Какие используются методы для целей прогнозирования спроса. Метод Кростона и страховой запас. Функция распределения спроса. Прогнозирование. Постановка задачи

Существуют фундаментальные принципы, которые необходимо учитывать, прогнозируя спрос на любом уровне иерархии плановых решений. Несоблюдение этих принципов приводит к тому, что прогноз спроса становится либо невысоким по качеству, либо нерелевантным с позиций принимаемых предприятием решений.

Горизонт прогнозирования спроса. Разницу во времени между моментом, когда прогнозируется спрос, и тем плановым периодом, на который прогнозируется спрос, называют временным лагом. Выбор необходимого временного лага зависит от того, сколько времени предприятию нужно, чтобы разработать и принять все необходимые меры для того, чтобы отреагировать на информацию о прогнозе спроса. Если для наращивания производственной мощности в соответствии с прогнозом о будущем росте спроса требуется год, прогноз спроса с горизонтом менее года недостаточен, он не позволит решить необходимую задачу управления производственной мощностью. Или, например, если длительность производственного цикла при «производстве на заказ» составляет один месяц, нелогично иметь горизонт прогнозирования более коротким, ибо на такой прогноз предприятие не сумеет вовремя среагировать, подготовив необходимые запасы сырья и материалов.

При выборе горизонта прогнозирования спроса необходимо учитывать, что на более отдаленные плановые периоды прогноз будет менее точным, чем на более близкие. Соответственно, выбор горизонта прогнозирования спроса должен быть обоснован теми решениями, которые принимаются на основе сформированного прогноза — слишком короткий горизонт прогнозирования не позволяет адекватно решить поставленную задачу, а более долгий — создает проблемы с качеством прогноза.

Выбор объекта прогнозирования спроса . Чем детальнее прогноз, тем менее он точен. Соответственно, для каждого уровня иерархии планов необходимо выбирать тот уровень детализации объекта прогнозирования, который позволит решить поставленную задачу, но не приводит к ненужной детализации. Ненужной считается детализация, которая, увеличивая трудоемкость и стоимость прогноза спроса, не прибавляет прогнозу ценности с точки зрения принятия решений.

В целом, можно сказать, что параметры прогнозов спроса определяются целью использования прогноза. Чем выше уровень принятия решений и чем крупнее по масштабу принимаемые решения, тем более крупно и на более далекую перспективу строится прогноз спроса.

Качество прогноза спроса. Любому прогнозу присущ риск ошибки. Трудно представить прогноз, не содержащий ошибку. Можно выделить два типа ошибки прогноза спроса: ошибка оценки объема спроса и ошибка оценки структуры спроса. Эти типы ошибок необходимо рассматривать в зависимости от того, о каком уровне принятия решений на предприятии идет речь.

Риск ошибки оценки объема спроса при прогнозировании спроса может быть на любом уровне планирования. При долгосрочном прогнозировании спроса риск проявляется на уровне категорий продукции и товарных групп. Риск влияет на доступность необходимого объема ключевых ресурсов и на исполнение финансовых планов предприятия. При оперативном прогнозировании спроса риск проявляется на уровне номенклатурных позиций продукции, и влияет на фактический уровень обслуживания клиентов.

Риск ошибки оценки структуры спроса при прогнозировании спроса проявляется только при долгосрочном прогнозировании спроса на уровне категорий продукции и товарных групп. Предполагается одна структура спроса внутри товарной группы по номенклатурным позициям, а фактически структура оказывается иной.

Учесть указанные риски можно двумя способами: повышением качества прогнозов и/или резервированием ресурсов, предназначенных специально для покрытия этих рисков. На практике, как правило, используют оба способа одновременно — работают над повышением качества прогнозов спроса, и (поскольку стопроцентное качество прогноза на практике недостижимо) формируют резервные величины ресурсов (резервные товарно­-материальные запасы, резервное время, резервную производственную мощность).

Для оценки качества прогноза выделяют две основные измеряемые характеристики: ошибка прогноза и точность прогноза.

Ошибка прогноза — разница между фактическим значением спроса и его прогнозным значением. Она может быть выражена как в абсолютном выражении, так и в относительном — в процентах от фактического значения спроса.

Точность прогноза — это выраженная в процентах величина, равная разнице между 100% и выраженной в процентах ошибкой прогноза спроса.

Основной для оценки точности и качества прогноза спроса является измеренная ошибка и точность прогноза для каждого отдельно взятого планового периода.

Однако чаще интерес представляет не отдельно взятый плановый период, а то, в какой степени хорош тот или иной метод прогнозирования спроса. Для этого принято рассчитывать сводные характеристики точности прогноза спроса. Двумя основными способами оценить точность метода прогнозирования спроса являются средняя абсолютная ошибка в процентах (MAPE – Mean Absolute Percentage Erro) и средняя процентная ошибка (MPE – Mean Percentage Error).

Ошибки прогноза спроса можно классифицировать на две категории: случайные отклонения и смещение.

Случайные отклонения означают, что в сумме ошибки прогноза стремятся к нулю, и плановые периоды, для которых спрос был переоценен, чередуются с плановыми периодами, для которых спрос был недооценен, то есть, в ошибке прогноза спроса нет тенденциозности, отрицательные и положительные значения ошибок прогноза спроса в целом погашают друг друга.

Смещение же означает, что есть серьезная проблема — значительно более серьезная, нежели случайные ошибки — систематическое завышение или занижение прогноза спроса. Смещение прогноза может объясняться как объективными, так и субъективными обстоятельствами. К объективным можно отнести выбор модели прогнозирования спроса, которая может быть не вполне релевантна, например, не учитывать существенные факторы, влияющие на спрос. Объективные обстоятельства поддаются оценке и корректировке путем улучшения модели прогнозирования, сбора и подготовки данных для прогнозирования спроса, обучения сотрудников прогнозированию.

Субъективные же обстоятельства связаны с намеренным занижением или завышением величины прогноза. Это означает, что прогнозист заинтересован, в силу тех или иных причин, в смещении прогноза, поскольку он получает те или иные выгоды от смещения прогноза. Например, если прогноз спроса формирует отдел продаж предприятия, и при этом он получает премию за перевыполнение плана продаж, трудно ожидать от него оптимистического прогноза спроса. И наоборот, если отдел маркетинга формирует прогноз спроса, а при этом бюджет маркетинга считается как процент от плановой выручки, не стоит ждать пессимистического прогноза спроса. Нейтрализация влияния субъективных факторов в некоторой мере достигается правильной организацией процесса прогнозирования спроса.

В заключение следует сказать, что, помимо понятия «точность прогноза », можно выделить понятие «качество прогноза». Под качеством прогноза понимают способность процесса прогнозирования спроса формировать такие прогнозы, которые устойчиво отличались бы от фактических значений спроса не более чем на заданную величину ошибки. То есть качество прогноза означает способность удерживать ошибку прогноза в заданных пределах. Это очень важно с точки зрения управления, поскольку к заданным границам ошибки прогноза предприятие может заранее подготовиться, и такой масштаб ошибки не ставит под угрозу уровень обслуживания заказчиков.

Замечено, что качество прогноза спроса определяется в большей мере хорошей организацией процесса прогнозирования спроса, чем отдельно взятыми сколь угодно сложными математическими моделями. Тем не менее, рассмотрим далее, какие типы методов прогнозирования спроса существуют, и в каких обстоятельствах их целесообразно применять.

Все методы прогнозирования спроса можно разделить на две группы: качественные и количественные.

Качественные методы прогнозирования субъективны, основаны на суждении экспертов и лиц, принимающих решения, или даже на интуиции. Как правило, эти методы применяются в следующих случаях:

  • для долго- и среднесрочного прогнозирования, так как:

в такой перспективе весьма вероятны изменения спроса, которые не носят чисто инерционного характера, а могут отражать существенное изменение условий на том или ином рынке сбыта (макроэкономические изменения, изменение структуры рынка, значительное усиление или ослабление важных участников рынка и т.п.);

при долгосрочном прогнозировании необходимо опираться на поведенческие данные, полученные проведением маркетинговых исследований;

  • для прогнозирования спроса на новую продукцию, не имеющую аналогов, что делает недоступным применение метода исторической аналогии;
  • профили спроса и связи нестабильны;
  • есть необходимость основываться на мнении руководителей или экспертов по субъективным причинам;
  • когда нет возможности даже для краткосрочного прогнозирования применить количественные методы (например, когда нет необходимого для применения количественных методов объема исходных данных или когда прогноз должен быть получен очень быстро, и нет времени на то, чтобы выполнить необходимый количественный анализ).

