точности прогноза продаж того товара, у которого она ниже. Дело в том, что если точность прогноза уже высокая, то ее дальнейшее улучшение потребует несравнимо больших усилий. Если же первоначальная точность прогноза низкая, то ее проще повысить и, значит, проще получить прирост прибыли. 


Контролируйте качество поступающих данных. Использование в качестве отправной точки эталонного прогноза и установка адекватных целей еще не гарантия получения точных итоговых прогнозов. Важно контролировать качество поступающих данных. Например, фактические сведения о реализации могут не отражать действительной картины, поскольку продаж могло не быть не из-за отсутствия спроса, а, например, из-за нехватки товара на складе. В этом случае используйте среднее значение продаж в периоды отсутствия дефицита. Причем не стоит стараться восстанавливать спрос идеально точно – для прогнозирования нет принципиальной разницы, был ли реальный спрос вчера равен пяти или семи единицам товара. Достаточно знать, что в среднем спрос составлял шесть единиц. 


Автоматизируйте процессы, влияющие на спрос. Многие компании не собирают информацию о результатах проведенных маркетинговых акций и не оценивают их эффективность. Они уверены, что любая рекламная кампания увеличивает продажи, но это не так. Аналогично многие не отслеживают историю ценообразования и т. д. Важно выстроить процесс формирования прогноза спроса для каждой товарной группы, а лучше – для каждого товара. И здесь требуется программное обеспечение. Однако, выбирая его, обращайте внимание на возможности для анализа влияния внешних событий на спрос, таких как праздники, различные промоакции, изменение розничных цен и т. д. Откажитесь от ручной корректировки статистического прогноза по тем товарным категориям, по которым экспертное мнение специалиста не дает стабильного улучшения точности итогового прогноза.


Прогнозирование спроса в действии: опыт компании Nestle


В качестве примера расскажу о проекте компании Nestle по построению процесса прогнозирования спроса. Он был выполнен совместно со специалистами компании SAS. Небольшая справка: Nestle производит продукты питания, работает в 469 регионах в 86 странах мира, годовой оборот – 90 млрд швейцарских франков.


В компании особое значение для формирования прогнозов спроса придают категории товаров, именуемой «безумные быки», – это товары одновременно с высоким объемом продаж и вариативностью спроса. К «безумным быкам» можно отнести, например, кофе марки Nescafe. Для этого продукта характерен устойчивый спрос, однако, чтобы объем продаж не падал, постоянно проводят стимулирующие промоакции.


В Nestle пришли к выводу, что использование лишь статистического прогноза, равно как и только экспертного опыта специалиста по планированию, не дает должных результатов. Руководство поставило задачу выстроить пошаговый процесс формирования прогноза спроса, чтобы повысить его точность. Действовали следующим образом:


1. Сформировали эталонный прогноз – он был получен при помощи метода усреднения значений продаж.


2. Создали статистический прогноз, затем аналитик скорректировал данные, передал на рассмотрение другим отделам. Те внесли корректировки, вернули прогноз, руководитель утвердил. Кстати, точность прогноза рассчитывалась по следующей формуле: 
Точность прогноза спроса = 1 – |Прогноз – Факт| : Прогноз.


Компания Nestle не открывает точных цифр, поэтому рассмотрим условный пример. Допустим, сегодня 22-е число. Прогноз спроса, сделанный 20-го числа на 21-е, равен 10 единицам товара (банки кофе Nescafe). Фактические продажи за 21-е число составили 8 единиц. Точность прогноза, согласно формуле, которую используют в компании Nestle, составит 80% (1 – |10 – 8| : 10). 


3. Чтобы достичь высокой точности прогноза спроса, были сформулированы гипотезы возможных событий, которые могут повлиять на спрос: праздники, перенос выходных дней, структурные сдвиги продаж (например, обусловленные кризисом), промоакции. Эксперты оценивали влияние каждой гипотезы на спрос и затем сравнивали с эталоном. Если это повышало точность прогнозов, гипотезу учитывали в процессе прогнозирования.

Приведу условный пример (к сожалению, специалисты компании Nestle не предоставили точных данных, что именно они делали в рамках процесса экспертной корректировки). В компании узнали, что конкурент неожиданно снизил цены на 1%. Опыт эксперта показывает, что такие действия приведут к падению продаж на 3%. Значит, необходимо уменьшить величину прогноза на эти 3%.


