Круговорот веществ в природе. Геохимия биосферы

Круговорот элементов в неживой природе

Круговорот веществ в большом геологическом круговороте.

Большой геологический круговорот

Большой геологический круговорот минеральных веществ и воды протекает под действием огромного количества абиотических факторов.

Согласно теории литосферных плит, внешняя оболочка Земли состоит из нескольких очень больших блоков (плит). Эта теория предполагает существование горизонтальных перемещений мощных литосферных плит, толщиной 100 – 150 км.

При этом в пределах срединно-океанических хребтов, так называемой зоны рифтов. Происходят разрыв и раздвигание литосферных плит с образованием молодой океанической коры

Это явление называется спредингом океанического дна. Т.о., из глубин мантии поднимается поток минеральных веществ, образующий молодые кристаллические породы.

В противовес этому процессу в зоне глубоководных океанических желобов постоянно происходит надвигание одной части континентальной коры на другую, что сопровождается погружением периферийной части плиты в мантию, т.е., часть твёрдого вещества земной коры переходит в состав мантии Земли. Процесс, происходящий в океанических глубоководных желобах, назван субдукцией океанической коры.

Круговорот воды на планете действует непрерывно и повсеместно. Движущие силы круговорота воды – тепловая энергия и сила тяжести. Под влиянием тепла происходят испарение, конденсация водяных паров и другие процессы, на что расходуется около 50% энергии, поступающей от солнца. Под влиянием силы тяжести – падение капель дождя, течение рек, движение почвенных и подземных вод. Часто эти причины действуют совместно, например, на атмосферную циркуляцию воды действуют как тепловые процессы, так и сила тяжести.

Осуществляется двумя путями: водной и воздушной миграцией. К воздушным мигрантам относят: кислород, водород, азот, йод.

К водным мигрантам относят те вещества, которые мигрируют преимущественно в почвах, поверхностных и подземных водах в основном в виде молекул и ионов: натрий, магний, алюминий, кремний, фосфор, сера, хлор, калий, марганец, железо, кобальт, никель, стронций, свинец и др. Воздушные мигранты входят также в состав солей, которые мигрируют в воде. Однако воздушная миграция для них более типична.

Масса живого вещества биосферы сравнительно мала. Если её распределить по земной поверхности, то получиться слой всего в 1,5 см. В таблице 4.1 сопоставлены некоторые количественные характеристики биосферы и других геосфер Земли. Биосфера, составляя менее 10-6 массы других оболочек планеты, обладает несравненно большим разнообразием и обновляет свой состав в миллион раз быстрее.



Таблица 4.1

Сравнение биосферы с другими геосферами Земли

*Живое вещество в расчёте на живой вес

4.4.1. Функции биосферы

Благодаря биоте биосферы осуществляется преобладающая часть химических превращений на планете. Отсюда суждение В.И. Вернадского об огромной преобразующей геологической роли живого вещества. На протяжении органической эволюции живые организмы тысячекратно (для разных круговоротов от 103 до 105 раз) пропустили через себя, через свои органы, ткани, клетки, кровь всю атмосферу, весь объём Мирового океана, большую часть массы почв, огромную массу минеральных веществ. И не только пропустили, но и в соответствии со своими потребностями видоизменили земную среду.

Благодаря способности трансформировать солнечную энергию в энергию химических связей растения и другие организмы выполняют ряд фундаментальных биогеохимических функций планетарного масштаба.

Газовая функция. Живые существа постоянно обмениваются кислородом и углекислым газом с окружающей средой в процессах фотосинтеза и дыхания. Растения сыграли решающую роль в смене восстановительной среды на окислительную в геохимической эволюции планеты и в формировании газового состава современной атмосферы. Растения строго контролируют концентрации О2 и СО2, оптимальные для совокупности всех современных живых организмов.

Концентрационная функция. Пропуская через своё тело большие объёмы воздуха и природных растворов, живые организмы осуществляют биогенную миграцию (движение химических веществ) и концентрирование химических элементов и их соединений. Это относится к биосинтезу органики, образование коралловых островов, строительство раковин и скелетов, появление толщ осадочных известняков, месторождений некоторых металлических руд, скопление железно–марганцевых конкреций, на дне океана т. д. Ранние этапы биологической эволюции проходили в водной среде. Организмы научились извлекать из разбавленного водного раствора необходимые для них вещества, многократно увеличивая их концентрацию в своём теле.

Окислительно – восстановительная функция живого вещества тесно связана с биогенной миграцией элементов и концентрированием веществ. Многие вещества в природе устойчивы и не подвергаются окислению при обычных условиях, например, молекулярный азот – один из важнейших биогенных элементов. Но живые клетки располагают настолько мощными катализаторами – ферментами, что способны осуществлять многие окислительно-восстановительные реакции в миллионы раз быстрее, чем это может проходить в абиотической среде.