Качественные методы имеют определенные недостатки, которые необходимо осознавать при их применении:

  • в силу субъективности прогноза есть большая вероятность смещения прогноза, то есть его систематического отклонения от факта в ту или иную сторону;
  • как правило, неполнота документирования – редко, когда получение прогноза таким способом сопровождается развернутыми объяснениями экспертов о том, почему они выбрали именно такой прогноз, а не иной.
  • они не практичны, когда необходимо подготовить прогноз спроса для сотен или даже тысяч номенклатурных позиций продукции — человек не в состоянии оперировать такими объемами информации;
  • есть опасность доминирования одной точки зрения над остальными (например, точки зрения руководителя или ведущего признанного эксперта) при консолидации экспертных мнений (например, при применении метода консенсус-панели), и не факт, что эта доминирующая точка зрения окажется ближе к истине.

Количественные методы можно разделить на две подгруппы: экстраполяционные и регрессионные.

Экстраполяционные методы (основанные на продлении наблюдающейся тенденции в будущее) основаны на нескольких важных предположениях:

  • будущее будет похоже на прошлое, не произойдет никаких существенных изменений в расстановке сил на рынке;
  • есть качественные ряды исходных данных достаточной длины;
  • профиль спроса в будущем будет таким же, как и в прошлом.

Существует множество различных экстраполяционных методов: метод скользящей средней, метод экспоненциального сглаживания, метод экстраполяции тренда, нейросетевые модели и др.

В рядах динамики могут выделяться следующие основные профили (компоненты):

  • тренд, показывающий основное направление движения ряда динамики;
  • сезонная компонента, показывающая колебания сезонного характера (лето, зима; последние недели месяца, последние дни недели, и т.п.);
  • случайная компонента — то, что невозможно спрогнозировать в принципе;
  • циклическая компонента — выделяется для очень длинных рядов динамики и на практике редко используется на предприятиях, поскольку требует накопления многолетней статистики и относительно неизменных условий.

Любой из экстраполяционных методов подразумевает, что для прогнозирования спроса достаточно опираться на данные о спросе в прошедших плановых периодах. Эти данные, как правило, хранятся в базах данных предприятия (в ERP-системе или СКЬ-системе), поэтому экстраполяционные методы относительно недороги в их использовании.

Регрессионные методы основаны на построении причинно-следственных связей между величиной спроса и факторами, на нее влияющими. Факторы могут при этом иметь как демографический, так и экономический характер. Для применения регрессионных методов необходимы ряды данных достаточной длины, причем как данные о спросе, так и данные о факторах, влияющих на спрос. Для вычисления прогнозных значений спроса строится модель регрессии, связывающая факторы и результативный признак. Можно сказать, что эти методы самые сложные и дорогостоящие, поскольку они требуют сбора и обработки не только внутренней, но и внешней для предприятия информации на регулярной основе. Построение модели регрессии (однофакторной или, в более сложном случае, многофакторной) требует нескольких шагов:

  • выделение состава факторов (обычно этот шаг выполняется экспертами);
  • проверка факторов на предмет меры их влияния на результативный признак;
  • проверка факторов на их взаимную корреляцию (связь) с целью отсева лишних факторов, действующих однонаправленно;
  • построение регрессионной зависимости;
  • прогнозирование значений каждого из факторов регрессионной модели на будущий плановый период (будущие плановые периоды);
  • формирование прогноза результативного признака (то есть спроса) на основе применения модели регрессии.

Из приведенного выше списка очевидно, что регрессионные методы требуют большого объема исходной информации и немалых навыков ее статистической обработки. Поэтому применяют эти методы в бизнесе, как правило, тогда, когда прогноз, полученный более простыми и дешевыми методами, не дает устраивающее предприятие качество.

На первый взгляд, вопрос звучит абсурдно, но если внимательнее разобраться, то можно выявить следующее: «если у товара значительное число фактов нулевых продаж (спрос на товар редкий), то все методы точечного прогнозирования (в том числе и сложные), будут давать плохой результат»

Выходом из ситуации может стать применение специальных методов математического моделирования, позволяющих рассчитать накопительную вероятность возникновения спроса. То есть оценить не стараясь угадать число проданного, а посмотреть с какой вероятность может быть продан тот или иной объем товара. Это позволит нам понять, сколько товара необходимо хранить, чтобы обеспечить тот или иной уровень сервиса.

При упрощении механизм следующим образом. Специальное программное обеспечение проводит серию экспериментов (100 000 раз) о возможном спросе на товар на период поставки (в западной практике - lead time LT). Анализируется, сколько раз случился спрос разного объема. После этого строится накопительная вероятность распределения спроса (не более какого объема товара будет продано с разной вероятностью)

После этого учитывается уровень сервиса и рассчитывается оптимальный товарный запас, как значение спроса, соответствующее накопительной вероятности, равной уровню сервиса.

Более наглядно это можно посмотреть на следующем графике или таблице: (из программы Forecast NOW!):

Рис. 1 Уровень сервиса и оптимальный товарный запас на примере программы Forecast NOW!

Вероятность Сумма,%

Объём,ед

На рисунке светло-синим построена накопительная вероятность. Оптимальный запас находится на пересечении выставленного уровня сервиса и накопительной вероятности.

Таким образом, применение подобных методов поможет сразу рассчитать оптимальный товарный запас для товаров редкого спроса.

Важным вопросом остается критерий отнесения товаров к редкому спросу:

Для этого считается среднее расстояние в днях между соседними фактами продаж. Если это число больше 1.25 дней, то перед нами редкий спрос, если меньше - гладкий.

История продаж товара:

Среднее расстояние между соседними фактами продаж = ((3-1)+(4-3)+(7-4)+(8-7))/4 = 1,75 >1,25 -> спрос редкий

Но для товаров гладкого спроса без прогнозирования спроса не обойтись:

Для чего нужно прогнозировать спрос

Работа любого торгового предприятия неизбежно связана с проблемой оптимизации товарных запасов. Избыток товаров приводит к дополнительным финансовым издержкам, а недостаток - к потере постоянных покупателей и снижению объемов продаж. В обоих случаях происходит недополучение возможной прибыли, что в условиях острой конкуренции может стать причиной банкротства предприятия.

Одной из важнейшей составляющих поддержания оптимального ассортимента товаров является оперативное и долгосрочное прогнозирование спроса. Конечно, при планировании закупок можно ничего и не прогнозировать, используя как источник исходной информации устоявшийся или возникший уровень спроса. Однако такой устаревший подход в условиях динамично изменяющегося рынка и "избалованного" покупателя трудно назвать эффективным (за исключением небольших поселений, где имеется всего один магазин).

Прогнозирование спроса позволяет не только разработать оптимальный план закупок, но и эффективно управлять ресурсами предприятия. Так, например, зная, что в следующем месяце возникнет повышенный спрос не мороженое, можно будет заранее принять на работу продавцов, закупить холодильное оборудование и предусмотреть дополнительное финансирование. Если же все подобные мероприятия начать проводить в пик сезона, то все усилия могут оказаться напрасными и, даже убыточными.

Как прогнозировать спрос

Чтобы спрогнозировать спрос, разработано огромное количество теорий и специальных инструментов.

Специальное ПО

Так, например, при планировании закупок для супермаркета не обойтись без специализированного программного обеспечения. Основная проблема здесь в огромном ассортименте товаров, который просто физически невозможно "удержать в голове". Кроме того, специальное ПО позволяет автоматизировать процесс подготовки заявок, что при больших объемах закупок дает возможность сэкономить массу времени.

Microsoft Excel

При небольшом ассортименте товаров отличные результаты в прогнозировании спроса можно получить с помощью стандартного приложения Microsoft Excel. Специальные статистические функции, такие как, например, ТЕНДЕНЦИЯ и РОСТ, позволяют без ввода сложных формул мгновенно обработать большие массивы информации. Богатые оформительские возможности Microsoft Excel помогут представить полученные данные не только в табличном виде, но и в более наглядном - в форме графиков и диаграмм.

Вручную

Прогноз спроса на отдельные позиции товаров можно составлять и вручную. Так, например, если товар является новинкой, то даже самые мудреные статистические формулы и ранее накопленная информация не помогут предугадать его популярность. В таких случаях приходится надеяться не на расчеты, а на интуицию и на дополнительные факторы (мнения покупателей, рекламная поддержка и т.п.).