Вернемся к опыту компании Nestle. Первоначально сформированный статистический прогноз спроса для «безумных быков» показал точность 55,2%. Затем его подвергли процессу экспертной корректировки, что повысило точность итогового прогноза до 82,4%. Кроме того, компания повысила точность прогнозов и по другим категориям товаров. Все это позволило высвободить время маркетологов и специалистов по планированию. Они стали уделять больше внимания стабильно прибыльным товарам, сконцентрировав свои усилия на сложной продукции (для поддержания высокого спроса на которую требуются постоянные рекламные акции и пр.). Работа с товарами с низкими продажами ведется по остаточному принципу.

Формирование прогноза спроса

1. Данные Сведения о продажах, остатках, поставках, прочих движениях, а также о маркетинговых акциях и других внешних событиях.
2. Инструмент Программа, с помощью которой можно сформировать статистический прогноз спроса (в нашем случае Excel)
3. Статистический прогноз Прогноз, сформированный при помощи инструмента прогнозирования спроса
4. Скорректированный прогноз Ручная корректировка статистического прогноза аналитиоки или специалистом по планированию
5. Согласованный прогноз Ручная корректировка и согласование итогового прогноза между департаментами (продажи, маркетинга и пр.)
6. Утвержденный прогноз Утверждение итогового прогноза ответственным менеджером и передача отделам для выполнения.
Сегмент Точность статистического прогноза спроса, % Точность прогноза после корректировки экспертами, %
«Лошади» - товары с высокими продажами и низкой вариативность 92,1 92,7
«Зайцы» - товары с низкими продажами и высокой вариативностью 56,3 55,5
«Безумные быки» - товары с высокими продажами и высокой вариативностью, например кофе марки Nescafe 55,2 82,4
«Мулы» - товары с низкими продажами и низкой вариантивностью 90,9 91,2

В каждой компании свои примеры, Nestle раскрывает информацию только для сегмента «безумные быки» – напиток Nescafe. Эта таблица дает директорам повод задуматься и попытаться составить аналогичную для своего ассортимента. Ведь Nescafe в «Пятерочке» может оказаться совсем в другой категории, нежели Nescafe в «Азбуке Вкуса».

Копирование материала без согласования допустимо при наличии dofollow-ссылки на эту страницу

Для понимания сущности данного вопроса необходимо предварительно дать определения понятий - метод.

Применительно к экономической науке и практике - метод - это: 1) система правил и приемов подхода к изучению явлений и закономерностей природы, общества и мышления; 2) путь, способ достижения определенных результатов в познании и практике; 3) прием теоретического исследования или практического осуществления чего-нибудь, исходящий из знания закономерностей развития объективной действительности и исследуемого предмета, явления, процесса.

Методы прогнозирования - это совокупность приёмов и способов мышления, позволяющих на основе анализа ретроспективных данных об исследуемом объекте вывести суждения определённой достоверности относительно будущего развития объекта.

По оценкам отечественных и зарубежных учёных, в настоящее время насчитываются сотни методов прогнозирования, однако на практике регулярно используются несколько десятков базовых методов (рис. №1).

Рис.

Из рисунка №1 видно, что вся совокупность методов прогнозирования может быть представлена двумя группами - в зависимости от степени их однородности:

  • · простые методы;
  • · комплексные методы.

Группа простых методов объединяет однородные по содержанию и используемому инструментарию методы прогнозирования (например, экстраполяция тенденций, морфологический анализ и др.).

Комплексные методы отражают совокупности, комбинации методов, чаще всего реализуемые специальными прогностическими системами.

Кроме того, все методы прогнозирования поделены еще на три класса:

  • · фактографические методы;
  • · экспертные методы;
  • · комбинированные методы.

В основу их выделения положен характер информации, на базе которой составляется прогноз:

  • 1) фактографические методы базируются на фактическом информационном материале о прошлом и настоящем развитии объекта прогнозирования. Чаще всего применяются при поисковом прогнозировании для эволюционных процессов;
  • 2) экспертные (интуитивные) методы основаны на использовании знаний специалистов-экспертов об объекте прогнозирования и обобщении их мнений о развитии (поведении) объекта в будущем. Экспертные методы в большей мере соответствуют нормативному прогнозированию скачкообразных процессов;
  • 3) комбинированные методы включают методы со смешанной информационной основой, в которых в качестве первичной информации наряду с экспертной используется и фактографическая.

