Генератор на неодимовых магнитах. Вечный двигатель на неодимовых магнитах. Ветрогенератор на неодимовых магнитах Аксиальный генератор для ветряка своими руками

Verification: 72146f0e872f9296

Кстати неплохой получается винт.Поэтому принципу изготовлен последний винт с алюминевой трубы 1,3м (смотрите выше)


Разметил трубу, болгаркой вырезал заготовки, по концах стянул болтами и електрорубанком обработал пакет. Затем раскрутил пакет и каждую лопасть обработал отдельно, подгоняя вес на электронных весах.


Защита от ураганного ветра выполнена по классической зарубежной схеме, т. е. ось вращения смещена от центра. Вот ссылка на сайт http://www.otherpower.com/otherpower_wind.html

Желающие узнать больше здесь найдут все интересующие вопросы, причем совершенно бесплатно! Мне этот сайт помог очень здорово особенно с чертежами хвоста. Вот пример чертежей с этого сайта.

Свой хвост ветряка я подгонял методом подпиливания.

Вся конструкция насаженна на два 206 подшипника, которые закреплены на оси с внутренним отверстием под кабель и приваренной к двухдюймовой трубе.


Подшипники плотно входят в корпус ветроустановки, что позволяет без каких либо усилий и люфтов свободно поворачиваться конструкции. Кабель проходит внутри мачты к диодному мосту.(выше смотрите чертежи)

на фото первоначальный вариант

Для изготовления ветроголовки не учитывая двух месяцев поиска решений, ушло полтора месяца, сейчас у нас февраль месяц, снег и холод похоже за всю зиму, поэтому основных испытаний еще не проводил, но даже на этом расстоянии от земли автомобильная лампочка 21 ватт перегорела. Жду весны, готовлю трубы под мачту. Эта зима пролетела у меня быстро и интересно.

VIDEO можно просмотреть здесь, (двойное нажатие на видео открывает прямую ссылку на youtube), Да, если нравится или не нравится отображайте своё мнение.

Прошло немного времени с того момента когда разместил на сайте свой ветряк, но весна так толком и не пришла, землю копать чтобы замуровать стол под мачту еще нельзя,-земля мёрзлая да и грязь везде, поэтому времени для испытаний на временной 1,5м стойке было предостаточно, а теперь подробней.

После первых испытаний винт случайно зацепил трубу, это я пытался зафиксировать хвост, чтобы ветряк не уходил из под ветра и посмотреть какая будет максимальная мощность. В итоге мощность успел зафиксировать примерно ватт 40, после чего винт благополучно разлетелся на щепки. Неприятно, но наверное полезно для мозгов. После этого я решил поэкспериментировать и намотал новый статор. Для этого изготовил новую форму под заливку катушек.Форму тщательно смазал автомобильным литолом, чтобы лишнее не пристало. Катушки теперь немного уменьшил по длине, благодаря чему в сектор теперь поместилось 60 витков 0,95мм толщина намотки 8мм (в конечном итоге статор получился 9 мм), причем длина провода осталась прежней.

В эпоксидку добовил тальк примерно 30%


Винт теперь сделал с более прочной трубы 160мм и трехлопастным, длина лопасти 800мм.

Новые испытания сразу показали результат, теперь ГЕНА выдавал до 100 ватт, галогенная автомобильная лампочка в 100 ватт горела в полный накал, и чтобы её не спалить на сильных порывах ветра лампочку отключал.

замеры на автомобильном акумуляторе 55 А.ч.

Теперь окончательные испытания на мачте, результат опишу поже.

Ну, вот уже середина августа, и как я обещал, попытаюсь закончить эту страничку.

Сначала то, что пропустил

Мачта один из ответственных елементов конструкции

Один из стыков (труба меньшего диаметра входит внутрь большей)


и поворотный узел

теперь остальное

3-х лопастный винт (рыжая канализационая труба диаметром 160мм)

Начну с того, что сменил несколько винтов и остановился на 6-ти лопастном с алюминиевой трубы диаметром 1,3м, хотя большую мощность давал винт с ПВХ трубы 1,7м.

Основная проблема была в том чтобы заставить заряжаться АКБ от малейшего вращения винта и вот здесь на помощь пришел блокинг генератор который даже при входном напряжении в 2v дает заряд АКБ - пускай маленьким током, но лучше чем разряд, а на нормальных ветрах вся энергия на АКБ поступает через VD2(смотрите по схеме), и идет полноценный заряд.

Конструкция собрана прямо на радиаторе, полунавесным монтажом,если монтаж правильный,- работает без проблем. В некоторых случаях для запуска блокин-генератора возможно уменьшение сопротивления R1 до 500 Ом, трансформатор - феритовое кольцо диаметром 45мм, сечение 8мм на 8мм (можно намотать на строчном трансе от старого телека), намотан проводом 1мм,сначала мотал 60 витков,а сверху равномерно намотал 21 виток

Контролёр заряда тоже использовал самодельный, схема простая, слепил как всегда с того, что было под рукой, нагрузкой служит два витка нихромового провода (при заряженном АКБ и сильном ветре нагревается до красна) Все транзисторы ставил на радиаторы (с запасом), хотя VT1 и VT2 практически не греются, а вот VT3 на радиатор ставить обязательно! (при продолжительном срабатывании контролёра VT3 греется прилично)

фото готового контролёра


простая схемка

Схема подключения ветряка к нагрузке выглядит так


Вид сзади

Нагрузкой у меня как и планировалось, является свет в туалете и летнем душе + уличное освещение (4 светодиодные лампы которые включаются автоматически через фотореле и освещают двор целую ночь,с восходом солнца опять срабатывает фотореле которое отключает освещение и идет заряд АКБ.И это на убитой АКБ (в прошлом году снял с авто)

на фото снято защитное стекло (в верху фотодатчик)

Фотореле купил готовое для сети 220V и переделал на питание от 12V(перемкнул входной конденсатор и последовательно стабилитрону подпаял резистор в 1К)



Теперь самое ГЛАВНОЕ!!!

С своего опыта, советовал для начала сделать небольшой ветрячок, набратся опыта и знаний и понаблюдать что можно поиметь с ветров вашей местности,Ведь можно потратить кучу денег, сделать мощный ветряк,а силы ветра не хватит чтобы получать теже 50 ватт и будет ваш ветряк типа подводной лодки в гараже. Здесь ЛУЧШЕ СИНИЦА В РУКАХ ЧЕМ ДЯТЕЛ В ЖО-Е!!!


Простейший анемометр.Квадрат сторона 12см на 12см,на нитке 25см привязан тенисный шарик.


Я сделал вот такой анемометр


Многие читатели часто задают вопрос,а сколько выдаёт такой гена?