Формулы и методы прогнозирования спроса

Методы, используемые при прогнозировании спроса, отличаются большим разнообразием - от наивных (предполагается, что спрос в следующем месяце будет такой же, как и в прошедшем) до применения в расчетах сложных экономических и математических теорий и их программных реализаций (нейронные сети).

Метод Простой средней

Простейшим из подобных методов является использование вычислений по формуле "простого среднего". Прогноз спроса на следующий период при этом способе высчитывается как среднее арифметическое показателей спроса за все предыдущие периоды. Недостатком этого метода является его высокая "консервативность" - устаревшая информация о прежних продажах помешает проявиться последним тенденциям спроса.

Метод скользящего среднего

Более оперативно на изменение спроса реагирует метод "скользящее среднее". Расчет при этом производится не на основании данных за весь срок наблюдения, а за несколько последних периодов.

Ключевым вопросом является определение «окна скольжения» - за сколько последних периодов необходимо проводить усреднение. Чем больше этот период, тем больше совпадает прогноз по скользящему среднему с простым средним.

Определить период можно эмпирически на основании ошибки прогноза (RMSE) - рассчитать эту ошибку для разных периодов и выбрать оптимальный.

Очевидно, что оптимальным является период в 4 дня.

Интересной вариацией метода является расчет скользящей средней по определенным дням (то есть - для всех понедельников считается скользящая средняя за n последних понедельников, и т.д.) Такой метод может подойти товаров, обладающих ярко выраженной внутри недельной сезонностью (например, хлеб).

Метод средневзвешенной

Сочетанием вышеописанных методов является "метод взвешенного скользящего среднего". В этой модели вычисляется средневзвешенное значение на основании нескольких периодов, но более отдаленным периодам придаются меньшие веса. Таким образом, для расчетов можно брать более длительные наблюдения, но ограничить влияние на расчеты неактуальных данных.

Метод экспоненциального сглаживания

К сожалению, вышеперечисленные методы расчетов "по среднему" позволяют получить лишь очень приближенные результаты. Более точного прогноза можно добиться при использовании моделей "экспоненциального сглаживания" и "экспоненциального сглаживания с трендом". В первом методе последний прогноз объема продаж, корректируется на основе ошибки прогноза, допущенной в последнем периоде. При втором методе расчетов (называемом еще методом "двойного экспоненциального сглаживания") учитываются данные с трендами - благодаря этому данный метод может использоваться даже для среднесрочного прогнозирования.

Метод "Хольта-Уинтерса"

Для учета сезонности и общего тренда спроса применяется модель "Хольта-Уинтерса" (трехпараметрическое экспоненциальное сглаживание). Чтобы получить прогноз спроса в этом методе необходимо правильно подобрать три параметра. Для этого можно использовать как специальные алгоритмы, так и ограничиться простым перебором.

Метод Авторегрессии

При желании получить еще более совершенные прогнозы можно использовать модели "авторегрессии". Эта методика позволяет провести очень подробный анализ имеющихся данных, выявить любые тенденции и отсеять случайные влияния. Однако, в отличие от предыдущих методов, подбор множества параметров потребует от пользователя очень много усилий и времени.

Нейронные сети, генетические алгоритмы

Следует отметить, что чем более сложные методы прогнозирования используются, тем труднее их практическое применение и тем выше вероятность возникновения ошибок. Анализ огромных объемов информации, подбор оптимальных параметров, оперативный учет колебаний рынка - все это порой находится на пределе человеческих возможностей. Наиболее перспективным в решении этой проблемы является использование алгоритмов "нейронных сетей". В этой методике специальная программа после предварительного обучения способна самостоятельно найти лучшее решение - при этом пользователю не нужно вникать во все премудрости используемых теорий. Кроме того "нейронные сети" способны учесть скрытые тенденции и создать достоверный прогноз в такой нестабильной ситуации, где ранее прогнозирование считалось вообще невозможным.

По проведенным специалистами проекта «Forecast NOW» исследованиям прогнозирование нейронными сетями дает лучший результат, чем по всем вышеприведенным методам:

По оси Х показано количество товаров при анализе, по Y- а сколько процентов нейронные сети оказывается лучше, чем другой алгоритм в относительном выражении.

Рис. 2 Нейронные сети + Генетические алгоритмы (ГА) и экспоненциальное сглаживание


Рис. 3 Нейронные сети + Генетические алгоритмы (ГА) и авторегрессия


Рис. 4 Нейронные сети + Генетические алгоритмы (ГА) и метод Хольта Винтерса

Из рисунков видно, что прогнозирование нейронными сетями дает значительно лучший результат.

Выводы

Для прогнозирования спроса нужно:

  1. Определить характер спроса на товар (если гладкий - прогнозирование нужно, если редкий - прогнозирование не нужно, можно рассчитывать оптимальный запас методами математического моделирования)
  2. Определить способы прогнозирования спроса (если товарный ассортимент небольшой, то можно вручную или при помощи Excel, если большой - лучше использовать специальное программное обеспечение
  3. Определить методы прогнозирования спроса (для некоторых товаров хорошо работают стандартные методы (см про скользящее среднее), в общем случае лучшие результаты достигаются нейронными сетями
  4. Важно помнить, что прогнозирование спроса - лишь первое звено цепочки поставок, и даже самый точный прогноз спроса в случае неправильного управления запасами и пополнением не сможет обеспечить эффективность всей цепочки поставок.

Главная \ Статьи \ Нормирование и управление запасами. Журнал ФармОбоз \ Статьи за 2007г. \ Прогнозирование спроса. Цели и методики

Журнал: ФармОбоз.

Продолжая тематику «Управления запасами», которую начали в прошлом номере, хотелось бы напомнить, что смысл существования любой коммерческой струткуры в получении прибыли. Вопрос лишь в том, благодаря чему компания обеспечивает себе прибыль? Одна из самых распространенных точек зрения, заключается в том, что успех, в частности аптеки, зависит от того уровня цен, уровня обслуживания, месторасположении аптеки и так далее, и так далее. Все это так и есть, но отталкиваться стоит от другого. Прибыль аптеки обеспечивают ее КЛИЕНТЫ. Именно они делают покупки в аптеке. Или не делают! А вот задача сотрудников удержать и приумножить клиентов аптеки. Это можно сделать, поддерживая уровень обслуживания на очень высоком уровне. Уровень сервиса зависит от того, насколько вежливы продавцы, от того, каков уровень цен в данной аптеке, сколько кассовых аппаратов стоит в зале, от возможности обеспечения лекарственными средствами под закак, и от того ассортимента, который мы предлагаем нашим клиентам. Есть ли у нас в наличии те препараты, которые необходимы нашим покупателям? Как часто у нас в аптеке возникает дефицит по тем или иным позициям?

А поскольку формацевтические оптовики достаточно оперативно пополняют запасы аптеки, то здесь важно вовремя определить потребность в товаре и не упустить момента заказа оптовику, чтобы не допустить дефицита. При столь большом ассортименте, который поддерживают аптеки, удерживать в памяти все позиции просто невозможно, именно поэтому необходимо, используя современные програмные продукты, обеспечить учет потребности в лекарственных средствах на более высоком уровне.

Как обычно происходит процесс определения потребности в конкретной позиции в аптеке? Покупатели спрашивают, значит надо заказать. Закончился препарат, наступило время подачи заявки поставщику. Но этот подход работает, когда непосредственно продавцы заинетересованы в увеличении продаж. К сожалению, столь развитая система мотивации персонала аптеки встречается крайне редко.

Представим себе самою обычную ситуацию. Приходит потенциальный клиент в аптеку, отстаивает очередь, задает вопрос о наличии того лекарственного средства, которое ему прописал доктор, а этого лекарства нет в наличии. Человек уходит из аптеки без покупки, да еще и расстроенный потерянным временем. Соответственно потребность не удовлетворена. А зафиксировал ли эту потребность сотрудник аптеки (провизор)? Вряд ли, так как у него очередь, а, следовательно, отвлекаться на дополнительные операции ему некогда. Итог: клиент ушел без покупки - у аптеки упущенная прибыль. И придет ли этот клиент в аптеку или нет сказать сложно.

Другой пример. Предположим ассортимент у аптеки 5000 позиций. Пришла пора делать заказ поставщикам. Может ли провизор достаточно точно определить объем необходимой партии для каждой позиции? Наверняка нет. Идем по списку товаров, предположим в алфавитном порядке. Уже через 20 минут такой работы, бдительность и внимательность провизора притупляется, не хватает времени, или исчерпан финансовый лимит заказа. В результате те позиции, которые у нас в конце алфавитного списка остаются без внимания. Что получается в результате? Образуется дефицит, а, следовательно, упущенные продажи и прибыль.