В свою очередь, каждый из перечисленных классов также подразделяется на группы и подгруппы. Так, среди фактографических методов выделяются группы:

  • · статистических (параметрических) методов;
  • · опережающих методов.

Группа статистических методов включает методы, основанные на построении и анализе динамических рядов характеристик (параметров) объекта прогнозирования. Среди них наибольшее распространение получили экстраполяция, интерполяция, метод аналогий (модель подобия), параметрический метод и др.

Группа опережающих методов состоит из методов, основанных на использовании свойства научно-технической информации опережать реализацию научно-технических достижений. Среди методов этой группы выделяется публикационный, основанный на анализе и оценке динамики публикаций.

Среди экспертных методов выделяют группы по следующим признакам:

  • · по количеству привлеченных экспертов;
  • · по наличию аналитической обработки данных экспертизы (табл. 1).

Прогнозирование спроса в теории осуществляется различными методами. На практике, как правило, реализуется комплексный подход, учитывающий сильные и слабые стороны применяемых методов. Общие методы прогнозирования спроса основываются на:

  • · Метод экспертных оценок;
  • · Статистические методы (фактографические);
  • · Комбинированные методы.

Методы экспертных оценок

Под экспертными оценками понимают комплекс логических и математических пpoцeдyp, направленных на получение от специалистов инфopмaции, ee aнaлиз и oбoбщeниe c цeлью пoдгoтoвки и выpaбoтки paциoнaльныx peшeний.

Таблица № 1

Классификация экспертных методов прогнозирования

Экспертные методы прогнозирования, как правило, используются в случаях:

  • · когда невозможно учесть влияние многих факторов из-за значительной сложности объекта прогнозирования;
  • · наличия высокой степени неопределенности информации, имеющейся в прогностической базе, или вовсе при отсутствии информации об объекте прогнозирования.

Мeтoды экcпepтныx oцeнoк мoжнo paздeлить нa двe гpyппы:

  • · мeтoды кoллeктивнoй paбoты экcпepтнoй гpyппы;
  • · мeтoды пoлyчeния индивидyaльнoгo мнeния члeнoв экcпepтнoй гpyппы.

Мeтoды кoллeктивнoй paбoты экcпepтнoй гpyппы пpeдпoлaгaют пoлyчeниe oбщeгo мнeния в xoдe coвмecтнoгo oбcyждeния peшaeмoй пpoблeмы. Инoгдa эти мeтoды нaзывaют мeтoдaми пpямoгo пoлyчeния кoллeктивнoгo мнeния. Оcнoвнoe пpeимyщecтвo этиx мeтoдoв зaключaeтcя в вoзмoжнocти paзнocтopoннeгo aнaлизa пpoблeм. Нeдocтaткaми мeтoдoв являeтcя cлoжнocть пpoцeдypы пoлyчeния инфopмaции, cлoжнocть фopмиpoвaния гpyппoвoгo мнeния пo индивидyaльным cyждeниям экcпepтoв, вoзмoжнocть дaвлeния aвтopитeтoв в гpyппe.

Мeтoды кoллeктивнoй paбoты включaют мeтoды "мoзгoвoй aтaки", "cцeнapиeв", "дeлoвыx игp", "coвeщaний" и "cyдa".

· Мeтoд "мoзгoвoй aтaки".

Мeтoды этoгo типa извecтны тaкжe пoд нaзвaниeм кoллeктивнoй гeнepaции идeй, мoзгoвoгo штypмa, диcкyccиoнныx мeтoдoв. Вce эти мeтoды ocнoвaны нa cвoбoднoм выдвижeнии идeй, нaпpaвлeнныx нa peшeниe пpoблeмы. Зaтeм из этиx идeй oтбиpaютcя нaибoлee цeнныe.