Информационная функция живого вещества биосферы. Именно с появлением первых примитивных живых существ на планете появилась и активная («живая») информация, отличающаяся от той «мёртвой» информации, которая является простым отражением структуры. Организмы оказались способными к получению информации путём соединения потока энергии с активной молекулярной структурой, играющей роль программы. Способность воспринимать, хранить и перерабатывать молекулярную информацию совершила опережающую эволюцию в природе и стала важнейшим экологическим системообразующим фактором. Суммарный запас генетической информации биоты оценивается в 1015 бит. Общая мощность потока молекулярной информации, связанной с обменом веществ и энергии во всех клетках глобальной биоты достигает 1036 бит/с (Горшков и др., 1996).

4.4.2. Составляющие биологического круговорота.

Биологический круговорот осуществляется между всеми составляющими биосферы (т. е. между почвой, воздухом, водой, животными, микроорганизмами и т.д.). Он происходит при обязательном участии живых организмов.

Достигающее биосферы солнечное излучение несёт в себе энергию около 2,5*1024 Дж в год. Только 0,3% её непосредственно преобразуется в процессе фотосинтеза в энергию химических связей органических веществ, т.е. вовлекается в биологический круговорот. А 0,1 – 0,2 % солнечной энергии, падающей на Землю, оказывается заключённой в чистой первичной продукции. Дальнейшая судьба этой энергии связана с передачей органического вещества пищи по каскадам трофических цепей.

Биологический круговорот условно можно разделить на взаимосвязанные составляющие: круговорот веществ и энергетический круговорот.

4.4.3. Энергетический круговорот. Трансформация энергии в биосфере

Экосистему можно описать как совокупность живых организмов, обменивающихся непрерывно энергией, веществом, информацией. Энергию можно определить как способность производить работу. Свойства энергии, в том числе и движение энергии в экосистемах, описываются законами термодинамики.

Первый закон термодинамики или закон сохранения энергии утверждает, что энергия не исчезает и не создаётся заново, она лишь переходит из одной формы в другую.

Второй закон термодинамики утверждает, что в замкнутой системе энтропия может только возрастать. Применительно к энергии в экосистемах удобна следующая формулировка: процессы, связанные с превращением энергии, могут происходить самопроизвольно только при условии, что энергия переходит из концентрированной формы в рассеянную, то есть деградирует. Мера количества энергии, которая становится недоступной для использования, или иначе мера изменения упорядоченности, которая происходит при деградации энергии, есть энтропия. Чем выше упорядоченность системы, тем меньше её энтропия.

Говоря другими словами, живое вещество получает и трансформирует энергию космоса, солнца в энергию земных процессов (химическую, механическую, тепловую, электрическую). Вовлекает эту энергию и неорганическую материю в непрерывный круговорот веществ в биосфере. Поток энергии в биосфере имеет одно направление – от Солнца через растения (автотрофы) к животным (гетеротрофы). Природные нетронутые экосистемы в устойчивом состоянии с постоянными важнейшими экологическими показателями (гомеостаз), являются наиболее упорядоченными системами, и характеризуются наименьшей энтропией.

4.4.4. Круговорот веществ в живой природе

Образование живого вещества и его разложение – две стороны единого процесса, который называется биологическим круговоротом химических элементов. Жизнь – круговорот химических элементов между организмами и средой.

Причина круговорота – ограниченность элементов, из которых строятся тела организмов. Каждый организм извлекает из окружающей среды необходимые для жизнедеятельности вещества и возвращает неиспользованные. При этом:

одни организмы потребляют минеральные вещества непосредственно из окружающей среды;

другие используют продукты, переработанные и выделенные первыми;

третьи – вторыми и т.д., пока вещества не возвратятся в окружающую среду в первоначальном состоянии.

В биосфере очевидна необходимость сосуществования различных организмов, способных использовать продукты жизнедеятельности друг друга. Мы видим практически безотходное биологическое производство.

Круговорот веществ в живых организмах условно можно свести к четырём процессам:

1.Фотосинтез. В результате фотосинтеза растения усваивают и аккумулируют солнечную энергию и синтезируют из неорганических веществ органические вещества - первичную биологическую продукцию - и кислород. Первичная биологическая продукция отличается большим разнообразием – содержит углеводы (глюкозу), крахмал, клетчатку, белки, жиры.

Схема фотосинтеза простейшего углевода (глюкозы) имеет следующую схему:

Этот процесс протекает только днём и сопровождается увеличением массы растений.

На Земле ежегодно в результате фотосинтеза образуется около 100 млрд. т. органического вещества, усваивается около 200 млрд. т. углекислого газа, выделяется примерно 145 млрд. т кислорода.

Фотосинтезу принадлежит решающая роль в обеспечении существования жизни на Земле. Его глобальное значение объясняется тем, что фотосинтез является единственным процессом, в ходе которого энергия в термодинамическом процессе согласно с минималистским принципом не рассеивается, а наоборот – накапливается.