И, наконец, третий пример. На этапе выбора поставщика и установления с ним отношений, проводится некий переговорный вопрос, где, в том числе, поставщика должен волновать вопрос об объемах поставок для Вашей аптеки. От объема поставок будет зависеть тот уровень цен, который Вам предоставит поставщик. Кроме того, сам поставщик будет у себя планировать объемы поставок от производителей лекарственных средств и медикаментов. Какие данные аптека может поставщику предоставить об объемах поставок, если нет системы прогнозирования? Только данные об объемах продаж в предыдущий период. Но насколько они соответствую действительному спросу, не знает никто.

Именно поэтому целесообразно использовать системы прогнозирования спроса, которые, учитывая спрос в прошедших периодах, формируюет данные о возможном спросе в следующих периодах.

Итак, что такое прогнозирование? Прогноз - это предположение относительно будущего. Конечно, мы не можем обеспечить абсолютно точный прогноз. Кроме того, чем меньше горизонт прогнозирования, тем более точный прогноз возможно получить. Но отсутствие в компании систем прогнозирования не облегчает и не улучшает ситуации, а наоборот, делает систему неконтролируемой и непрозрачной.

В статье рассматриваются довольно простые и доступные методы прогнозирования. Это связанно с тем, что существенное усложнение методик не ведет к существенному повышению качества прогноза.

Ниже приведена базовая расчетная формула прогноза, от которой стоит отталкиваться, добавляя тонкости и индивидуальности продуктов, с которыми аптеки работают.

Рt - прогноз величины спроса на период t;

Бt - величина базового спроса в период t;

Сt - коэффициент сезонных колебаний в период t;

Т - коэффициент временной тенденции: прирост или сокращение спроса за период t;

Мt - коэффициент поправок на стимулирование продаж в период t (маркетинговая составляющая;

Давайте рассмотрим все составляющие по порядку.

  1. Величина базового спроса - средняя величина спроса за прошедший период.
  2. Коэффициент сезонных колебаний необходимо рассчитывать для продуктов, у которых есть сезонный характер. Для этого необходимо проанализировать потребление за 3 года. Можно собрать данные и за большее количество лет, но здесь есть вероятность влияния на товар факторов, которые уже устарели. Анализ сезонности меньше чем за 3 года может быть не точен в связи со случайностью событий.

Итак, как определить Коэффициент сезонных колебаний?

Расчет представлен в таблице 1 и формулах.

Таблица 1 - Определение индекса сезонности

  1. коэффициент поправок на стимулирование продаж. Этот коэффициент устанавливает отдел маркетинга, исходя из собственного опыта, поскольку расчету не подлежит.

Кроме базовой модели прогнозирования спроса существует большое количество статистический методов. Перечислим некоторые из них:

  1. Нахождение средней арифметической. Эта методика приемлема для товаров высокой стабильности, без сезонной составляющей, при отсутствии временной тенденции. Применять нецелесообразно, так как таких товаров практически не существует.
  2. Определение прогнозного значения методом скользящей средней. Применяется также для стабильных товаров.
  3. Линейный прогноз. Работает с помощью нахождения зависимости объема продаж будущего периода от базового, с помощью линейной функции. На рисунке 1 графически представлен прогноз на тринадцатый период с помощью скользящей средней и линейной функции.

Рисунок 1 - Пример прогноза для стабильного товара

Синяя линия на графике отображает фактический объем спроса, лиловый - прогноз, используя скользящую среднюю, а черная - линейный прогноз. Вопрос в том, какой из этих прогнозов более точный. График скользящей средней на графике за прошедший период постоянно находится рядом с фактическим значением. А график линейного прогноза демонстрирует тенденцию к росту. Он и будет в данном случае более точным.

  1. Экспоненциальное сглаживание. Применяется для нестабильных товаров, в связи с этим точность прогноза будет невысока. Примеры на рисунках 2, 3, 4.

Рисунок 2 - Пример прогноза для нестабильного товара (степенная функция).

Рисунок 3 - Пример прогноза для нестабильного товара (полином)

Рисунок 4 - Пример прогноза для нестабильного товара

Исходя из рисунков 2, 3 и 4, можно увидеть, насколько разный результат мы получаем на одних и тех же исходных данных применяя разные функции. Поэтому для нестабильных товаров для повышения точности прогнозирования особенно важно тщательно выбирать методы прогнозов.

При этом надо заметить, что те компании, которые уже внедрили и активно применяют статистические методы прогнозирования, сталкиваются с целым рядом проблем.

Во-первых, применяемые системы довольно часто являются неадекватными. То есть не соответствуют поведению товара. При автоматизации этого процесса, менеджер по закупками опирается на те данные, которые выдает информационная система, не задумываясь, на сколько эти данные точны. Да и сам менеджер зачастую не в курсе, каким именно образом формируются данные прогноза.

Предположим у нас есть информация о движении товаре «Спазмалгон» за 2 месяца (Таблица 2).

Из таблицы 2 видно, что за два месяца было большое количество дней, когда «Спазмалгон» отсутствовал на полке аптеки. Если прогноз на сентябрь строить на основе продаж за июль и сентябрь месяцы, используя среднюю арифметическую, мы получим следующие данные (средняя арифметическая здесь применяется для примера, метод прогнозирования необходимо подбирать индивидуально для каждой группы товара; кроме того, для применения этого метода необходимы данные как минимум за три месяца):

При таком подходе мы не учитываем те дни, когда товара не было на складе. Фактически это дефицит, то есть спрос был, но аптека его удовлетворить не смогла. А, следовательно, возникли упущенные прибыли.

Если использовать ту же методику, но опираться на спрос, мы сможем получить более точные данные о спросе. Как это сделать? Здесь есть два варианта:

  1. Каждый раз, когда клиент обращается к продавцу с вопросом о товаре, которого нет в наличии, вносить об этом информацию в специальный документ, не забывая регистрировать тот объем, который необходим клиенту. Но в рознице такой подход не приемлем, так как при этом сильно увеличивается время обслуживания клиента, а, следовательно, падает уровень сервиса.
  2. Другой вариант - определять спрос, учитывая только дни, когда товар был на складе. Данные о реальных продажах в нашем примере представлены в таблице 3.

Таблица 3 - Определение реального спроса

Именно этот прогноз будет более точно отражать спрос, а соответственно аптека сможет его удовлетворить, повысив показатели прибыли, а самое главное улучшить клиентский сервис.

Для того, чтобы повысить качество прогноза необходимо периодически проверять его точность, то есть проводить анализ выполняемого прогноза. Если прогнозы не верны, у компании будут одни и те же повторяющиеся ошибки со всеми вытекающими последствиями. Один из самых простых методов анализа прогноза является следующий:

Необходимо при этом стремиться к уменьшению ошибки прогнозирования. Кроме того, следует на нее опираться при выборе системы прогнозирования. Рассматривая различные варианты прогнозов (в том числе эмпирических, то есть построенных на личном опыте), выбирать ту методику, которая обеспечит минимальную ошибку прогнозирования.

Но все-таки у статистических методов прогнозирования есть несколько ограничений:

  1. При открытии новой аптеки нельзя абсолютно точно определить объем продаж в ней;
  2. Для точного прогнозирования необходимы данные за 3 периода (года, месяца, недели)
  3. При вводе нового товара никто не знает, каков на него реальный спрос.

Но, что касается текущей оперативной работы с запасами, это один из самых важных инструментов, который в дальнейшем упрощает и качественно улучшает нашу работу.

Конечно, сам процесс внедрения и адаптации системы прогнозирования весьма сложный и длительный. Но, в результате, на выходе мы получаем:

Автоматизация и ускорение процесса принятия решения об объемах поставок;

Сокращение дефицита вследствие более пристального внимания к каждой позиции ассортиментного портфеля аптеки;

  • Уменьшение товарного запаса;
  • Увеличение объема продаж;
  • Планирование работы с поставщиками;
  • Получение лучших предложений от поставщика в связи со стабильностью отношений;
  • Более качественное использование денежного ресурса аптеки;
  • Повышение оборачиваемости запасов.

Прогнозирование спроса представляет собой научно обоснованное предвидение развития платежеспособных потребностей населения на товары и услуге.

В зависимости от временного периода различают следующие виды прогнозирования:

– оперативное (до одного месяца);

– краткосрочное (от I до 2 лет);

– среднесрочное (от 2 до 5 лет);

– долгосрочное (от 5 до 10 лет).