Пришлось для наглядности сделать небольшое видео

Мы никогда незадумываемся насколько сильным бывает даже маленький ветерок,но стоит посмотреоть с какой скоростью иногда раскручивается турбина и сразу понимаеш какая это мощь

Ветер, ветер ты могуч...(фото со двора)


Процес модернизации ветряка закончен, так он выглядит на даном этапе.На видео его рабочий режим (снимал фотокамерой, поэтому видна дискретность винта, насамом деле он крутится как подорваный). На очень малых ветрах работает БЛОКИНГ ГЕНЕРАТОР.

Начало подьёма на ветер


А здесь уже на ветру

Все расчеты ветрогенератора (спасибо Николаю), можно увидеть здесь

Вот сайты, по которым можно отыскать много интересного

Не ленитесь в эти сайты заглянуть!!!

Для Харьковчан и не только

Всем удачи!!!

Буду рад если хоть немножко комуто помог,все вопросы на стену или email

Для всех кто дочитал эту статью, предлагаю экскурс в еще одну удачно повторяемую конструкцию

Давненько я не возвращался к этой статье, с момента написания этой статьи прошло более двух лет, за это время конструкция была повторена много раз, это я могу судить, по отзывам, пришедшим по электронной почте. Многие повторяли конструкцию один в один с моим вариантом, но те кто ко мне обращался за помощью, я советовал делать только трёхфазный вариант, и результат был намного выше.

С разрешения Михальчук Алексея Викторовича выкладываю одну с достойных повторений, конструкцию трёхфазного генератора.

До знакомства со мной Алексей практически все заготовил для повторения моей конструкции, впоследствии менять практически ничего не стали, за исключением я убедил делать генератор трехфазным. На удивление Алексея генератор получился довольно не плохим, довольно шустро заряжал АКБ,но так как конструкция была временной (Алексей до последнего не верил в успех), то впоследствии этот генератор был демонтирован, было принято решение добавить магнитных полюсов, и более надежно сделать конструкцию. Впоследствии родился 16-ти полюсный аксиальный генератор, могу сказать, что он превзошел все ожидания, даже мои.

Не буду повторяться в описании. Просто в вкратце некоторые данные

12 катушек провод 1.18 ушло 1.5 кг по 75 витков на катушку.
Толщина катушки равна толщине магнита - 8мм
Внутренний диаметр катушек равен диаметру магнитов -25 мм
Магниты 16 пар 25*8
Диски стальные толщина 10 мм диаметр 25см
Лопасти с алюминиевой трубы диаметром 300 мм
Толщина метала 4мм длина лопастей -1м

Такой генератор без проблем выдает более 500 ватт!

Некоторые моменты изготовления генератора смотрим на фото














В процессе эксплуатации этого генератора был выявлен существенный недостаток в конструкции, Алексей пренебрег защитой от ураганных ветров, поэтому были разрушены лопасти. Для всех кто повторят конструкцию с ВЕТРОМ ШУТИТЬ НЕЛЬЗЯ,необходимо делать защиту от ураганных ветров, выйдет дешевле чем каждый раз менять лопасти.

В данный момент Алексей исправил недоделки, и ветряк приносит ему существенную помощь

Вот Алексей подкинул еще несколько фоток после модерницазии ветряка


и небольшое видео

слева ветрогенератор с асинхронника, справа генератор тот что в описании.Ну, вот пока и все, пилите гири, Господа, они золотые!

Для Харьковчан и не только

Вот и я решил выложить фотографии своего небольшого ветрогенератора. Данный ветряк я построил не преследуя ни каких особых целей в плане обеспечения себя электроэнергией, а просто для проверки возможностей вообще ветрогенераторов и в частности генераторов таких конфигураций на постоянных магнитах. Для своего генератора я заказал маленькие необходимые магниты, так как они очень мощные и позволяют делать генераторы с безжелезными статорами. Фотографирова все этапы в обратном порядке при демонтаже ветряка.

Задумка о построении ветрогенератора мне уже долго не давала покоя, но до дела всё как-то не доходило, то не было времени, то переезды, то ещё что. Сейчас проживаю в частном доме, имею участок земли для сада и города. С востока и юга открытая местность, но с севера и запада ветровые потоки закрывают небольшие возвышенности. Хоть ветра и не балуют, но дуют постоянно, и я подумал — всё-таки надо отвести душу и наконец воплотить мечту в жизнь.

Но когда дело дошло до практики оказалось все не так просто, во первых было очень мало информации о ветрогенераторах, книги дали более глубокое представление в генераторах и ответы на некоторые вопросы, но появились новые вопросы и проблемы на практике. Самое главное в ветряке это генератор, вот с его выбором я никак не мог определиться, первое, что приходило в голову это использовать автогенератор, но он не рассчитан под низкие обороты и на него надо было придумывать редуктор, а это влекло за собой сильное увеличение веса и размеров ветроустановки.

Так-же нужно было из чего то сделать лопастя и рассчитать из профиль и размеры, чтобы они могли хорошо работать и при этом быть прочными и немного весить. Да и защита от сильного ветра тоже нужна. Но надо было начинать, начал самого лёгкого, с мачты, а по ней всё остальное.

Для экономии трубы на мачту набрал в местном пункте здаче чермета, а в замен отдавал свой ненужный металлолом.Подбирал небольшие куски труб, начиная с диаметра 325 мм длинной примерно по 1,5 м,чтобы помещалась в багажнике моей машины. Из этих труб сварил мачту длинной 12м.. Для фундамента раздобыл бракованный фундаментный блок от высоковольтной опоры. Для него выкопал двухметровую яму и опустил блок, блок длинной 3 мета, таким образом на поверхности остался один метр, который и будет основой мачты.Закопал опору и утрамбовал грунт. Для крепления мачты надо было как-то закрепить кранштейны, для них я сварил обрамление из уголков на блоке.

На концы кронштейнов к анкерным болтам приварил пластинки из 16мм железа размером 50 х 50 см, соединенных между собой мощными петлями. Купил на рынке мягкие 10 мм тросы и талрепы, все анодированное, не ржавеет. Сварил и закопал анкер под съемную лебедку. Лебедку тоже пришлось делать самодельную, используя готовый червячный редуктор. Кроме того, установил П-образную подпорку высотой около 2м, на которую должна ложиться мачта. Так как спешить было некуда – мачта делалась без спешки и поэтому получилась, на мой взгляд, красивая и

И тут Бог, видя мои труды, благословил меня выйти на форум http://forum.ixbt.com/topic.cgi?id=48:4219-74#1829. Я его весь перечитал, зарегистрировался, и стал набираться опыта. Начал переделывать автогенератор, а когда перевел с английского «заморские» сайты (Хью Пигота и др.) по построению торцевых генераторов без железа в катушках, очень захотелось попробовать и самому это сделать, хотя бы в миниатюре. Решил построить действующую уменьшенную модель, чтобы выдавала до 1 ампера на 12-вольтовый аккумулятор.