Синтезируя необходимые для построения белков аминокислоты, растения могут существовать относительно независимо от других живых организмов. В этом проявляется автотрофность растений (самостоятельность в питании). В то же время зелёная масса растений и кислород, образующийся в процессе фотосинтеза, являются основой для поддержания жизни следующей группы живых организмов – животных, микроорганизмов. В этом проявляется гетеротрофность этой группы организмов.

2. Дыхание. Процесс обратный фотосинтезу. Происходит во всех живых клетках. При дыхании органическое вещество окисляется кислородом, в результате образуется углекислый газ, вода и выделяется энергия.

3. Пищевые (трофические) связи между автотрофными и гетеротрофными организмами. В данном случае происходит перенос энергии и вещества по звеньям пищевой цепи, которые более подробно были нами рассмотрены ранее.

4. Процесс транспирации. Один из самых важных процессов в биологическом круговороте.

Схематично его можно описать следующим образом. Растения поглощают почвенную влагу корнями. При этом в них поступают растворённые в воде минеральные вещества, которые усваиваются, а влага более или менее интенсивно испаряется в зависимости от условий среды.

4.4.5. Биогеохимические циклы

Геологический и биологический круговороты связаны – они существуют как единый процесс, рождая циркуляцию веществ, так называемые биогеохимические циклы (БГХЦ). Этот круговорот элементов обусловлен синтезом и распадом органических веществ в экосистеме (рис.4.1) В БГХЦ задействованы не все элементы биосферы, а только биогенные. Из них состоят живые организмы, эти элементы вступают в многочисленные реакции и участвуют в процессах, протекающих в живых организмах. В процентном соотношении совокупная масса живого вещества биосферы состоит из следующих основных биогенных элементов: кислорода – 70%, углерода – 18%, водорода – 10,5%, кальция – 0,5%, калия – 0,3%, азот – 0,3%, (кислород, водород, азот, углерод присутствуют во всех ландшафтах и являются основой живых организмов – 98%).

Сущность биогенной миграции химических элементов.

Таким образом, в биосфере имеют место биогенный круговорот веществ (т.е. круговорот, вызванный жизнедеятельностью организмов) и однонаправленный поток энергии. Биогенная миграция химических элементов определяется в основном двумя противоположными процессами:

1. Образование живого вещества из элементов окружающей среды за счет солнечной энергии.

2. Разрушение органических веществ, сопровождающееся выделением энергии. При этом элементы минеральных веществ многократно попадают в живые организмы, входя тем самым в состав сложных органических соединений, форм, а затем при разрушении последних снова приобретают минеральную форму.

Существуют элементы, входящие в состав живых организмов, но не относящиеся к биогенным. Такие элементы классифицируются по их весовой доле в организмах:

Макроэлементы – составляющие не менее 10-2% массы;

Микроэлементы – составляющие от 9*10-3 до 1*10-3% массы;

Ультрамикроэлементы – менее 9*10-6% массы;

Чтобы определить место биогенных элементов среди других химических элементов биосферы, рассмотрим принятую в экологии классификацию. По проявляемой активности в процессах, протекающих в биосфере, все химические элементы делят на 6 групп:

Благородные газы – гелий, неон, аргон, криптон, ксенон. Инертные газы в состав живых организмов не входят.

Благородные металлы – рутений, радий, палладий, осмий, иридий, платина, золото. Эти металлы почти не создают соединений в земной коре.

Циклические или биогенные элементы (их ещё называют миграционными). На эту группу биогенных элементов в земной коре приходится 99,7% всей массы, а на остальные 5 групп – 0,3%. Таким образом, основная масса элементов – это мигранты, которые осуществляют кругооборот в географической оболочке, а часть инертных элементов очень мала.

Рассеянные элементы, характеризующиеся преобладанием свободных атомов. Вступают в химические реакции, но их соединения редко встречаются в земной коре. Разделяются на две подгруппы. Первая – рубидий, цезий, ниобий, тантал – создают соединения в глубинах земной коры, а на поверхности их минералы разрушаются. Вторая – йод, бром – вступают в реакции лишь на поверхности.

Радиоактивные элементы – полоний, радон, радий, уран, нептуний, плутоний.

Редкоземельные элементы – иттрий, самарий, европий, тулий т.д.

Круглогодично биохимические циклы приводят в движение около 480 млрд. т. вещества.

В.И. Вернадский сформулировал три биогеохимических принципа, которые объясняют сущность биогенной миграции химических элементов:

Биогенная миграция химических элементов в биосфере всегда стремится к максимальному своему проявлению.

Эволюция видов в ходе геологического времени, приводящая к созданию устойчивых форм жизни, идёт в направлении, усиливающем биогенную миграцию атомов.

Живое вещество находится в непрерывном химическом обмене с окружающей его средой, что является фактором, воссоздающим и поддерживающим биосферу.

Рассмотрим, как движутся в биосфере некоторые из этих элементов.

Круговорот углерода. Главным участником биотического круговорота является углерод как основа органических веществ. Преимущественно круговорот углерода происходит между живым веществом и углекислым газом атмосферы в процессе фотосинтеза. С пищей его получают травоядные, от травоядных – хищники. При дыхании, гниении углекислый газ частично возвращается в атмосферу, возврат происходит при сжигании органических полезных ископаемых.