Для целей прогнозирования спроса используются: метод экспертных оценок, экстраполяция, норматив­ный, балансовый методы, экономико-математическое моделирование, маркетинговые исследования.

Методы экспертных оценок основаны на использо­вании знаний и интуиции специалистов, имеющих вы­сокий уровень квалификации по специальности, про­фессиональный и научный опыт.

Прогнозирование спроса. Цели и методики

Мнения экспертов обобщаются, строятся логические заключения о прогнозируемом спросе, выбирается оптимальное реше­ние. Данные методы являются вспомогательными как дополнения к другим методам.

Экстраполяция предполагает изучение тенденций и закономерностей развития величины и структуры спроса и построение на их основе прогноза с учетом спе­цифики влияния отдельных факторов в предстоящем периоде. К данной группе методов относятся расчеты коэффициента эластичности, показывающего процент­ное изменение спроса на определенную группу товаров при изменении значения влияющего фактора на 1 % (цены, дохода, численности и т.д.). Применение дан­ных методов актуально для целей краткосрочного про­гнозирования.

Использование нормативного метода при изучении и прогнозировании спроса предполагает учет физиоло­гических норм потребления, научно обоснованных ра­циональных норм, определение сроков их достижения. Сложность применения метода заключается в разра­ботке норм, их объективной обоснованности.

Для уравновешивания источников образования де­нежных доходов и направлений их расходования, в том числе и на покупку товаров и оплату услуг, использует­ся балансовый метод.

Экономико-математическое моделирование основа­но на применении трендовых, корреляционно-регрес­сионных, оптимизационных моделей, позволяющих установить зависимость развития спроса от влияния одного или нескольких факторов (среднедушевой до­ход, цена, численность населения, размер семьи, сред­недушевое потребление отдельных товаров и услуг). Модели строятся на основе применения теории вероят­ности, математической статистики, компьютера.

Для изучения неудовлетворенного спроса, структур­ных изменений, сезонности проявлений спроса исполь­зуются результаты проведения анкетных обследований семей, выборочных опросов населения, специальных наблюдений за спросом, т.е. проводятся маркетинго­вые исследования.

При прогнозировании микроспроса наиболее распространенными являются следующие методы:

– экономико-математические;

– с использованием коэффициента эластичности спроса;

– с использованием структурных моделей.

В современной практике применяются различные подходы к прогнозированию товарно-групповой структуры потребительского спроса: генетический, нормативный, эвристический, сравнительный. Каждый из них реализуется посредством определенных способов расчетов спроса, которые схематически представлены на рис. 2.

Рис. 2 – Подходы и методы прогнозирования товарной структуры потребительского спроса

Экономико-статистические (экономико-математические) методы прогнозирования спроса

Генетический подход к прогнозированию потребительского спроса основывается на инерционном характере его развития, т. е. на оценках устойчивых тенденций развития потребительского спроса, перенесении зависимостей прошлого и настоящего на будущее.

Этот подход наиболее полно реализуется посредством эконо­мико-статистического моделирования динамики спроса, которое сформировалось в самостоятельное направление прогнозирования спроса в 20-30-е годы XX в.

Экономико-статистические модели в зависимости от способов моделирования их параметров делятся на два вида:

– трендовые модели оценки и прогнозирования спроса;

– факторные модели оценки и прогнозирования спроса.

⇐ Предыдущая12345Следующая ⇒

Читайте также:

Прогнозирование спроса и продаж. Записки дилетанта

1.Замеры и прогнозирование спроса на рынке

1.1 Функция спроса

1.2 Потенциал рынка

1.3 Прогноз спроса

1.4 Рыночный спрос на товар, спрос на товары данного предприятия

1.5 Ёмкость рынка

3. Теоретический вопрос

1. ЗАМЕРЫ И ПРОГНОЗИРОВАНИЕ СПРОСА НА РЫНКЕ

Каждый человек все время приобретает различные товары, пользуется услугами парикмахеров, справочных и тому подобное. Для того, чтобы удовлетворить покупателей, фирмы проводят исследования рынка (его емкость, состояние, покупательскую способность), а также делают прогнозы относительно своих перспектив. В этих исследованиях одни из ведущих ролей играют прогнозирование спроса и конъюнктуры рынка. По сути – это два взаимозависимых процесса: нельзя прогнозировать спрос не зная конъюнктуры рынка, мы можем прогнозировать спрос исходя из складывающейся (прогнозной) конъюнктуры рынка. Каждая фирма или предприятие, которое хочет не только выжить, но и преуспевать, должно проводить такие исследования.

Фирмы и предприятия проводит такие исследования на различных уровнях. Они рассматривают возможности проведения на рынок товаров и услуг под определенной торговой маркой (то есть своих товаров), изучают товары конкурентов, выбирают тот сегмент рынка, в котором собираются работать. Одновременно они должны знать состояние всей отрасли в целом, динамику спроса и предложения по всем товарам и услугам есть в данной отрасли. Этими проблемами занимаются целые маркетинговые отделы.

На рыночный (совокупный) спрос влияет огромное количество факторов: экономические, социально-культурные, демографические, технологические и многие другие. Все эти факторы должны быть учтены при прогнозировании. Необходимо также отметить, что от уровня спроса зависит потребление, и на него действуют те же факторы, что и на спрос. Конечная цель прогнозирования спроса – оценить то количество товаров и услуг которые будут куплены (а не только то – которое могут и хотят приобрести потребители).

Прогнозируемый уровень спроса равен функции от уровня подоходного налога. Чем больше процентная ставка налога, тем меньше человек будет потреблять, тем меньше будет прогнозируемый спрос.

На следующем этапе исследования следует рассмотреть влияние уровня цен на товары и услуги. Очевидно, что уровень цен оказывает сильнейшее влияние на потребление и уровень спроса на товары и услуги. Повышение уровня цен оказывает примерно такое же влияние, как и понижение уровня располагаемого дохода, то есть существует обратная зависимость между уровнем цен и уровнем спроса.

1.1 ФУНКЦИИ СПРОСА

Функция спроса в рыночном механизме является определяющей, ибо именно она заставляет производство выпускать необходимые населению товары, улучшать их качество и ассортимент.

Спрос в свою очередь зависит от потребностей людей: с изменением потребностей меняется и спрос, который, по сути дела, представляет собой денежное выражение потребностей.

Однако не всякая потребность может иметь денежное выражением и быть удовлетворенной рынком. Тем не менее важнейшие жизненные потребности людей в пище, одежде, обуви, бытовом обслуживании, и, конечно, медикаментах наилучшим образом, как показывает история развитых рыночных хозяйств, удовлетворяются через рынок благодаря спросу.

Функция спроса тесно связанна с функцией предложения.

Функция предложения заключается в общем виде в том, чтобы связать производство с потреблением, продажу товаров с их покупкой. Реагируя на возникающий спрос, производство начинает увеличивать выпуск товаров, улучшать их качество и уменьшать издержки их изготовления, а тем самым увеличивать общий объем предложения на рынке.

Изучение спроса связано с установлением фактического потребления лекарственных средств, выявлением закономерностей спроса с учетом динамики и целого комплекса факторов, влияющих на их потребление. Поэтому основной целью изучения конъюнктуры реализации лекарственных средств является установление, в какой мере конкретное состояние реализации их соответствует спросу, как будут изменяться эти показатели в ближайшем будущем и какие меры необходимо принять, чтобы добиться безотказного обеспечения населения и лечебно-профилактических учреждений лекарственными средствами и другими изделиями медицинского назначения, и как все это влияет на показатели финансово-хозяйственной деятельности аптечных учреждений.

При изучении спроса различают реализованный (удовлетворенный), неудовлетворенный и формирующийся спрос.

Реализованный спрос — фактическая реализация лекарственных средств при достаточном и постоянном их наличии в аптечной сети.

Неудовлетворенный спрос представляет собой спрос на лекарственные средства, которые поступают в аптечную сеть в недостаточном количестве или неравномерно.

1.2 ПОТЕНЦИАЛ РЫНКА

Потенциал рынка - это объем определенного товара, услуги, который может быть потреблен рынком за единицу времени.

1.3 ПРОГНОЗ СПРОСА

При изучении и прогнозировании спроса на товары и услуги предприятия наиболее распространены методы основанные на экспертных суждениях.