Для изготовления ротора купил в Знаменке на предприятии «Акустика» http://akustika-ag.de/cgi-bin/p.cgi?a 24 шт. дисковых неодимовых магнита 20*5 мм. Нашел ступицу от колеса мотоблока, токарь по моим чертежам выточил два стальных диска диаметром по 105мм и толщиной 5мм, распорную втулку толщиной 15мм и вал. На диски наклеил и до половины залил эпоксидкой магниты по 12 шт на каждый, чередуя их полярность.

Ниже представлена фотосессия моего ветрячка.


Для изготовления статора намотал 12 катушек эмальпроволокой диаметром 0,5мм по 60 витков на катушку (взял проволоку с петли размагничивания старого негодного цветного кинескопа, там его достаточно). Распаял катушки последовательно конец с концом, начало с началом и т.д. Получилась одна фаза (боялся, что будет маловато напряжения). Выпилил из 4 мм фанеры форму, натер ее воском.

Жаль, вся форма в сборе не сохранилась. На нижнее основание положил вощеную бумагу (спер в жены на кухне, она выпечку на ней делает), на нее наложил форму с круглячком в центре. Потом вырезал со стеклоткани два кружка. Один постелил на вощеную бумагу нижнего основания формы. На него выложил распаянные между собой катушки. Выводы из многожильного изолированного провода проложил в выпиленные ножовкой неглубокие пазы.

Залил все это эпоксидкой. Подождал около часа, чтобы пузырьки воздуха все вышли, и эпоксидка разлилась равномерно по всей форме и пропитала катушки, долил, где надо, и накрыл вторым кружком стеклоткани. Сверху положил второй лист вощеной бумаги и прижал верхним основанием (куском ДСП). Главное, чтобы оба основания были строго плоскими. Утром разъединил форму и извлек красивый прозрачный статор толщиной 4мм.

Жаль, что для более мощного ветряка эпоксидка не годится, т.к. боится высокой температуры.

В ступицу вставил 2 подшипника, в них вал со шпонкой, на вал первый диск ротора с наклеенными и залитыми до половины эпоксидкой магнитами, потом распорную втулку толщиной 15мм. Толщина статора с залитыми катушками 4мм, толщина магнитов 5мм, итого 5+4+5=14мм. На дисках ротора оставлены бортики на краях по 0,5мм чтобы упирались магниты при центробежной силе (на всякий случай). Поэтому отнимем 1мм. Осталось 13мм. На зазоры остается по 1мм. Поэтому распорка 15мм.

Потом статор (прозрачный диск с катушками), который крепится к ступице тремя медными 5 мм болтами, их видно на фото. После ставится второй диск ротора, который упирается в распорную втулку. Нужно остерегаться, чтобы палец не попал под магниты – очень больно защемляют. (Противоположные магниты на дисках должны иметь разную полярность, т.е. притягиваться.)

Зазоры между магнитами и статором регулируются медными гайками, размещенными на медных болтах по обе стороны ступицы. На оставшуюся выступающую часть вала со шпонкой одевается пропеллер, который через шайбу (а если нужно то и втулку) и гровер прижимается гайкой к ротору. Гайку желательно закрыть обтекателем (я его так и не сделал). Зато сделал крышу-козырек над ротором и статором, распилив алюминиевую кастрюльку так, чтобы захватить часть донышка и часть боковой стенки.

Пропеллер изготовил из метрового куска дюралевой поливной трубы диаметром 220 мм с толщиной стенки 2,5мм. На ней нарисовал двухлопастный пропеллер и выпилил электролобзиком. (Из этого же куска я еще выпилил три лопасти длиной по 1м для ветряка на автогенераторе, и еще как видите осталось). Переднюю кромку лопастей я заокруглил «на глаз» радиусом, равным половине толщины дюрали, а зднюю заострил с фаской приблизительно 1см на концах и до 3см к центру.

В центре пропеллера сначала просверлил отверстие 1мм сверлом для балансировки. Балансировать можно прямо на сверле, положив дрель на стол, или подвесить на нить к потолку. Балансировать нужно очень тщательно. Я отдельно балансировал диски ротора и отдельно пропеллер. Ведь обороты доходят до 1500 об/мин.

Так как магнитное залипание отсутствует, пропеллер весело вращается от малейшего ветерка, которого на земле даже не ощущаешь. При рабочем ветре развивает высокие обороты, у меня амперметр на 2А прямого включения, так он часто зашкаливает на 12 вольтовый старый автомобильный аккумулятор. Правда при этом начинает складываться и подниматься вверх хвост, т.е. срабатывает автоматическая защита от сильного ветра и чрезмерных оборотов.

Защита выполнена на основе наклонной оси вращения хвоста.
Далее о окончательной сборке ветрогенератора и мачте продолжение статьи о ветряке

Небольшие разъяснения и комментарии автора для тех,
кто самостоятельно желает изготовить низкооборотный генератор своими руками.

Если у желающего изготовить низкооборотный генератор есть финансовые средства, коллектив единомышленников, техническое оборудование, соответствующие знания и опыт, то это совсем не сложно. Однако в любом деле существует много тонкостей, которые необходимо будет знать в процессе изготовления данного генератора, так как без знаний основ конструирования и не имея соответствующего опыта, сразу изготовить хороший генератор может не получится. В данной статье я постараюсь выделить некоторые нюансы, чтобы у изготовителя было меньше ошибок. Здесь не будут затронуты генераторы или двигатели промышленного изготовления, из которых можно что-либо переделать, так как без соответствующих расчётов у вас получится только жалкое подобие низкооборотного генератора.

В качестве примера возьмём один модуль низкооборотного генератора Белашова МГБ-300-144-2.

Фиг. 1 Фиг. 2 Фиг. 3

◄|| Фотографии и технические характеристики электрических машин Белашова ||

Электрическая машина
Электрическая машина
Электрическая машина
Низкооборотная машина
Низкооборотная машина
Низкооборотная машина
Низкооборотный генератор
Низкооборотный генератор
Низкооборотный генератор
Низкооборотный генератор
Низкооборотный генератор

◄|| Фотографии электрических машин ||

Электрическая машина
Сварочный генератор
Автомобильный генератор
Низкооборотная машина
Низкооборотная машина
Низкооборотная машина
Низкооборотный генератор
Низкооборотный генератор
Низкооборотный генератор
Низкооборотный генератор
Низкооборотный генератор

◄|| Характеристики электрических машин ||

Модульный низкооборотный генератор Белашова МГБ-300-144-2, предназначен для технических устройств, которые преобразуют большой момент силы, при низких оборотах, в электрическую энергию и могут быть использованы для ветряных двигателей, ручных аварийных энергетических установок, бесплотинных гидроэлектростанций и так далее…

В данной конструкции однофазного низкооборотного генератора применено два ряда многовитковых обмоток, но внутри этого генератора можно разместить ещё два ряда многовитковых обмоток сделав его двухфазным, что увеличит мощность генератора в два раза. В зависимости от количества модулей потребитель может самостоятельно комплектовать из отдельных модулей любые параметры генератора, на необходимое напряжение, нужный ток и заданное количество оборотов.