При отсутствии возврата углерода в атмосферу, он был бы израсходован зелёными растениями за 7-8 лет. Скорость биологического оборота углерода через фотосинтез – 300 лет. Мировой океан играет большую роль в регулировании содержания СО2 в атмосфере. Если в атмосфере повышается содержание СО2, часть его растворяется в воде, вступая в реакцию с карбонатом кальция.

Круговорот кислорода.

Кислород обладает высокой химической активностью, вступает в соединения практически со всеми элементами земной коры. Встречается в основном в виде соединений. Каждый четвёртый атом живого вещества – атом кислорода. Почти весь молекулярный кислород в атмосфере возник и поддерживается на постоянном уровне благодаря деятельности зелёных растений. Кислород атмосферы, связываясь при дыхании и освобождаясь при фотосинтезе, проходит через все живые организмы за 200 лет.

Круговорот азота. Азот является составной частью всех белков. Общее отношение связанного азота, как элемента, составляющего органическое вещество, к азоту в природе равно 1:100000. Энергия химической связи в молекуле азота очень велика. Поэтому соединение азота с другими элементами – кислородом, водородом (процесс азотофиксации) – требует больших затрат энергии. Промышленная фиксация азота идёт в присутствии катализаторов при температуре -500оС и давлении –300 атм.

Как известно, атмосфера содержит более 78% молекулярного азота, но в таком состоянии он не доступен зелёным растениям. Для своего питания растения могут использовать лишь соли азотной и азотистой кислот. Каковы пути образования этих солей? Вот некоторые из них:

В биосфере фиксация азота осуществляется несколькими группами анаэробных бактерий и цианобактерий при нормальной температуре и давлении благодаря высокой эффективности биокатализа. Считается, что бактерии переводят в связанную форму приблизительно 1 млрд. т азота в год (мировой объём промышленной фиксации – около 90 млн.т).

Почвенные азотофиксирующие бактерии способны усваивать молекулярный азот из воздуха. Они обогащают почву азотистыми соединениями, поэтому их значение чрезвычайно велико.

В результате разложения азотосодержащих соединений органических веществ растительного и животного происхождения.

Под действием бактерий азот переходит в нитраты, нитриты, аммонийные соединения. В растениях соединения азота принимают участие в синтезе белковых соединений, которые в цепях питания передаются от организма к организму.

Круговорот фосфора. Ещё одним важным элементом, без которого невозможен синтез белков, является фосфор. Основные источники – изверженные породы (апатиты) и осадочные породы (фосфориты).

Неорганический фосфор вовлекается в круговорот в результате естественных процессов выщелачивания. Фосфор усваивается живыми организмами, которые при его участии синтезируют ряд органических соединений и передают на различные трофические уровни.

Закончив свой путь по трофическим цепям, органические фосфаты разлагаются микробами и превращаются в минеральные фосфаты, доступные для зелёных растений.

В процессе биологического круговорота, который обеспечивает движение вещества и энергии, нет места накоплению отходов. Продукты жизнедеятельности (т.е. отходы) каждой формы жизни являются питательной средой для других организмов.

Теоретически в биосфере всегда должен поддерживаться баланс между продуцированием биомассы и её разложением. Однако в отдельные геологические периоды сбалансированность биологического круговорота нарушалась, когда из-за определённых природных условий, катаклизмов не вся биологическая продукция усваивалась, трансформировалась. В этих случаях образовывались излишки биологической продукции, которые консервировались и откладывались в земной коре, под толщей воды, наносов, оказывались в зоне вечной мерзлоты. Так сформировались залежи каменного угля, нефти, газа, известняка. Надо отметить, что они не засоряют биосферу. В органических полезных ископаемых сконцентрировалась энергия Солнца, накопленная в процессе фотосинтеза. Сейчас, сжигая органические горючие полезные ископаемые, человек высвобождает эту энергию.

Cтраница 1


Биологический круговорот связан с метаболизмом (обменом веществ) и образованием, а также разложением воды в живом веществе, в процессе его жизнедеятельности.  

Любой биологический круговорот характеризуется многократным включением атомов химических элементов в тела живых организмов и выходом их в окружающую среду, откуда они вновь захватываются растениями и вовлекаются в круговорот. Малый биологический круговорот характеризуется емкостью - количеством химических элементов, находящихся одновременно в составе живого вещества в данной экосистеме, и скоростью - количеством живого вещества, образующегося и разлагающегося в единицу времени.  

Биологический круговорот суши и гидросферы объединяют круговороты отдельных ландшафтов посредством водного стока и атмосферных перемещений. Особенно важна роль циркуляции воды и атмосферы в объединении всех материков и океанов в единый круговорот биосферы.  