Метод основанный на суждении менеджеров:

В данном случае прогноз основывается на видении, интуиции, воображении и опыте ведущих специалистов и менеджеров, работа которых заключается в формировании спроса. При этом менеджеров просят дать точную оценку, спроса исходя из имеющейся у них информации. Для уменьшения риска субъективности индивидуального суждения необходимо на рабочем совещании специалистов прийти к общему значению в отношении оценки спроса и его прогнозов.

2. Метод основанный на оценках торгового персонала:

Как правило торговый персонал фирмы (или персонал партнёров по сбыту) имеет точное представление о потенциале продаж, который обеспечивают их клиенты, и кроме того, имеет возможность дать оценки потенциала рынка в целом, по крайней мере на той территории, которую они обслуживают. Необходимо попросить торговых работников дать оценки по каждому товару, исходя из проводимых конкретных маркетинговых усилий. После этого формулируются итоговые оценки, суммируя оценки всех работников. Для удобства опроса можно составить анкету. Данный метод определения и прогнозирования спроса незаменим при построении прогнозов продаж на небольших сегментах рынка.

3. Метод основанный на изучении намерений покупателей:

Данный метод заключается в прямом опросе покупателей об их планах на покупки в течение определённого периода времени. Оценивается настроение или степень уверенности покупателей, их представление о благосостоянии их намерения совершить покупку товаров и услуг выпускаемых предприятием. Опрос проводится по заранее разработанной анкете. Исследования намерений совершить покупку, как правило, несут общий характер. Лучшие результаты получаются, когда речь идет о товарах и услугах, приобретение которых покупатели должны планировать заранее.

Выше названные методы являются субъективными, однако они могут быть отправной точкой при анализе и прогнозах спроса.

На ровне с методами основанными на экспертных суждениях возможно использование и других методов.

1.4 РЫНОЧНЫЙ СПОРОС НА ТОВАР, СПРОС НА ТОВАРЫ ДАННОГО ПРЕДПРИЯТИЯ

Рыночный спрос на товар — это то количество товара, которое может быть куплено определенной группой потребителей в указанном районе, в заданный отрезок времени, в одной и той же рыночной среде в рамках конкретной маркетинговой программы.

Рыночный спрос и предложение тесно связаны между собой: как только возникает спрос на какой-либо товар, фирмы начинают его производить и предлагать к продаже.

Рыночный спрос имеет функциональную природу.

На него оказывают влияние многие факторы. Среди них: демографические, общеэкономические, социально-культурные, психологические, а также различные мероприятия, проводимые по программе маркетинга.

Рыночный спрос на труд складывается из спроса на труд со стороны всех фирм, использующих наемную рабочую силу. Труд нужен предпринимателю не сам по себе, а лишь потому, что он используется в процессе производства необходимых людям товаров и услуг. Поэтому спрос на труд носит производный характер и зависит от предельной производительности труда, а также от предложения других факторов производства.

Рыночный спрос на фактор производства представляет собой почленную сумму спросов на этот фактор всех отраслей. Отраслевой спрос, однако, не является суммой спросов всех фирм. Определяя отраслевой спрос, необходимо учитывать, что рыночная цена продукта изменяется в результате изменения цены фактора производства.

Рыночный спрос может характеризоваться эластичностью спроса по доходу.

Рыночный спрос на товар — это количество товара, которое может быть приобретено определенной группой потребителей в указанном районе, в заданный отрезок времени, в одной и той же рыночной среде в рамках конкретной маркетинговой программы.

Рыночный спрос формируется на основе решений, принимаемых множеством отдельных лиц, которые руководствуются своими потребностями и наличными средствами. Но для того чтобы распределить свои средства между разнообразными потребностями, необходимо иметь какую-то общую основу для их сопоставления.

Рыночный спрос представляет собой суммарный спрос всех покупателей данного продукта по данной цене.

Рыночный спрос на страховые услуги является одним из главных элементов внешней среды: на него направлены основные усилия рыночной коммерческой деятельности страховщика. Рыночный спрос на страховые услуги имеет экономический и гуманитарный аспекты.

На рыночный спрос оказывают влияние психологические факторы — эффект подражания, эффект снобизма. Существуют трудности в определении объема спроса.

Узнайте, как при помощи статистики о рождаемости в России в течение 30-40 минут спрогнозировать – какой товар будет пользоваться высоким спросом через три, пять, или двадцать лет?

  • Вводная часть
  • Как прогнозировать спрос
  • Варианты прогнозирования спроса товаров разных возрастных категорий
  • Рассмотрим, как прогнозировать спрос на конкретном примере

Вводная часть

Как рассчитывать спрос, исходя из общедоступных статистических данных, рассмотрим на примере данной статьи.

За основу примем показатели отечественной рождаемости. По аналогии можно моделировать спрос на определенные товары и услуги, исходя из статистики браков и разводов, количества мужчин и женщин, пенсионеров и трудоспособных граждан, смертности, занятости населения, уровня жизни и т.д. Все данные находятся в свободном доступе на сайте Федеральной Службы государственной статистики.

Рассмотрим таблицу:

Табл. 1. Статистика рождаемости, смертности и естественного прироста населения России

Начиная с 2005 года, в России начался сперва медленный, а потом все более интенсивный рост рождаемости. О чем говорит нам эта информация? Во-первых, самый закономерный вывод, складывающейся из сокращения числа умерших и увеличения числа родившихся - численность населения растет. Это значит, что эквивалентно росту количества людей в нашей стране, будет увеличиваться и спрос на товары массового потребления: продукты питания, бытовая химия и косметика, одежда, бытовые услуги и т.п.

Например, если в 2011 году, когда естественный прирост был отрицательным, количество потребителей хлеба в стране увеличилось по отношению к 2009 году на 119 тыс. человек (в общей картине населения страны - на 0,083%). А уже в 2013 году при положительном естественном приросте, увеличение потребителей хлеба к 2009 году составило 273 тыс. человек (подъем продаж хлеба на 0,19% в общей массе по стране). Таким образом, всего за четыре года динамика роста продаж хлеба составила 43,6%.

Это же можно сказать обо всех продуктах ежедневного потребления - молокопродуктах, мясе, воде, медикаментах и проч.

Теперь давайте рассмотрим эту же методику прогнозирования спроса в сегменте рынка недвижимости. В 2010 году в России, по данным Росстата, было зафиксировано 54,9 млн. частных домохозяйств, средний размер одного домохозяйства - 2,6 чел.

Таким образом, если принимать во внимание рост количества населения (см. Табл.2 Естественное движение прироста и смертности) с 142 856 536 человек в 2010 году до 143 347 059 человек в 2013 году (490,5 тыс. чел.), рынок недвижимости должен был дать за два-три года не менее 188,6 тысяч новых квартир. Это только для удовлетворения потребностей растущего населения, но если к этим расчетам добавить статистику браков и разводов, что также влияет на состояние рынка недвижимости, цифра может увеличиться в 2-2,5 раза.

Табл.2 Естественное движение прироста и смертности

Наглядный график этих же данных:

Что мы видим, исходя из данной таблицы (обратный анализ):

  1. Падение рождаемости в 1986-1992 и 1996 -2009 годах (в течение 13 лет) стало причиной того, что уже сейчас на рынке труда ощущается дефицит молодых специалистов, т.е. поколение 1990-х не придет на смену поколению 1970-80хх, и в стране остро будет стоять (частично уже стоит) проблема нехватки новых кадров.
  2. Начиная с 2015 года, конкурс на места в ВУЗах страны будет меньше, соответственно, в стране будет больше специалистов с высшим образованием и дефицит людей - со средним специальным, что приведет к пересмотру работы многих социальных структур;
  3. Повышение рождаемости с 2010 по 2014 год и продолжение этой тенденции несет в себе еще одну угрозу на рынке занятости - снижение производственной эффективности среди молодых женщин.

Как прогнозировать спрос

Для прогнозирования спроса нам понадобятся:

  • данные о рождаемости (Табл. 1. Статистика рождаемости, смертности и естественного прироста населения России);
  • прогноз рождаемости (Табл.3.Демографический прогноз до 2030 года).

Например, редко в каком городе в России можно констатировать насыщенность рынка детских кафе.

Они есть, но их недостаточно. Основным посетителем такого заведения являются родители с малышами в возрасте от двух до шести лет, т.е. детьми, рожденными в 2008 - 2012 годах. За этот период в стране появилось 8 963 295 детей - сейчас это аудитория детских кафе.

Принимая во внимание статистику рождаемости (см. Табл.1), а также прогноз рождаемости на ближайшие десятилетия, составленные специалистами Росстата (см. Табл.3.), можно быстро прикинуть, что аудитория детских кафе составит:

  • в 2016 году (рожденные с 2010 по 2014 гг) - 9 223 627 человек;
  • в 2018 году (рожденные с 2012 по 2016 гг) - 9 327 948 человек.