Первый вопрос, который обычно задают покупатели, это КПД низкооборотных генераторов при этом они не знают, что данная величина является не определённой, которая зависит от многих параметров или величин и прежде всего от того как был сделан сам генератор. Приведу конкретный пример, как влияет КПД генератора, если не правильно или не качественно изготовлены многовитковые обмотки статора, так как данная деталь является очень важной и влияет на многие характеристики низкооборотного генератора.

При изготовлении многовитковых катушек статора для низкооборотного генератора необходимо учитывать, что существуют прямоугольные или круглые провода и множество типов намоток, но в данном случае мы рассмотрим только три вида намоток изображённых на Фиг.4:

Рядная намотка многовитковых обмоток поз.1

Намотка многовитковых обмоток в шахматном порядке поз.2

Намотка многовитковых обмоток в беспорядочном виде (в навал) поз.3.

Фиг. 4

Самой важной характеристикой катушки является коэффициент намотки (степень заполнения обмоточного пространства многовитковой катушки медью) - отношение площади меди катушки к площади обмоточного пространства:

Где:

W - число витков катушки,

Q - сечение провода с изоляцией, мм²

S - площадь поперечного сечения обмоточного окна, мм².

При этом необходимо учитывать, что толстым проводом произвести намотку многовитковых обмоток статора очень сложно и тем более создать её точный профиль для правильного вхождения в магнитную систему ротора. Более тонким проводом можно увеличить коэффициент намотки, а при помощи параллельного или последовательного соединения обмоток статора довести расчётное сечение провода до нужной величины. Например, в статоре однофазного низкооборотного генератора МГБ-300-144-2, расположено два ряда многовитковых обмоток, которые были намотаны в беспорядочном виде проводом имеющего диаметр 0,29 мм (так как у меня не было возможности изготовить рядную обмотку). Внешние многовитковые обмотки статора имеют по 580 витков. Внутренние обмотки статора состоят из 360 витков. В итоге получается, что статор генератора содержит 16920 витков. Значит если на каждой многовитковой обмотке (с учётом коэффициента намотки) мы не домотали хотя бы по 20 витков, то в итоге у нас получается, что мы не смогли домотать на наш статор ещё 720 витков. Если в каждом ряду статора низкооборотного генератора расположено две фазы по два ряда многовитковых обмоток, то у нас получится, что мы потеряли 1440 витков, фиг.5.

Фиг. 5

Обычно обмоточный коэффициент находится в пределах 0,5 - 0,8, но необходимо знать, что чем выше коэффициент намотки, тем будут лучше характеристики низкооборотного генератора. Он наиболее высок при шахматной намотке многовитковых обмоток самоспекаемыми эмалированными проводами. Преимущество данных эмалированных проводов является то, что они склеиваются при помощи лака под действием тепла или растворителей. После спекания образуется самонесущая намотка. Применение самоспекаемых эмалированных проводов имеет преимущество в цене и при изготовлении, так как намоточные каркасы, клейкая лента, компаунд и пропиточные материалы могут быть сэкономлены. Причём необходимо обратить особое внимание на то, что для лучшего охлаждения многовитковых обмоток самоспекающиеся эмалированные катушки статора должны плотно примыкать через теплопроводящий диэлектрик к алюминиевому корпусу низкооборотного генератора, так как для нормальной работы генератора отвод тепла от многовитковых обмоток является главной задачей, которая влияет на КПД генератора.

Производители низкооборотных генераторов для ветряных установок, мини ГЭС или переносных электростанций, должны сообщать своим покупателям все преимущества и недостатки этих машин. Покупатели должны знать некоторые важные технические характеристики генератора:

Внутреннее сопротивление многовитковых обмоток генератора не только при 20°С, но и при изменении температуры многовитковых обмоток генератора от 20°С до 80°С,

Ток короткого замыкания многовитковых обмоток генератора на заданных количествах оборотах, не только при 20°С, но и при изменении температуры многовитковых обмоток генератора от 20°С до 80°С, где участвует только r o ,

Рабочий ток генератора на заданных количествах оборотах, не только при 20°С, но и при изменении температуры многовитковых обмоток генератора от 20°С до 80°С, где участвует r o + r н ,

При изготовлении статора или ротора из стального магнитопровода, на котором установлены многовитковые обмотки, необходимо знать тормозной момент ротора генератора,

Рабочее напряжение генератора, на заданных количествах оборотах,

Напряжение холостого хода генератора (без какой-либо нагрузки),

Способ отвода тепла от многовитковых обмоток генератора.

Данные технические характеристики нужны для согласования внутреннего сопротивления многовитковых обмоток генератора с нагрузкой, так как для получения наибольшей мощности во внешней цепи сопротивление нагрузки должно быть равно внутреннему сопротивлению генератора. Например, если многовитковые обмотки генератора имеют большое внутреннее сопротивление, то данный тип генератора менее подвержен колебаниям выходного напряжения. У генератора имеющего маленькое внутреннее сопротивление, падение выходного напряжения может превышать 40%. Существуют и другие тонкости в выборе низкооборотных генераторов. Например, если измерение технических характеристик генератора производились при температуре 20°С, то при температуре 70°С вы можете недосчитаться больше половины от заявленной производителем мощности и так далее… Докажем это на конкретных примерах.

Изменение температуры статора низкооборотного генератора (как и других электрических машин) вызывает изменение сопротивления внутри многовитковых обмоток при его работе и даже в не рабочем положении тогда когда низкооборотный генератор был установлен на ветродвигателе, который расположен на Солнце.

Такое изменение сопротивления проводника от температуры, приходящееся на каждый Ом сопротивления данного проводника при изменении температуры его на 1°С, называют температурным коэффициентом «альфа» (a). Таким образом, температурный коэффициент характеризует чувствительность изменения сопротивления проводника к изменению температуры. В данном случае у нас медные обмотки, которые обладают температурным коэффициентом, а = 0,004041.

Например, зная температурный коэффициент меди, мы можем определить внутреннее сопротивление многовитковых обмоток статора, которое произошло при изменении температуры статора, который нагрелся на Солнце до 70°С.