Биологическому круговороту веществ присуща созидательная функция, создание органического вещества и обогащение почвы питательными элементами. От него зависит жизнь в любых растительных сообществах: садах, лугах, полях, лесах. В последние годы возникла необходимость создания высокоинтенсивных типов круговорота в замкнутых системах, которые могли бы обеспечить жизнедеятельность в далеких межпланетных путешествиях.  

Интенсивность биологического круговорота в первую очередь определяется температурой окружающей среды и количеством воды. Так, например, биологический круговорот интенсивнее протекает во влажных тропических лесах, чем в тундре.  

Скорость биологических круговоротов на суше составляет годы и десятки лет, в водных экосистемах - несколько дней или недель.  

Для биологического круговорота в лесу характерно длительное выключение из него азота и зольных элементов, заключенных в многолетней биомассе деревьев и кустарников, трансформация опада на поверхности почвы с образованием лесной подстилки и разнообразных по составу водорастворимых органических и минеральных продуктов его разложения.  

Скорость биологических круговоротов и общее количество вовлекаемого в эти циклы вещества определяются масштабами и экологическими условиями в экосистемах. Для экосистем характерны различные экологические условия, под которыми подразумеваются экологические факторы внешней среды, прямо или косвенно воздействующие на живые организмы. Эти факторы могут быть абиотическими и биотическими.  


Часть биологического круговорота, состоящая из круговоротов углерода, воды, азота, фосфора, серы и других биогенных веществ, называют биогеохимическим круговоротом.  

В биологическом круговороте веществ особое место принадлежит азоту. При разложении органических веществ азот уходит в атмосферу либо в виде газообразных соединений, либо в свободном состоянии. Возвращение азота в почву, откуда его черпают растения, осуществляется сложным путем, в результате процесса, в котором участвуют специальные бактерии и некоторые другие организмы, связывающие газообразный азот атмосферы в соединения, доступные для потребления растениями.  


В понятие биологический круговорот В. А. Ковда включает сумму циклических процессов обмена веществ и энергии между средой и совокупностью растительных и животных организмов. Если проследить за цепочкой последовательных превращений и миграцией отдельных элементов, участвующих в обмене между средой обитания, в частности почвой, и биотой, то можно обнаружить, например с помощью изотопной метки, что полный трансформационно-миграционный цикл элемента во всех почвах и на всех этапах ее функционирования включает как биологические, так и абиотические процессы трансформации и перемещения вещества. Например, в период между возвратом элемента на поверхность почвы с лесным опадом и его последующим поглощением корнями растений он может мигрировать по почвенному профилю. При этом интенсивность, направленность данного процесса будет определяться не только биотой, но и климатическими факторами, водно-физическими, сорбционными и другими свойствами почв.  

Включаясь в биологический круговорот, они через растительную и животную пищу попадают в организм человека и, накапливаясь в нем, вызывают радиоактивное облучение.  

Напротив, биологический круговорот вещества проходит в границах обитаемой биосферы и воплощает в себе уникальные свойства живого вещества планеты. Будучи частью большого, малый круговорот осуществляется на уровне биогеоценоза, он заключается в том, что питательные вещества почвы, вода, углерод аккумулируются в веществе растений, расходуются на построение тела и жизненные процессы как их самих, так и организмов - консументов. Продукты разложения органического вещества почвенной микрофлорой и мезофауной (бактерии, грибы, моллюски, черви, насекомые, простейшие и др.) вновь разлагаются до минеральных компонентов, опять-таки доступных растениям и поэтому вновь вовлекаемых ими в поток вещества.  

Доводилось мне читать литературу, где описывалась «модная тенденция» в науке XVI–XVII столетия - создание вечного двигателя. Эта мечта так и осталась неосуществимой, но идея, по-моему, срисована с природы. Круговорот живого и неживого происходит постоянно. Кто-то скажет, что через миллиарды лет Земля исчезнет, а я бы возразила, ведь из останков нашей галактики образуется новая. Наша Вселенная и есть вечный двигатель.

В чем суть биологического круговорота веществ

На Земле беспрерывно происходит два типа круговорота: биотический и абиотический.

Вещества сами по себе не являются живыми и одинаково принимают участие в обоих циклах, но как только оказываются внутри живого организма, то его можно считать участником биологического круговорота.

Элементы, участвующие в биологическом цикле:

  • минеральные вещества;
  • газы;
  • вода.

Спектр веществ очень широкий. Условно их можно поделить на жизненно необходимые для организмов (вода, кислород, азот, углекислота) и несущие живому ущерб.

Процесс циркуляция веществ

Независимо от вредности или полезности любое вещество когда-то приходит в организм и однажды его покидает.

В случае с водой циркуляция происходит постоянно. Например, организм человека за день выводит около 6 литров, но мы не теряем свой вес за счет постоянного пополнения водных запасов. Испарившись из тела, молекулы воды устремляются к облакам, выпадают в виде дождя, попадают в водопровод и снова оказываются в организме.

По аналогичному принципу через любой живой организм проходят минеральные вещества и газы.