Т.е., заниматься детскими кафе надо уже сейчас, поскольку пик продаж этого продукта начнется уже в 2015-2016 гг и рост спроса ожидается по сравнению с нынешним в среднем на 3-5%.

Табл.3.Демографический прогноз до 2030 года

Варианты прогнозирования спроса товаров разных возрастных категорий

В 2013 году в школу пошли дети, рожденные в 2006 году. Предположительно, каждому первокласснику родители обеспечили персональный компьютер. При средней цене компьютера или ноутбука 15 000 руб., емкость данного сегмента составляет 22,1 миллиардов руб. А если спрогнозировать спрос на 2020 год, то размер рынка будет на 28 % больше, без учета изменения цены это составит 28,3 миллиардов рублей.

В 2014 году идут в детский сад малыши, рожденные в 2012 году (2 годика), соответственно, родители обеспечат группу наборами карандашей и альбомами для рисования для каждого ребенка. Такой набор в среднем стоит 35 рублей. На 2014 год спрос составит примерно 66,5 миллионов рублей, а уже в 2019 году падение спроса на этот товар составит 4,5% и в деньгах выразится суммой 63,8 миллионов рублей. Следовательно, 2014-2015 годы являются пиковыми в продаже подобных товаров аудитории яслей.

Группа товаров для новорожденных

Для того чтобы наглядно увидеть динамику рынка товаров для младенцев, возьмем периодичность в 2 года:

  • в 2011 году родилось - 1 796 629 детишек;
  • в 2013 году родилось - 1 895 822 детей;
  • в 2015 ожидается рождение 1 848 608 младенцев.

Средний бюджет на содержание одного ребенка в первой год жизни составляет около 125 000 руб.

(подсчитано тематическим сайтом baby.ru) Стоимость в течение года растет в среднем на 20%. Рассчитываем емкость рынка детских товаров для детей первого года жизни:

  • 2011 год - 224,6 млрд. руб;
  • 2013 год - 236,9 млрд. руб;
  • 2015 год - 231 млрд. руб.;

Группа товаров для первоклассников

1 сентября 2014 года в школы страны отправятся дети, рожденные в 2007 году, т.е, стране понадобится 1 610 122 ранцев, столько же наборов тетрадей, пеналов и т.д.

Если предположить, что каждому школьнику родители покупают мобильный телефон, чтобы держать малыша на связи, можно посчитать, насколько увеличится за период конца лета-начала осени реализация в данном сегменте. Если покупка стоит около 4,5 тыс. руб. (нынешние младшие школьники носят смартфоны средней руки), то общее увеличение продаж этой электроники составит:

  • в 2014 году 7,24 млрд. руб;
  • в 2015 году 7,71 млрд. руб;
  • в 2016 году 7,92 млрд. руб, т.е. динамика за 2-3 года составит 8-9%.

Сегодня можно наблюдать огромные очереди в детских поликлиниках, недостаток мест в дошкольных учреждениях, детских уличных площадках, развлекательных заведениях для детей. При этом наглядная картина рождаемости говорит о том, что этот сегмент товаров будет востребованным еще долгие годы, а если планировать акцент в собственном бизнесе, исходя из приведенной модели прогнозирования спроса, можно будет существенно увеличивать прибыль, удовлетворяя актуальный спрос.

Рассмотрим, как прогнозировать спрос на конкретном примере

Давайте представим конкретного предпринимателя, который строит свои прогнозы на количественных показателях рождаемости.

ИП Семенов реализует в городе N с населением 400 тыс. человек товары для детей.

Таких реализаторов в городе 5 человек, т.е. при моделировании ситуации по высокому варианту прогноза рождаемости Минстата (табл.3), в 2015 году в N-ске родится около 5 120 младенцев, примерно по 426 в месяц. Т.е. приобретать товары новоиспеченные родители и их родственники будут у индивидуального предпринимателя Семенова и четырех его конкурентов. При равном распределении продаж, ИП Семенов будет реализовывать в месяц набор для младенцев в количестве 86 шт.

В 2016 году - 84 шт в месяц, в 2020 году - 79 шт в месяц, т.е. падение налицо.

Прогнозирование спроса

А значит, чтобы удержать доходность бизнеса, ИП Семенов должен рассматривать состав рынка и предоставлять покупателям те товары, которые подходят им по возрасту:

  • с 2015 года - товары для детей от 5 лет (игрушки, одежда, книжки);
  • с 2017 года - товары для детей уже трех категорий:
    • младенцы, родившиеся в текущем году (памперсы, распашонки, погремушки, молочные смеси и т.д.);
    • дети 2010-2011 г.р., которые к этому времени становятся школьниками (ранцы, тетради, школьная форма, а также это могут быть простейшие мобильные телефоны);
    • дети 2012-2016 годов - малыши детсадовцы (игрушки, книжки, обучающие игры и материалы, одежда).

Уже с 2017 года ИП Семенов должен хорошо задуматься, чем ему торговать через три года, и пока бизнес основан на прежних расчетах, начать подыскивать варианты, соответствующее его взрослеющей аудитории.

Это могут быть товары для среднего школьного возраста, т.к. основной пик рождаемости пришелся на 2011-2013 года, соответственно, с 2020 года ИП Семенову лучше переключаться на товары той потребительской аудитории, которая представлена большим количеством клиентов - детьми 7-9 лет и их родителями. На волне этих товаров (это могут быть одежда, обувь, конструкторы, компьютеры, смартфоны, первая детская косметика и т.д.) предприниматель может продолжать свою деятельность вплоть до 2028-2030 гг.

Далее логика и статистика подсказывает переход на товары для аудитории студентов (модная одежда, услуги клубов и концертов, фаст-фуды и т.д.) а еще через 10 лет ИП Семенов может возвращаться к товарам для младенцев и будущих мам.

Таким образом, на простейшем примере мы разобрали основные принципы долгосрочного и перспективного планирования по методике моделирования спроса на основании демографической ситуации. Все расчеты относительны и не являются окончательными.

Юлия Николаенко, 2014-08-28

Вопросы и ответы по теме

По материалу пока еще не задан ни один вопрос, у вас есть возможность сделать это первым

Журнал: ФармОбоз.

Продолжая тематику «Управления запасами», которую начали в прошлом номере, хотелось бы напомнить, что смысл существования любой коммерческой струткуры в получении прибыли. Вопрос лишь в том, благодаря чему компания обеспечивает себе прибыль? Одна из самых распространенных точек зрения, заключается в том, что успех, в частности аптеки, зависит от того уровня цен, уровня обслуживания, месторасположении аптеки и так далее, и так далее. Все это так и есть, но отталкиваться стоит от другого. Прибыль аптеки обеспечивают ее КЛИЕНТЫ. Именно они делают покупки в аптеке. Или не делают! А вот задача сотрудников удержать и приумножить клиентов аптеки. Это можно сделать, поддерживая уровень обслуживания на очень высоком уровне. Уровень сервиса зависит от того, насколько вежливы продавцы, от того, каков уровень цен в данной аптеке, сколько кассовых аппаратов стоит в зале, от возможности обеспечения лекарственными средствами под закак, и от того ассортимента, который мы предлагаем нашим клиентам. Есть ли у нас в наличии те препараты, которые необходимы нашим покупателям? Как часто у нас в аптеке возникает дефицит по тем или иным позициям?

А поскольку формацевтические оптовики достаточно оперативно пополняют запасы аптеки, то здесь важно вовремя определить потребность в товаре и не упустить момента заказа оптовику, чтобы не допустить дефицита. При столь большом ассортименте, который поддерживают аптеки, удерживать в памяти все позиции просто невозможно, именно поэтому необходимо, используя современные програмные продукты, обеспечить учет потребности в лекарственных средствах на более высоком уровне.

Как обычно происходит процесс определения потребности в конкретной позиции в аптеке? Покупатели спрашивают, значит надо заказать. Закончился препарат, наступило время подачи заявки поставщику. Но этот подход работает, когда непосредственно продавцы заинетересованы в увеличении продаж. К сожалению, столь развитая система мотивации персонала аптеки встречается крайне редко.