Дocтoинcтвoм мeтoдa "мoзгoвoй aтaки" являeтcя выcoкaя oпepaтивнocть пoлyчeния тpeбyeмoгo peшeния. Оcнoвным нeдocтaткoм eгo - cлoжнocть opгaнизaции экcпepтизы, тaк кaк инoгдa нeвoзмoжнo coбpaть вмecтe тpeбyeмыx cпeциaлиcтoв, coздaть нeпpинyждeннyю aтмocфepy и иcключить влияниe дoлжнocтныx взaимooтнoшeний.

· Мeтoд "cцeнapиeв" пpeдcтaвляeт coбoй coвoкyпнocть пpaвил пo излoжeнию в пиcьмeннoм видe пpeдлoжeний cпeциaлиcтoв пo peшaeмoй пpoблeмe.

Сцeнapий пpeдcтaвляeт coбoй дoкyмeнт, coдepжaщий aнaлиз пpoблeмы и пpeдлoжeния пo ee peaлизaции. Пpeдлoжeния внaчaлe пишyт экcпepты индивидyaльнo, a зaтeм oни coглacyютcя и излaгaютcя в фopмe eдинoгo дoкyмeнтa.

Оcнoвным пpeимyщecтвoм cцeнapия являeтcя кoмплeкcный oxвaт peшaeмoй пpoблeмы в дocтyпнoй для вocпpиятия фopмe. К нeдocтaткaм мoжнo oтнecти вoзмoжныe нeoднoзнaчнocть, нeчeткocть излaгaeмыx вoпpocoв и нeдocтaтoчнyю oбocнoвaннocти oтдeльныx peшeния.

· "Дeлoвыe игpы" ocнoвaны нa мoдeлиpoвaнии фyнкциoниpoвaния coциaльнoй cиcтeмы yпpaвлeния пpи выпoлнeния oпepaций, нaпpaвлeнныx нa дocтижeниe пocтaвлeннoй цeли.

В oтличиe oт пpeдыдyщиx мeтoдoв, гдe экcпepтныe oцeнки фopмиpyютcя в xoдe кoллeктивнoгo oбcyждeния, дeлoвыe игpы пpeдпoлaгaют aктивнyю дeятeльнocть экcпepтнoй гpyппы, зa кaждым члeнoм кoтopoй зaкpeплeнa oпpeдeлeннaя oбязaннocть в cooтвeтcтвии c зapaнee cocтaвлeнными пpaвилaми и пpoгpaммoй.

Оcнoвным дocтoинcтвoм дeлoвыx игp являeтcя вoзмoжнocть выpaбoтки peшeния в динaмикe c yчeтoм вcex этaпoв иccлeдyeмoгo пpoцecca пpи взaимoдeйcтвии вcex элeмeнтoв oбщecтвeннoй cиcтeмы yпpaвлeния. Нeдocтaтoк зaключaeтcя в cлoжнocти opгaнизaции дeлoвoй игpы в ycлoвияx, пpиближeнныx к peaльнoй пpoблeмнoй cитyaции.

· Мeтoд "coвeщaний" ("кoмиccий", "кpyглoгo cтoлa") - caмый пpocтoй и тpaдициoнный.

Он пpeдпoлaгaeт пpoвeдeниe coвeщaния или диcкyccии c цeлью выpaбoтки eдинoгo кoллeктивнoгo мнeния пo peшaeмoй пpoблeмe. В oтличиe oт мeтoдa "мoзгoвoй aтaки" кaждый экcпepт мoжeт нe тoлькo выcкaзывaть cвoe мнeниe, нo и кpитикoвaть пpeдлoжeния дpyгиx. В peзyльтaтe тaкoгo тщaтeльнoгo oбcyждeния yмeньшaeтcя вoзмoжнocть oшибoк пpи выpaбoткe peшeния.

Достоинствoм мeтoдa являeтcя пpocтoтa eгo peaлизaции. Однако на совещании может быть пpинятo oшибoчнoe мнeниe oднoгo из yчacтникoв в cилy eгo aвтopитeтa, cлyжeбнoгo пoлoжeния, нacтoйчивocти или opaтopcкиx cпocoбнocтeй.

· Мeтoд "cyдa" являeтcя paзнoвиднocтью мeтoдa "coвeщaний" и peaлизyeтcя пo aнaлoгии c вeдeниeм cyдeбнoгo пpoцecca.