Циркуляция воздуха происходит интенсивнее всего: за сутки человек вдыхает 13 тыс. литров воздуха содержащего 20% кислорода, который на выдохе преобразуется в углекислоту. Тем не менее, благодаря растениям излишков углекислого газа в природе не наблюдается, они используют его во время фотосинтеза.

Некоторые вещества накапливаются в организме и не выводятся оттуда до самой смерти, они обычно наносят ущерб живому организму. Примерами таких веществ могут быть канцерогены, что вдыхаются курильщиками.

Биологический круговорот химических элементов в распространенных тропических сообществах

Биоклиматические условия тропической территории весьма разнообразны. Представление о тропиках как о сплошной полосе джунглей совершенно не отвечает действительности. Меняющиеся соотношения атмосферных осадков и эвапотранспирации, длитель­ности сухих и дождливых сезонов создают широкую гамму экосистем с разной степенью атмосферного увлажнения - от крайне засушливых или пустынных ландшафтов до постоянно влажных тропических лесов. При наличии сезона, на протяжении которого испаряемость превышает количество осадков, существуют разреженные светлые высокотравные леса, которые при продолжительном сухом сезоне сбрасывают листву. Для более засушливых условий типичны редкостойные группы деревьев, чередующиеся с открытыми пространствами, покрытыми травянистой растительностью. С усилением аридности деревья заменяются зарослями колючих кустарников, а пышный покров высоких злаков - низкотравной растительностью с невысокой степенью покрытия почвы.

Соотношения площадей разной степени атмосферного увлажне­ния на континентах неодинаковы. Засушливые области занимают подавляющую часть Австралии, значительную часть Индии, но менее распространены в Южной Америке. В экваториальной полосе Африки, ограниченной 6° с. ш. и 6° ю. ш., площади разной степе­ни атмосферного увлажнения распределяются следующим образом:

Из приведенных данных следует, что влажные леса занимают всего около "/5 экваториальной полосы Африки, а большая ее часть занята комбинацией светлых лесов и высокотравных саванн. На остальной территории распространены более или менее засушливые ландшафты, вплоть до почти пустынных, где выпадает менее 200 мм осадков в год. Согласно данным Б.Г.Розанова (1977), зона распространения всех видов тропических лесов занимает 20 448 тыс. км 2 , или 13,33% Мировой суши, саванновая зона - 14 259 тыс. км 2 (9,56%), области тропических пустынь - 4506 тыс. км 2 , или 3,02%. При этом не учитывались площади развеиваемых песков, безжизненных каме­нистых пустынь, солончаков.

Биологический круговорот элементов в тропических лесах. Пос­тоянно влажные тропические леса - самая мощная растительная формация. Обилие тепла и влаги обусловливает самую большую биомассу среди биоценозов Мировой суши - в среднем 50 000 т/км 2 сухого вещества, а в отдельных случаях до 170 000 т/км 2 . Фактором, лимитирующим рост биомассы, является необходимая для фотосинтеза световая энергия. С целью ее максимального ис­пользования под покровом деревьев высотой 30-40 м расположено еще несколько ярусов деревьев, приспособленных к рассеянному свету. Значительная часть отмирающих и опадающих листьев высо­ких деревьев перехватывается многочисленными эпифитами. По этой причине химические элементы, содержащиеся в листьях, вновь захватываются в биологический круговорот, не достигая почвы. Во влажных тропических лесах вегетация продолжается весь год. Годовая продукция в среднем равна 2500 т/км 2 .

Биогеохимическая специфика влажных тропических лесов заключается в том, что почти все количество химических элементов, необходимое для питания огромной массы растительности, содержится в самих растениях. Биогеохимический цикл массообмена сильно замкнут. Если вырубить дождевой тропический лес, то вместе с гибелью деревьев нарушится вся тысячелетиями создаваемая система биологического круговорота и под сведенным лесом останутся бесплодные земли.

Биогеохимическая ситуация в светлых листопадных тропических лесах и саваннах близка к таковой в лиственных лесах умеренного климата, но периоды подавления биогеохимических процессов обусловлены не понижением температуры, а отсутствием дождей и сезонным дефицитом влаги. Биомасса сухих саванн около 200-600 т/км 2 . Количество опада (меньше 150-200 т/км 2) отвечает условиям тропических пустынь. Биомасса листопадных тропичес­ких лесов разной степени увлажнения и высокотравных парковых саванн занимает промежуточное положение между постоянно влаж­ными лесами и сухими саваннами.

Согласно имеющимся данным Л.Е.Родина и Н.И.Базилевич (1965), распределение и динамика масс в растительности постоянно влажного тропического леса характеризуются следующими показа­телями (т/км 2):

Необходимо отметить, что концентрация химических элементов в древесине стволов и ветвей тропических деревьев, как правило, более низкая, чем в листьях, которые образуют основную массу опада. Концентрация азота в древесине редко достигает 0,5% массы сухого вещества, а в листьях - около 2%. В листьях обычно в несколько раз выше, чем в древесине, концентрация кальция, ка­лия, магния, натрия, кремния, фосфора. Содержание элементов в листьях деревьев и в травянистой растительности, обильно представленной в светлых листопадных лесах, слабо разли­чается. Концентрация большей части рассеянных элементов в лис­тьях деревьев и травах также более высокая, чем в древесине, хотя бария и особенно стронция больше в древесине.