Формула для определения температурного коэффициента выглядит так:

Где:

R 1 – сопротивление данного проводника при одной температуре – T 1 ,

R 2 – сопротивление того же проводника, но при другой температуре – T 2 ,

А – температурный коэффициент металла, из которого проводник сделан,

T 2 - конечная температура обмоток из которого проводник сделан проводник °С,

T 1 - начальная температура обмоток из которого проводник сделан проводник °С.

1.

R 2 = R 1 + R 1 ∙ a ∙ (T 2 - T 1)

R 2 = 6 Ом + 6 Ом ∙ 0,004041 ∙ (70 – 20) = 7,2738 Ом

Где:

R 1 – сопротивление многовитковых обмоток статора при 20°С = 6 Ом,

T 2 - температура статора низкооборотного генератора нагретого на Солнце до 70°С.

Определим ток низкооборотного генератора, на зажимах которого находится напряжение 12 Вольт при температуре окружающей среды = 20°С.

Определим ток низкооборотного генератора, на зажимах которого находится напряжение 12 Вольт при температуре нагретого на Солнце до 70°С.

Определим мощность низкооборотного генератора, на зажимах которого находится напряжение 12 Вольт при температуре окружающей среды = 20°С.

P = U ∙ I = 12 В ∙ 2 А = 24 Вт

Определим мощность низкооборотного генератора, на зажимах которого находится напряжение 12 Вольт при температуре нагретого на Солнце до 70°С.

P = U ∙ I = 12 В ∙ 1,6497566608925183535428524292667 А = 19,797079930710220242514229151192 Вт

Определим падения КПД не работающего, а просто нагретого на Солнце низкооборотного генератора при повышении температуры с 20°С до 70°С. Это допустимая температура для работы электромеханических устройств и агрегатов. Если мы даже гипотетически представим себе, что КПД низкооборотного генератора при 20°С была = 100% (чего не может быть в природе), то мы можем узнать, какой будет потеря мощности при увеличении температуры любых электрических машин. Хотя многие производители электрических машин стараются обходить эти щекотливые вопросы, чтобы не распугать своих покупателей.

24 Вт = 100%

Из этого следует, что низкооборотный генератор, который даже ещё не приступил к работе, но уже потерял 17,52% КПД и это будет только в том случае, если внутреннее сопротивление статора будет маленьким при низком напряжении на обмотках статора. При увеличении напряжения на зажимах генератора соответственно увеличивается внутреннее сопротивление генератора, что соответственно повлечёт за собой ещё больше потерь КПД генератора. При этом мы говорим только об активном сопротивлении многовитковых обмоток статора, не включая в расчёт реактивное сопротивление многовитковых обмоток статора, которое во много раз превышает активное сопротивление проводников. Рассмотрим конкретный пример, когда будет увеличено напряжение на зажимах генератора, которое повлечёт за собой увеличение внутреннего сопротивления многовитковых обмоток статора.

2. Определим сопротивление многовитковых обмоток статора при изменении температуры:

R 2 = R 1 + R 1 ∙ a ∙ (T 2 - T 1)

R 2 = 12 Ом + 12 Ом ∙ 0,004041 ∙ (70 – 20) = 29,0952 Ом

Где:

R 1 – сопротивление многовитковых обмоток статора при 20°С = 12 Ом,

R 2 – сопротивление многовитковых обмоток статора при 70°С,

А – температурный коэффициент меди = 0,004041

T 1 - температура статора низкооборотного генератора при 20°С,

T 2 - температура статора низкооборотного генератора нагретого на Солнце до 70°С.

Определим ток низкооборотного генератора, на зажимах которого находится напряжение 24 Вольта при температуре окружающей среды = 20°С.

Определим ток низкооборотного генератора, на зажимах которого находится напряжение 24 Вольта при температуре нагретого на Солнце до 70°С.

Определим мощность низкооборотного генератора, на зажимах которого находится напряжение 24 Вольта при температуре окружающей среды = 20°С.

P = U ∙ I = 24 В ∙ 2 А = 48 Вт

Определим мощность низкооборотного генератора, на зажимах которого находится напряжение 24 Вольта при температуре нагретого на Солнце до 70°С.

P = U ∙ I = 24 В ∙ 0,А = 19,7970799307102202425142291512 Вт

Определим падения КПД не работающего, а просто нагретого на Солнце низкооборотного генератора при повышении температуры с 20°С до 70°С.

48 Вт = 100%
19,797079930710220242514229151192 Вт = Х%

Это наглядный пример, когда низкооборотный генератор при увеличении напряжения на зажимах генератора и увеличения внутреннего сопротивления в два раза который, даже не приступая к работе, уже потерял 58,76% КПД. Как говорилось ранее, здесь даже не упоминалось о реактивном сопротивлении многовитковых обмоток статора, которое во много раз превышает активное сопротивление проводников. Потому что при начале работы генератора начинает возрастать активное и индуктивное сопротивление многовитковых обмоток статора, которые зависят от числа магнитных систем, количества многовитковых обмоток, способа их соединения и скорости вращения магнитной системы ротора. Поэтому если вам будут предлагать низкооборотный генератор, мощность которого при 220 Вольтах превышает 1000 Вт на 200 об/мин, то делайте выводы сами…

Необходимо особо подчеркнуть, что в зависимости от конструкции статора или ротора многовитковые обмотки генератора Белашова можно соединить таким образом, чтобы амплитуда сигнала переменного тока была пульсирующей.

Пульсирующий переменный ток, изображённый на фиг. 6, обладает следующими преимуществами:

Уменьшение частоты переменного тока,

Уменьшение нагрева многовитковых обмоток,

Уменьшение индуктивного сопротивления многовитковых обмоток.

Фиг. 6

Причём если обычный однофазный генератор переменного тока, который рассчитан на 120 оборотов в минуту, будет выдавать напряжение 12 В и иметь частоту сигнала переменного тока 100 Гц, то при соединении многовитковых обмоток выдающих пульсирующий сигнал переменного тока напряжение и ток останутся как у обычного однофазного генератора, но частота переменного пульсирующего тока составит 50 Гц.

На этих небольших примерах я наглядно показал, как одна величина может сильно влиять на КПД низкооборотного генератора, но при разработке генераторов или электрических машин их множество. Например, при расчёте низкооборотного генератора можно вытянуть одну величину до нормальной характеристики, а две другие могут заметно ухудшить его параметры. Поэтому желательно к каждой ветряной установке или мини ГЭС подходить индивидуально и конкретно изготавливать низкооборотный генератор с учётом температуры окружающей среды, где он будет работать на расчётную нагрузку с учётом удалённости расстояния от первичных преобразователей и так далее…

Потребители низкооборотных генераторов должны знать и другие тонкости этого процесса. Печально вам сообщить, но в мире нет, и не может быть низкооборотных генераторов. В данном случае вы имеете очень мощную машину, которая используется на 5-30% от заложенной мощности. Например, если раскрутить генератор МГБ-300-144-2, до 2000 об/мин, то мы получим 13833 Вт. Данный казус потребители начинают понимать, когда происходит момент покупки, где цена генератора не соответствует заявленной мощности, по отношению к другим электрическим машинам. Если к определению названия отнестись философски, то для богатых это будет низкооборотный генератор, а для всех остальных мощная электрическая машина.