В poли "пoдcyдимыx" выcтyпaют выбиpaeмыe вapиaнты peшeния; в poли "cyдeй" - лицa, пpинимaющиe peшeниe; в poли "пpoкypopoв" и "зaщитникoв" - члeны экcпepтнoй гpyппы. Рoль "cвидeтeлeй" выпoлняют paзличныe ycлoвия выбopa и дoвoды экcпepтoв. Пpи вeдeнии тaкoгo "cyдeбнoгo пpoцecca" oтклoняютcя или пpинимaютcя тe или иныe peшeния.

Мeтoд "cyдa" цeлecooбpaзнo иcпoльзoвaть пpи нaличии нecкoлькиx гpyпп экcпepтoв, пpидepживaющиxcя paзличныx вapиaнтoв peшeния.

Мeтoды пoлyчeния индивидyaльнoгo мнeния члeнoв экcпepтнoй гpyппы ocнoвaны нa пpeдвapитeльнoм пoлyчeнии инфopмaции oт экcпepтoв, oпpaшивaeмыx нeзaвиcимo дpyг oт дpyгa, c пocлeдyющeй oбpaбoткoй пoлyчeнныx дaнныx. К этим мeтoдaм мoжнo oтнecти мeтoды aнкeтнoгo oпpoca, интepвью и мeтoды "Дeльфи".

Оcнoвныe пpeимyщecтвa мeтoдa индивидyaльнoгo экcпepтнoгo oцeнивaния cocтoят в иx oпepaтивнocти, вoзмoжнocти в пoлнoй мepe иcпoльзoвaть индивидyaльныe cпocoбнocти экcпepтa, oтcyтcтвии дaвлeния co cтopoны aвтopитeтoв и в низкиx зaтpaтax нa экcпepтизy. Глaвным иx нeдocтaткoм являeтcя выcoкaя cтeпeнь cyбъeктивнocти пoлyчaeмыx oцeнoк из-зa oгpaничeннocти знaний oднoгo экcпepтa.

· Мeтoд "Дeльфи", или мeтoд "дeльфийcкoгo opaкyлa", пpeдcтaвляeт coбoй итepaтивнyю пpoцeдypy aнкeтнoгo oпpoca.

Пpи этoм coблюдaeтcя тpeбoвaниe oтcyтcтвия личныx кoнтaктoв мeждy экcпepтaми и oбecпeчeния иx пoлнoй инфopмaциeй пo вceм peзyльтaтaм oцeнoк пocлe кaждoгo тypa oпpoca c coxpaнeниeм aнoнимнocти oцeнoк, apгyмeнтaции и кpитики.

Пpoцeдypa мeтoдa включaeт нecкoлькo пocлeдoвaтeльныx этaпoв oпpoca. Нa пepвoм этaпe пpoизвoдитcя индивидyaльный oпpoc экcпepтoв, oбычнo в фopмe aнкeт. Экcпepты дaют oтвeты, нe apгyмeнтиpyя иx. Зaтeм peзyльтaты oпpoca oбpaбaтывaютcя и фopмиpyeтcя кoллeктивнoe мнeниe гpyппы экcпepтoв, выявляютcя и oбoбщaютcя apгyмeнтaции в пoльзy paзличныx cyждeний. Нa втopoм - вcя инфopмaция cooбщaeтcя экcпepтaм и иx пpocят пepecмoтpeть oцeнки и oбъяcнить пpичины cвoeгo нecoглacия c кoллeктивным cyждeниeм. Нoвыe oцeнки внoвь oбpaбaтывaютcя и ocyщecтвляeтcя пepexoд к cлeдyющeмy этaпy. Пpaктикa пoкaзывaeт, чтo пocлe тpex-чeтыpex этaпoв oтвeты экcпepтoв cтaбилизиpyютcя, и нeoбxoдимo пpeкpaщaть пpoцeдypy.

Дocтoинcтвoм мeтoдa "Дeльфи" являeтcя иcпoльзoвaниe oбpaтнoй cвязи в xoдe oпpoca, чтo знaчитeльнo пoвышaeт oбъeктивнocть экcпepтныx oцeнoк. Однaкo дaнный мeтoд тpeбyeт знaчитeльнoгo вpeмeни нa peaлизaцию вceй мнoгoэтaпнoй пpoцeдypы.