На основании имеющихся данных мы принимаем среднее значе­ние суммы зольных элементов в биомассе постоянно влажного тро­пического леса равным 800 т/км 2 ; массу этих элементов, вовлекае­мую в биологический круговорот, равной 150 т/км 2 в год. Для светлых лесов средние значения составляют соответственно 200 и 50 т/км 2 в год. Исходя из этих цифр определены ориентировочные значения масс рассеянных элементов, ежегодно вовлекаемых в биологический круговорот.

Концентрация зольных элементов в экваториальной растительности Восточной Африки, % сухой массы (по В.В.Добровольскому 1975)

№ образца Элементы "Чистая зола" Примесь
Si А1 Fe Mn Ti Са Mg Na Р S минеральных частиц
52 2,27 0,41 0,40 0,008 0,006 0,24 0,12 0,03 0,06 0,01 7,29 3,21
76 0,05 0,01 0,02 0,001 0,001 0,29 0,02 0,01 0,02 0,04 0,79 0,40
42 1,06 1,87 1,48 0,05 0,07 0,45 0,27 0,22 0,06 0,04 9,07 11,33
210 0,69 0,01 0,08 0,02 0,001 0,08 0,08 0,05 0,08 0,06 6,32 0,68

Образцы: 52 - разреженный травянистый покров низкотравной саван­ны с преобладанием представителей родов Sporobolus, Cynodon, KyUinga, Северо-Западная Танзания.

76 - ствол Podocarpus, дождевой лес южного склона Килиманджаро, Танзания.

42 - лесная подстилка дождевого леса южного склона Килиманджаро, Танзания.

210 - стебли папируса (Cyperuspapyrus), пойма Белого Нила вблизи истока из озера Альберта, Уганда.

Массы рассеянных элементов, вовлекаемые в биологический круговорот в тропических лесах

Уровни концентрации рассеянных элементов в почвообразующем субстрате разных районов тропической суши неодинаковы. Это отражается на содержании элементов в растениях. Например, в Восточной Африке в злаковых травах, собранных на площади распространения кристаллических пород докембрийского фунда­мента, концентрация меди равна 71*10 -4 %, а в аналогичных травах на площади распространения вулканических лав - 120*10 -4 %. Кон­центрация цинка соответственно меняется от 120 до 450 10- 4 %), TiOz - от 200 до 1800 10 -4 %.

В таблице сопоставлено содержание рассеянных элементов в золе трав и ветвей деревьев (акаций) из саванн Восточной Африки. Видно, что тяжелые металлы сильнее аккумулируются в травах, а барий и стронций - в деревьях. Следует отметить, что концентра­ция последнего возрастает с усилением засушливости. В аридных районах южной Танзании мы обнаружили концентрацию стронция в золе ветвей баобаба около 4500 мкг/г, а в одном случае в ветвях акаций в 3 раза больше.

Интенсивность биологического поглощения и концентрация рассеянных элементов в золе трав и деревьев саванн Восточной Африки (по В.В.Добровольскому, 1973)

Элементы Концентрация, мкг/г Коэффициент биологического
" поглощения Кб
травы, ветви акаций, травы ветви акаций
6 проб 9 проб
Ti 1140 230 0,1 0,03
Mn 1880 943 1,9 0,9
V 59 45 0,3 0,2
Сг 28 12 0,2 0,08
39 144 0,6 2,0
Со 20 12 0,6 0,4
Си " 85 39 1,5 0,7
РЬ 34 21 1.5 0,9
Zn 118 79 1,2 0,8
Mo 57 6 7,1 0,8
Nb 59 18 0,9 0,3
Zr 165 92 0,5 0,3
Ga 36 4 1,6 0,2
Sr 450 3340 3,5 25,7
Ba 440 630 3,0 4,3

Надземная часть саванновых трав обладает высокой зольностью - от 6 до 10%, отчасти обусловленной примесью мелких частиц минеральной пыли, обнаруживаемой под микроскопом, а иногда и невооруженным глазом. Количество минеральной пыли составляет 2-3% от массы абсолютно сухого вещества надземной части трав. По-видимому, примесь минеральной пыли сказывается на повышен­ной концентрации галлия, слабо поглощаемого растениями, но содержащегося в высокодисперсном глинистом материале, энергич­но переносимом ветром. Но даже после исключения нерастворимой силикатной пыли сумма зольных элементов в саванновых злаках в 2 раза больше, чем в злаках высокогорных лугов.

Круговорот и биогеохимические циклы веществ

    Объясните смысл геологического круговорота на примере круговорота воды.

    Как происходит биологический круговорот?