Для того чтобы изготовить низкооборотный генератор изображённый на фиг.4 имеющего:

Хорошее охлаждение,

Модульную конструкцию,

Высокую степень надежности,

Надежное сопротивление изоляции,

Небольшие габариты и небольшой вес,

Генератор, который может легко регулироваться по току и напряжению,

Генератор, который может быть изготовлен от нескольких Вт, до сотен кВт,

Диэлектрический статор, генератора который не имеет потерь на гистерезис,

Диэлектрический статор, генератора который не имеет потерь на вихревые токи,

Генератор, который может автоматически определять напряжение поступающего сигнала,

Генератор, диэлектрический статор которого не имеет потерь на реактивное сопротивление якоря,

Генератор, имеющий систему слежения и регулирования, которая способна автоматически изменять параметры машины,

Электрическую машину постоянного тока, которая способна работать от одного или нескольких независимых источников различного напряжения и тока, а в южных странах от энергии солнечных батарей.

При изготовлении низкооборотного генератора необходимо добиться того чтобы ветряная установка или мини ГЭС должна сама в процессе работы могла менять конструктивную величину генератора коммутируя многовитковые обмотки статора или отдельных модулей таким образом чтобы получить от установки максимальную мощность вырабатываемого сигнала.

Чтобы изготовить качественный низкооборотный генератор необходимо от заказчика получить техническое задание на его разработку, которое поможет определить для каких целей будет использован данный генератор. Например, нам нужен низкооборотный генератор для ветроэнергетической установки максимальной мощностью 800 Вт при 400 об/мин, а для этого необходимо знать.

Примерное техническое задание на разработку низкооборотного генератора МГБ-300-144-2.

1. Назначение. Низкооборотный генератор предназначен для ветроэнергетической установки в отдельном индивидуальном доме или отдаленном поселении, который расположен вдали от центральной электросети.

2. Область применения. Обеспечение местного электроосвещения, для питания электробытовой техники, радиостанций, телевизоров, радиоприемников, холодильников и других маломощных бытовых потребителей до (500 - 800) Вт.

3. Технические характеристики и требования к генератору.

3.1. Мощность генератора при 400 об/мин - 800 Вт.

3.2. Мощность генератора при 300 об/мин - 500 Вт.

3.7. Ток короткого замыкания при 50 об/мин - 1,46 А.

3.8. Частота переменного тока при 500 об/мин - 100 Гц.

3.9. Частота переменного тока при 300 об/мин - 60 Гц.

3.11. Число фаз генератора - одна.

3.12. Возбуждение - магнитоэлектрическое. Материал магнитов Нм30Ди5к8рт с остаточной магнитной индукцией Br - 1,25 Тл.

3.13. Температура окружающей среды от - 40°С до + 60°С.

3.14. Начальный момент вращения винта не более - 0,02 кг∙м.

3.15. Габаритные размеры генератора:

3.16. Наружный диаметр корпуса - 320 мм.

3.17. Длина корпуса без вала - 130 мм.

3.18. Длина генератора с валом - 220 мм.

3.19. Масса генератора не более (уточняется).

3.20. Отвод напряжения из генератора через разъем (тип разъема и место его установки уточняется).

3.21. Система автоматического слежения и регулирования за изменениями конструктивной величины генератора (тип системы уточняется).

3.22. Конструктивное исполнение генератора:

3.23. Генератор сборно-разборный. Состоит генератор из корпуса, в котором размещены четыре идентичных съёмных модуля и один съёмный вал.

3.24. Конструкция идентичных модулей допускает использование их, как для первой, так и для второй фазы.

3.25. Корпус генератора выполнен в закрытом исполнении.

3.26. Количество многовитковых катушек статора - 36 шт.

3.27. Максимальное напряжение на одной катушке статора при 600 об/мин. - 13 В.

3.28. Естественный способ охлаждения - IC 0041 ГОСТ 20459-87.

3.29. Исполнение морское - тропическое, по степени защиты - IR 44 ГОСТ 17494 - 87.

3.30. Изоляция проводящих ток частей генератора - класса "В".

3.31. Режим работы генератора - длительный (S1).

3.32. По всем требованиям генератор должен соответствовать ГОСТ 183 - 74.

3.33. При расчете и конструировании генератора все технические характеристики и параметры машины могут отличаться от технического задания на 5 - 10%.

3.34. Отдельные пункты ТЗ могут уточняться и дополняться при взаимном соглашении сторон.

Однако для того чтобы составить техническое задание на разработку низкооборотного генератора необходимо прежде всего выбрать тип ветряного двигателя, сделать его предварительный расчёт и определить:

Тип ветряного двигателя,

Диаметр колеса ветряного двигателя,

Среднюю годовую скорость воздушного потока,

На какую мощность рассчитан ветряной двигатель,

Коэффициент использования энергии ветра ветряным двигателем,

Вращающие моменты различных типов ветряных двигателей и так далее…

Для того чтобы использовать воздушный поток ветряного двигателя в полной мере необходимо исходить из того что материальная точка основания винта каждой лопасти, в зависимости от длины окружности винтов ветряного двигателя должна проходить расстояние равное скорости ветряного потока.

Например, вычислим количество оборотов низкооборотного генератора при использовании ветряного двигателя имеющего:

Диаметр винта 2 м,

Скорость воздушного потока = 6 м/с.

Из таблицы, размещённой в Патенте Российской Федерации определим максимальную мощность воздушного потока при 6 м/с, которая = 836,54 Вт.

Фиг. 7

Определим длину окружности вокруг винтов ветряного двигателя, которая вычисляется по формуле:

L = П ∙ D
L = 2 м ∙ 3,1415926535897932384626433832795 = 6,283185307179586476925286766559 м

Где:

L – длина окружности,

D – диаметр круга = 2 м,

П – отношение длины окружности к диметру круга = 3,1415926535897932384626433832795.

Определим время, за которое проходит каждая лопасть ветряного двигателя вокруг своей оси при скорости ветра 6 м/с.

6 м/с: 6,283185307179586476925286766559 м = 0,с

Определим максимальное количество оборотов ветряного двигателя за одну минуту, при скорости ветра 6 м/с зная, что 1 мин содержит 60 сек.

0,954929658551372014613302580235 об/с = 1 сек
Х об = 60 сек

Определим мощность ветряной установки, если при помощи низкооборотного генератора установить нагрузку на лопасти ветряного двигателя 30% от максимальной мощности воздушного потока.