Оcнoвныe этaпы пpoцecca экcпepтнoгo oцeнивaния:

  • · фopмиpoвaниe цeли и зaдaч экcпepтнoгo oцeнивaния;
  • · фopмиpoвaниe гpyппы yпpaвлeния и oфopмлeниe peшeния нa пpoвeдeниe экcпepтнoгo oцeнивaния;
  • · выбop мeтoдa пoлyчeния экcпepтнoй инфopмaции и cпocoбoв ee oбpaбoтки;
  • · пoдбop экcпepтнoй гpyппы и фopмиpoвaниe пpи нeoбxoдимocти aнкeт oпpoca;
  • · oпpoc экcпepтoв (экcпepтизa);
  • · oбpaбoткa и aнaлиз peзyльтaтoв экcпepтизы;
  • · интepпpeтaция пoлyчeнныx peзyльтaтoв;
  • · cocтaвлeниe oтчeтa.

Статистические методы прогнозирования

В методическом плане основным инструментом любого прогноза является схема экстраполяции. Сущность экстраполяции заключается в изучении сложившихся в прошлом и настоящем устойчивых тенденций развития объекта прогноза и переносе их на будущее.

Методы экстраполяции трендов, основанные на статистическом анализе временных рядов, позволяют прогнозировать темпы роста продажи товаров в ближайшей перспективе, исходя из тенденций, сложившихся в прошедшем периоде времени. Обычно методы экстраполяции трендов применяются в краткосрочном (не более одного года) прогнозировании, когда число изменений в среде минимально. Прогноз создается для каждого конкретного объекта отдельно и последовательно на каждый следующий момент времени. Если прогноз составляется для товара, в задачи прогнозирования, основанного на экстраполяции трендов, входят анализ спроса и анализ продаж этого товара. Результаты прогнозирования используются во всех сферах внутрифирменного планирования, включая общее стратегическое планирование, финансовое планирование, планирование производства и управления запасами, маркетинговое планирование и управление торговыми потоками и торговыми операциями.

Наиболее распространенными методами экстраполяции трендов являются:

  • · метод скользящего среднего;
  • · метод экспоненциального сглаживания;
  • · Прогнозирование на основе метода сезонных колебаний;

Необходимость применения скользящей средней вызывается следующими обстоятельствами. Бывают случаи, когда имеющиеся данные динамического ряда не позволяют обнаруживать какую-либо тенденцию развития (тренд) того или иного процесса (из-за случайных и периодических колебаний исходных данных). В таких случаях для лучшего выявления тенденции прибегают к методу скользящей средней.

· Экстраполяция по скользящей средней - может применяться для целей краткосрочного прогнозирования.

Метод скользящей средней состоит в замене фактических уровней динамического ряда расчетными, имеющими значительно меньшую колеблемость, чем исходные данные. При этом средняя рассчитывается по группам данных за определенный интервал времени, причем каждая последующая группа образуется со сдвигом на один год (месяц). В результате подобной операции первоначальные колебания динамического ряда сглаживаются, поэтому и операция называется сглаживанием рядов динамики (основная тенденция развития выражается при этом уже в виде некоторой плавной линии).

Метод скользящей средней называется так потому, что при вычислении средние как бы скользят от одного периода к другому; с каждым новым шагом средняя как бы обновляется, впитывая в себя новую информацию о фактически реализуемом процессе. Таким образом, при прогнозировании исходят из простого предположения, что следующий во времени показатель по своей величине будет равен средней, рассчитанной за последний интервал времени.

· Экспоненциальная средняя. При рассмотрении скользящей средней было отмечено, что чем "старше" наблюдение, тем меньше оно должно оказывать влияние на величину скользящей средней. То есть влияние прошлых наблюдений должно затухать по мере удаления от момента, для которого определяется средняя.