Представим себе самою обычную ситуацию. Приходит потенциальный клиент в аптеку, отстаивает очередь, задает вопрос о наличии того лекарственного средства, которое ему прописал доктор, а этого лекарства нет в наличии. Человек уходит из аптеки без покупки, да еще и расстроенный потерянным временем. Соответственно потребность не удовлетворена. А зафиксировал ли эту потребность сотрудник аптеки (провизор)? Вряд ли, так как у него очередь, а, следовательно, отвлекаться на дополнительные операции ему некогда. Итог: клиент ушел без покупки – у аптеки упущенная прибыль. И придет ли этот клиент в аптеку или нет сказать сложно.

Другой пример. Предположим ассортимент у аптеки 5000 позиций. Пришла пора делать заказ поставщикам. Может ли провизор достаточно точно определить объем необходимой партии для каждой позиции? Наверняка нет. Идем по списку товаров, предположим в алфавитном порядке. Уже через 20 минут такой работы, бдительность и внимательность провизора притупляется, не хватает времени, или исчерпан финансовый лимит заказа. В результате те позиции, которые у нас в конце алфавитного списка остаются без внимания. Что получается в результате? Образуется дефицит, а, следовательно, упущенные продажи и прибыль.

И, наконец, третий пример. На этапе выбора поставщика и установления с ним отношений, проводится некий переговорный вопрос, где, в том числе, поставщика должен волновать вопрос об объемах поставок для Вашей аптеки. От объема поставок будет зависеть тот уровень цен, который Вам предоставит поставщик. Кроме того, сам поставщик будет у себя планировать объемы поставок от производителей лекарственных средств и медикаментов. Какие данные аптека может поставщику предоставить об объемах поставок, если нет системы прогнозирования? Только данные об объемах продаж в предыдущий период. Но насколько они соответствую действительному спросу, не знает никто.

Именно поэтому целесообразно использовать системы прогнозирования спроса, которые, учитывая спрос в прошедших периодах, формируюет данные о возможном спросе в следующих периодах.

Итак, что такое прогнозирование? Прогноз – это предположение относительно будущего. Конечно, мы не можем обеспечить абсолютно точный прогноз. Кроме того, чем меньше горизонт прогнозирования, тем более точный прогноз возможно получить. Но отсутствие в компании систем прогнозирования не облегчает и не улучшает ситуации, а наоборот, делает систему неконтролируемой и непрозрачной.

В статье рассматриваются довольно простые и доступные методы прогнозирования. Это связанно с тем, что существенное усложнение методик не ведет к существенному повышению качества прогноза.

Ниже приведена базовая расчетная формула прогноза, от которой стоит отталкиваться, добавляя тонкости и индивидуальности продуктов, с которыми аптеки работают.

Рt – прогноз величины спроса на период t;

Бt – величина базового спроса в период t;

Сt – коэффициент сезонных колебаний в период t;

Т – коэффициент временной тенденции: прирост или сокращение спроса за период t;

Мt – коэффициент поправок на стимулирование продаж в период t (маркетинговая составляющая;

Давайте рассмотрим все составляющие по порядку.

Величина базового спроса – средняя величина спроса за прошедший период.
Коэффициент сезонных колебаний необходимо рассчитывать для продуктов, у которых есть сезонный характер. Для этого необходимо проанализировать потребление за 3 года. Можно собрать данные и за большее количество лет, но здесь есть вероятность влияния на товар факторов, которые уже устарели. Анализ сезонности меньше чем за 3 года может быть не точен в связи со случайностью событий.
Итак, как определить Коэффициент сезонных колебаний?

Расчет представлен в таблице 1 и формулах.

Таблица 1 – Определение индекса сезонности



3. коэффициент поправок на стимулирование продаж. Этот коэффициент устанавливает отдел маркетинга, исходя из собственного опыта, поскольку расчету не подлежит.
Кроме базовой модели прогнозирования спроса существует большое количество статистический методов. Перечислим некоторые из них:

Нахождение средней арифметической. Эта методика приемлема для товаров высокой стабильности, без сезонной составляющей, при отсутствии временной тенденции. Применять нецелесообразно, так как таких товаров практически не существует.
Определение прогнозного значения методом скользящей средней. Применяется также для стабильных товаров.
Линейный прогноз. Работает с помощью нахождения зависимости объема продаж будущего периода от базового, с помощью линейной функции. На рисунке 1 графически представлен прогноз на тринадцатый период с помощью скользящей средней и линейной функции.
Рисунок 1 – Пример прогноза для стабильного товара


Синяя линия на графике отображает фактический объем спроса, лиловый – прогноз, используя скользящую среднюю, а черная – линейный прогноз. Вопрос в том, какой из этих прогнозов более точный. График скользящей средней на графике за прошедший период постоянно находится рядом с фактическим значением. А график линейного прогноза демонстрирует тенденцию к росту. Он и будет в данном случае более точным.

Экспоненциальное сглаживание. Применяется для нестабильных товаров, в связи с этим точность прогноза будет невысока. Примеры на рисунках 2, 3, 4.
Рисунок 2 – Пример прогноза для нестабильного товара (степенная функция).


Рисунок 3 – Пример прогноза для нестабильного товара (полином)


Рисунок 4 – Пример прогноза для нестабильного товара


Исходя из рисунков 2, 3 и 4, можно увидеть, насколько разный результат мы получаем на одних и тех же исходных данных применяя разные функции. Поэтому для нестабильных товаров для повышения точности прогнозирования особенно важно тщательно выбирать методы прогнозов.

При этом надо заметить, что те компании, которые уже внедрили и активно применяют статистические методы прогнозирования, сталкиваются с целым рядом проблем.

Во-первых, применяемые системы довольно часто являются неадекватными. То есть не соответствуют поведению товара. При автоматизации этого процесса, менеджер по закупками опирается на те данные, которые выдает информационная система, не задумываясь, на сколько эти данные точны. Да и сам менеджер зачастую не в курсе, каким именно образом формируются данные прогноза.

Предположим у нас есть информация о движении товаре «Спазмалгон» за 2 месяца (Таблица 2).


Из таблицы 2 видно, что за два месяца было большое количество дней, когда «Спазмалгон» отсутствовал на полке аптеки. Если прогноз на сентябрь строить на основе продаж за июль и сентябрь месяцы, используя среднюю арифметическую, мы получим следующие данные (средняя арифметическая здесь применяется для примера, метод прогнозирования необходимо подбирать индивидуально для каждой группы товара; кроме того, для применения этого метода необходимы данные как минимум за три месяца):


При таком подходе мы не учитываем те дни, когда товара не было на складе. Фактически это дефицит, то есть спрос был, но аптека его удовлетворить не смогла. А, следовательно, возникли упущенные прибыли.

Если использовать ту же методику, но опираться на спрос, мы сможем получить более точные данные о спросе. Как это сделать? Здесь есть два варианта:

Каждый раз, когда клиент обращается к продавцу с вопросом о товаре, которого нет в наличии, вносить об этом информацию в специальный документ, не забывая регистрировать тот объем, который необходим клиенту. Но в рознице такой подход не приемлем, так как при этом сильно увеличивается время обслуживания клиента, а, следовательно, падает уровень сервиса.
Другой вариант – определять спрос, учитывая только дни, когда товар был на складе. Данные о реальных продажах в нашем примере представлены в таблице 3.
Таблица 3 – Определение реального спроса

Необходимо при этом стремиться к уменьшению ошибки прогнозирования. Кроме того, следует на нее опираться при выборе системы прогнозирования. Рассматривая различные варианты прогнозов (в том числе эмпирических, то есть построенных на личном опыте), выбирать ту методику, которая обеспечит минимальную ошибку прогнозирования.

Но все-таки у статистических методов прогнозирования есть несколько ограничений:

  1. При открытии новой аптеки нельзя абсолютно точно определить объем продаж в ней;
  2. Для точного прогнозирования необходимы данные за 3 периода (года, месяца, недели)
  3. При вводе нового товара никто не знает, каков на него реальный спрос.

Но, что касается текущей оперативной работы с запасами, это один из самых важных инструментов, который в дальнейшем упрощает и качественно улучшает нашу работу.

Конечно, сам процесс внедрения и адаптации системы прогнозирования весьма сложный и длительный. Но, в результате, на выходе мы получаем:

Автоматизация и ускорение процесса принятия решения об объемах поставок;

Сокращение дефицита вследствие более пристального внимания к каждой позиции ассортиментного портфеля аптеки;

  • Уменьшение товарного запаса;
  • Увеличение объема продаж;
  • Планирование работы с поставщиками;
  • Получение лучших предложений от поставщика в связи со стабильностью отношений;
  • Более качественное использование денежного ресурса аптеки;
  • Повышение оборачиваемости запасов.