836,54 Вт = 100%
Х Вт = 30%

Определим количество оборотов низкооборотного генератора, которое изменится при нагрузке ветряного двигателя на 30% от максимальной мощности ветряного потока.

836,54 Вт = 57,295779513082320876798154814 об/мин
250,962 Вт = Х об/мин

Для того чтобы на скорости 17,18873 об/мин получить мощность 250,962 Вт необходимо установить в низкооборотном генераторе Белашова необходимое количество модулей.

Из технических характеристик видно, что при 50 об/мин один модуль низкооборотного генератора выдаёт 17 Вт мощности.

Определим мощность низкооборотного генератора при 17,188733853924696263038846444 об/мин.

50 об/мин = 17 Вт
17,188733853924696263038846 об/мин = Х Вт

Определим количество модулей, которые при 17,18873385 об/мин могут обеспечить мощность от низкооборотного генератора = 17 Вт.

5,84416951 Вт = 1 модуль
17 Вт = Х модулей

Из предварительных расчётов видно, что для выработки мощности 17 Вт при 17,18873385 об/мин нам необходимо 3 модуля.

В данном примере предварительного расчёта ветряного двигателя не указан:

Тип ветряного двигателя,

Количество лопастей ветряного двигателя,

Масса лопастей ветряного двигателя и их форма,

Коэффициент использования винта на заявленной скорости вращения ветряного колеса,

Потери ветряного двигателя и многое другое…

Полный расчёт ветряных двигателей смотрите в Патенте Российской Федерации

В настоящее время нет производителей, выпускающих своими силами полный комплект оборудования к ветряным установкам или мини ГЭС, которые будут привязаны к реальной местности и конкретным условиям. Эти компании покупают готовые комплектующие у разных производителей, комплектуют готовый продукт и продают потребителям. Даже если ветряной двигатель будет очень хорошим, но он может не подходить для конкретной местности или данных климатических условий. С низкооборотными генераторами Белашова дело обстоит лучше, так как из отдельных модулей можно комплектовать любые параметры генератора на любое напряжение, ток и количество оборотов, где в процессе работы можно изменять конструктивную величину генератора. В производстве они гораздо экономичнее, так как из набора одинаковых модулей можно предложить потребителям различные параметры низкооборотного генератора.

После этого с учётом полученного технического задания необходимо произвести тщательный расчёт и разработку каждой детали низкооборотного генератора:

Статор с многовитковыми обмотками (с учётом изменения температуры многовитковых обмоток),

Количество многовитковых обмоток статора и электрическую схему их соединения,

Форму многовитковых обмоток статора и способ отвода от них тепла,

Форму магнитов и магнитопроводов магнитной системы ротора,

Устройство сведения магнитных систем ротора,

Корпус генератора,

Вал генератора,

К большому сожалению, у меня не было единомышленников и кроме изобретений все расчёты, разработки, конструирование, изготовление генераторов и других электрических машин мне приходилось делать самому.

По моему мнению, вся малая энергетика развивается не в том направлении. Основным стратегическим заблуждением является, то, что любые ветряные установки или мини ГЭС не должны на месте производить готовый продукт, а именно то напряжение и ту мощность, которую заявляет потребитель. Сама альтернативная энергетика должна на первичных пунктах получать как можно больше энергии любого типа и далее без лишних потерь передаваться потребителю, где электрический сигнал должен быть на месте преобразован в готовый продукт, который будет использован потребителем. Сейчас на месте получают готовый продукт и с большими потерями гонят его к потребителю.

Как видим из предыдущих примеров это не правильный подход к разработке низкооборотных генераторов, ветряных установок и мини ГЭС. Для того чтобы грамотно поставить ветряную установку или мини ГЭС необходимо начать с тщательного обследования места установки, а далее сделать капитальный расчёт всех узлов и комплектующих, тогда и получится, то о чём вы думали.

В заключении можно сказать, что малая ветроэнергетика и малая гидроэнергетика во многом дискредитирована в глазах потребителей на фоне не добросовестных производителей и слабо разбирающихся в технике менеджеров. Многие производители обещают большие прибыли, которые могут исходить от альтернативной энергетики, но забывают сказать о тех проблемах, которые могут ожидать потребителей этих генерирующих установок.


Видеофильм демонстрирующий работу кассетно-модульного низкооборотного генератора МГБ-205-72-1.

В этом видеофильме в качестве нагрузки использована лампа накаливания мощностью 40 Ватт при напряжении 12 Вольт.

Кассетно-модульный низкооборотного генератор МГБ-205-72-1 был продемонстрирован на шестой международной выставке электротехнических изделий и новых технологий «Электро - 96» проходившей с 2 по 6 июля 1996 года в «Экспоцентре» Российской Федерации города Москвы.

Необходимо особо подчеркнуть, что после истечения определённого количества времени или длительной непрерывной работы магнитная система низкооборотного генератора, состоящая из постоянных магнитов, начинает ослабевать и крошиться. Если при вращении 45 об/мин кассетно-модульный низкооборотный генератор Белашова МГБ-205-72-1 в 1996 году показывал яркое горение лампы накаливания мощностью 60 Ватт при напряжении 12 Вольт, то в 2019 году он с трудом осиливает лампочку 40 Вт. Некоторые производители магнитов давали гарантии на выпускаемые ими постоянные магниты 20 лет, что практически подтверждает их обязательства.


Видеофильм демонстрирующий работу одного модуля низкооборотного генератора Белашова МГБ-300-84-2.


Видеофильм демонстрирующий работу одного модуля низкооборотного генератора Белашова МГБ-340-84-1.

В этом видеофильме в качестве нагрузки использована лампа накаливания мощностью 60 Ватт при напряжении 12 Вольт.


Видеофильм демонстрирующий зарядку аккумулятора от низкооборотного генератора Белашова МГБ-340-84.

В качестве нагрузки использован 12 Вольтовый аккумулятор. Низкооборотный генератор Белашова МГБ-340-84-1 при 30-40 об/мин даёт зарядный ток не менее одного Ампера.


Видеофильм о механизме образования магнита и магнитной системы из атомов магнитного материала.

Видеофильм посвящён механизму образования магнита и магнитной системы из атомов магнитного материала.


Видеофильм о первой в мире дисковой электрической машине Белашова МДЭМБ-01.

Первая в мире дисковая электрическая машина Белашова МДЭМБ-01 у которой одна или множество многовитковых обмоток дискового диэлектрического ротора, не меняя направление тока в проводниках, проходят сквозь один или множество постоянных подковообразных магнитов. Магниты полюсов системы возбуждения статора, которые расположены в одном ряду, могут иметь разное направление движения магнитных потоков. Дисковая диэлектрическая машина Белашова МДЭМБ-01 была показана на первом канале центрального телевидения в 1993 году.