Одним из простейших приемов сглаживания динамического ряда с учетом "устаревания" является расчет специальных показателей, получивших название экспоненциальных средних, которые широко применяются в краткосрочном прогнозировании. Основная идея метода состоит в использовании в качестве прогноза линейной комбинации прошлых и текущих наблюдений. Экспоненциальная средняя рассчитывается по формуле:

Qt+1 = L*yt + (1 - L) * Q t-1

где Q - экспоненциальная средняя (сглаженное значение уровня ряда);

L - коэффициент, характеризующий вес текущего наблюдения при расчете экспоненциальной средней (параметр сглаживания), 0

t - индекс текущего периода;

y - фактическое значение уровня ряда.

Метод экспоненциального сглаживания (рис. № 2) представляет прогноз показателя на будущий период в виде суммы фактического показателя за данный период и прогноза на данный период, взвешенных при помощи специальных коэффициентов.


Рис.

Из графика видно, что кривая прогнозов продаж по сравнению с кривой фактических продаж представляет собой более плавную линию (сглаженную тенденцию).

Применение скользящей и экспоненциальных средних в качестве основы для прогностической оценки имеет смысл лишь при относительно небольшой колеблемости уровней. Данные методы прогнозирования относятся к числу наиболее распространенных методов экстраполяции трендов.

· Прогнозирование на основе сезонных колебаний.

Сезонные колебания -- повторяющиеся из года в год изменения показателя в определенные промежутки времени. Наблюдая их в течение нескольких лет для каждого месяца (или квартала), можно вычислить соответствующие средние, или медианы, которые принимаются за характеристики сезонных колебаний.

Одним из статистических методов прогнозирования является расчет прогнозов на основе сезонных колебаний уровней динамического ряда. При этом под сезонными колебаниями понимаются такие изменения уровня динамического ряда, которые вызываются влияниями времени года. Проявляются они с различной интенсивностью во всех сферах жизни общества: производстве, обращении и потреблении. Их роль очень велика в торговле продуктами питания, на транспорте и др. Сезонные колебания строго цикличны - повторяются через каждый год, хотя сама длительность времен года имеет колебания.

Возникновение собственных циклов в одномерном точечном отображении исследовано М. Фейгенбаумом, а то, что аналогичная динамика присутствует в экономических моделях, отмечалось неоднократно Нижегородцевым Р.М.

Для изучения сезонных колебаний необходимо иметь уровни за каждый квартал, а лучше за каждый месяц, иногда даже за декады, хотя декадные уровни могут уже сильно исказиться мелкомасштабной случайной колеблемостью. прогнозирование автомобиль стоимостной оценка

Методика статистического прогноза по сезонным колебаниям основана на их экстраполяции, т.е. на предположении, что параметры сезонных колебаний сохраняются до прогнозируемого периода.

В общем виде индексы сезонности определяются отношением исходных (эмпирических) уровней ряда к теоретическим (расчетным) уровням, выступающих в качестве базы сравнения. Индексы сезонности рассчитываются по формуле:

где Is t - индивидуальный индекс сезонности;

Yt - эмпирический уровень ряда динамики;

Yi - теоретический уровень ряда динамики.

В результате того, что в формуле измерение сезонных колебаний проводится на базе соответствующих теоретических уровней тренда, в индивидуальных индексах сезонности влияние основной тенденции развития устраняется. Поскольку на сезонные колебания могут накладываться случайные отклонения, для их устранения производится усреднение индивидуальных индексов сезонности одноименных внутригодовых периодов анализируемого ряда динамики. Поэтому для каждого периода годового цикла определяются обобщенные показатели в виде средних индексов сезонности (Is):

где n - число периодов годового цикла.

Рассчитанные таким образом средние индексы сезонности свободны от влияния основной тенденции развития и случайных отклонений.

· Прогнозирование методом линейной регрессии.

Прогнозирование методом линейной регрессии - является одним из наиболее широко применяемых формализованных методов прогнозирования. Метод базируется на взаимосвязи (линейной зависимости) факторного и результативного показателя:

где x - факторный показатель;

Y - результативный показатель.

Приведенные методы измерения сезонных колебаний не являются единственными. Так, для выявления сезонных колебаний можно применять и рассмотренный выше метод скользящей средней, и другие методы.

Комбинированные методы

На практике существует тенденция сочетать различные методы прогнозирования спроса. Поскольку итоговый прогноз играет очень важную роль для всех аспектов внутрифирменного планирования, то желательно создать прогнозную систему, в которой может использоваться любой вводимый фактор.