    В чем заключается закон биогенной миграции атомов В.И. Вернадского?

    Что такое резервный и обменный фонды природного круговорота? В чем различие между ними?

Земля как живой суперорганизм

*Чтобы биосфера могла существовать и развиваться, на Земле постоянно должен происходить круговорот биологически важных веществ, т. е. после использования они должны вновь переходить в усвояемую для других организмов форму. Этот переход биологически важных веществ может осуществляться только при определенных затратах энергии, источником которой является Солнце.

Ученый В. Р. Вильямс считает, что солнечная энергия обеспечивает на Земле два круговорота веществ - геологический, или большой, круговорот и биологический, малый, круговорот.

Геологический круговорот наиболее четко проявляется в круговороте воды. На Землю от Солнца ежегодно поступает 5,24ґ1024 Дж излучаемой энергии. Около половины ее расходуется на испарение воды. При этом из океана испаряется воды больше, чем возвращается с осадками. На суше, наоборот, больше выпадает осадков, чем испаряется воды. Излишки ее стекают в реки и озера, а оттуда - снова в океан (перенося при этом определенное количество минеральных соединений). Это и обусловливает большой круговорот в биосфере, основанный на том, что суммарное испарение воды с Земли компенсируется выпадением осадков.

**С появлением живого вещества на основе геологического круговорота возник круговорот органического в ещества, биологический (малый) круговорот.


Круговорот воды как пример геологического круговорота
(по Х. Пенмэну)

По мере развития живой материи из геологического круговорота постоянно извлекается все больше элементов, которые вступают в новый, биологический круговорот. В отличие от простого переноса минеральных веществ в большом круговороте, как в виде растворов, так и в виде механических осадков, в малом круговороте самыми важными моментами являются синтез и разрушение органических соединений. В противоположность геологическому, биологический круговорот обладает ничтожной энергией. На создание органического вещества, как известно, затрачивается всего 0,1-0,2% всей поступающей на Землю солнечной энергии (на геологический круговорот - до 50%). Несмотря на это, энергия, вовлеченная в биологический круговорот, производит огромную работу по созданию первичной продукции.



Биологический круговорот

С появлением на Земле живой материи химические элементы непрерывно циркулируют в биосфере, переходя из внешней среды
в организмы и опять во внешнюю среду. Такая циркуляция веществ по более или менее замкнутым путям называется биогеохимическим циклом.

Основными биогеохимическими циклами являются круговороты кислорода, углерода, воды, азота, фосфора, серы и других биогенных элементов.

*** Биогенная миграция вещества - одна из форм всеобщей миграции элементов в природе. Под биогенной геохимической миграцией следует понимать миграцию органического и косного вещества, участвующего в росте и развитии живых организмов и производимого последними в результате сложных биохимических и биогеохимических процессов. В.И. Вернадский сформулировал закон биогенной миграции атомов в следующем виде:

Миграция химических элементов в биосфере осуществляется или при непосредственном участии живого вещества (биогенная миграция), или же протекает в среде, геохимические особенности которой (О2, СО2, Н2 и т. д.) обусловлены живым веществом (тем, которое населяет биосферу в настоящее время, и тем, которое действовало на Земле в течение всей геологической истории).

Человек воздействует прежде всего на биосферу и ее живое население, поэтому он тем самым изменяет условия биогенной миграции атомов, создавая предпосылки для глубоких химических перемен. Таким образом, процесс может стать саморазвивающимся, не зависящим от желания человека, и при глобальном масштабе практически неуправляемым.

С точки зрения планетарного круговорота вещества, наиболее важным являются почвенно-ландшафтный, гидросферный и глубинный (внутриземной) циклы. В первом из них осуществляется извлечение химических элементов из горных пород, воды, воздуха, разложение органического вещества, поглощение и синтез различных органических и органо-минеральных соединений. В гидросферном цикле главную роль играют состав воды и биологическая активность живых организмов. Биопродуцирование вещества здесь осуществляется при господствующем участии фитои зоопланктона. В глубинном цикле биогенной миграции наиболее важная роль принадлежит деятельности анаэробных микроорганизмов.

****Процессы, происходящие в различных оболочках Земли, находятся в состоянии динамического равновесия, и изменение хода какого-либо из них влечет за собой бесконечные цепочки подчас необратимых явлений. В каждом природном круговороте целесообразно различать две части, или два "фонда":

    резервный фонд - большая масса медленно движущихся веществ, в основном неорганической природы;

    подвижный , или обменный, фонд - меньший, но более активный, для которого характерен быстрый обмен между организмами и окружающей средой.

Обменный фонд образуется за счет веществ, которые возвращаются в круговорот либо за счет первичной экскреции (от лат. excretum - выделенное) животными, либо при разложении детрита микроорганизмами.

Если иметь в виду биосферу в целом, то биогеохимические циклы можно подразделить на два основных типа:

        круговорот газообразных веществ с резервным фондом в атмосфере или гидросфере;

        осадочный цикл с резервным фондом в земной коре.