Здравствуйте, мне часто пишут по поводу того как лучше делать аксиальный дисковый генератор, сколько магнитов должно быть и сколько катушек. Спрашивают каким проводом нужно мотать катушки, и по сколько витков. Спрашивают про соотношение магнитов к катушкам, и про то как соединять катушки между собой. Вот на эти вопросы я постараюсь ответить сопровождая их рисунками...

Общие правила построения аксиального генератора

1.Расстояние между магнитов по кругу на дисках должно быть равно их ширине, но чем плотнее тем лучше, идеально если магниты будут почти вплотную друг к другу. Ниже я более подробно описал, если не можете определится делайте расстояние равным ширине магнитов, работать будет как у всех.
2. Круглые магниты, квадратные, или прямоугольные, по сути не важно, это потом отразится на форме катушек. Для первого варианта проще круглые магниты и катушки.
3.Толщина дисков должна быть равна толщине магнитов, или немного тоньше.
4.Количество витков в катушках для 12V АКБ по 60 витков, для 24V ВКБ по 90 витков.
5.Толщина статора по толщине магнитов.
6.Соотношение катушек к магнитам 4:3, на 9 катушек 12 магнитов, на 12 катушек 16 магнитов.
Однофазные генераторы не делают потому что будет сильная вибрация генератора при работе.

Магниты должны быть толщиной не менее 10 мм, можно правда и тоньше, но тогда придётся делать тонкий статор, вообще статор должен быть примерно равен толщине магнитов. Форма магнитов, круглые они, квадратные, или прямоугольные, не особо важна, потом это повлияет на форму катушек, будут ли они ровно круглые, треугольной вытянутой формы. Для крупных и мощных генераторов от 1.5кВт магниты можно ставить толщиной 15-20 мм, и делать более толстый и прочный статор толщиной 15-20 мм.

Обычно расстояние между магнитов делают равным их ширине, но чем больше площадь заполнения магнитами дисков по кругу тем лучше. Расстояние между магнитов чем плотнее тем лучше. Но если делать расстояние между магнитов равным ширине самих магнитов, или в половину ширины магнитов то тоже будет работать нормально. Из-за увеличения диаметра дисков увеличивается скорость магнитов за оборот, и напряжение катушек увеличивается пропорционально росту скорости движения магнитов.

Но работают те витки катушек, которые попадают под магниты, поэтому чем реже магниты на диске тем меньше витков катушек принимают участие в работе, и здесь выигрыш только в диаметре, но большой чес получается и много меди уходит. если расположить магниты близко друг другу то диаметр дисков становится меньше, витков в работе больше, а меди меньше. Так в общем эффективнее.

Обычно делаю расстояние между магнитов равное их ширине, но те кто делал расположение магнитов плотнее, и даже вплотную при меньших диаметра и размеров генераторов получали тот же результат. Как делать тут уже решать вам.

Для схемы 9 катушек на 12 магнитов подойдут круглые магниты, и их лучше размещать на диске почти вплотную друг к другу. Внутренний диаметр круглых катушек можно делать меньше диаметра магнита.

Для 12 катушек на 16 магнитов также можно делать круглые катушки и ставить круглые или лучше квадратные магниты. Расстояние между магнитов чем плотнее тем лучше. А так в зависимости от размеров можно сделать расстояние около 5-10 мм между магнитами, если квадратные то в самом узком месте должно быть такое расстояние.

Для 18 катушек на 12 магнитов лучше использовать прямоугольные магниты с расстоянием равным их ширине. При этом внутренняя дырка катушки должна быть почти равна размерам магнита. Если 24 магнита ставить на дисках то расстояние между магнитами будет вплотную.

Ниже рисунок для сравнения насколько перекрываются катушки магнитами если магниты ставить почти вплотную и с расстоянием между магнитами равным их ширине.

>

Так.же вариант перекрытия магнитами статора на 18 катушек и 12 катушек.

>

Соединяются катушки фазы так: Начало первой катушки это начало фазы. Конец первой катушки соединяется с началом второй. Конец второй с началом третьей. Конец третьей на выход если у вас по три катушки на фазу это конец фазы. Вторая и третья фаза соединяется также как и первая. Всего на выходе должно быть шесть проводов, по два повода с каждой фазы. Далее уже можно соединить звездой, для этого три конца фаз или три начала фаз соединяются в одну точку, а три свободные конца уже на трёхфазный диодный мост. Ниже рисунок соединения одной фазы.

>

Лучше не соединять фазы генератора сразу звездой, а вывести из статора все концы фаз, чтобы потом можно было соединять по разному. Может быть так что с вашим винтом генератор будет лучше работать при параллельном соединении фаз.

По конструкции самого генератора есть два варианта

Первый вариант самый распространённый, диски здесь крутятся на валу, а статор больше по диаметру, и крепится шпильками с внешней стороны, тесть по внешнему диаметру. Обычно для изготовления за основу берут автомобильную ступицу и на её основе строят генератор. Второй вариант это когда статор крепится по внутреннему диаметру за неподвижный вал. А диск с подшипником надевается на этот вал, и с обратной стороны к нему притягивается второй диск.

В наш век компьютерной техники и высоких технологий, многие стали задумываться об альтернативных источниках энергии — ведь богатства земных недр не безграничны. Идея использования энергии движения воздушных масс в качестве такого источника далеко не нова, но только в наше время начинает приобретать более очевидные (с точки зрения практического использования) очертания. Теперь, благодаря применению новых технологий и конструкционных материалов, стало возможным даже приобретение (или изготовление) таких установок для использования частными лицами — на ветроагрегат, установленный для дома на территории соседнего дачного участка уже не приходят глазеть толпы зевак — такое зрелище начинает становится почти обыденным.

Кардинально поменялись некоторые узлы и агрегаты ветроустановок. Если раньше генератор ветряка представлял из себя стандартную конструкцию со щеточными или кольцевыми токосъемниками, которые довольно изрядно шумели при работе (так что установка такого агрегата в жилом секторе считалась невозможной), то сейчас, с появлением сверхмощных неодимовых магнитов,

которые теряют за 10 лет лишь около 1 процента своей мощности, стало возможным изготовление одно- или трехфазных генераторов работающих почти бесшумно и при минимальных ветровых нагрузках (0,5-2,5 м/c). Появились и серьезные новации в области конструктива ветроколеса. Если раньше повсемесно применялась конструкция ветрогенератора с параллельным (по отношению к Земле) расположением оси вращения,

то сейчас все большую популярность приобретают конструкции с применением аксиального вертикального ветряка.

Применение такой конструкции обусловлено несколькими факторами: лопасти ветроколеса с горизонтальной осью вращения, направленные в сторону воздушного потока и рассекая его, создают высокий уровень шума (порядка 70, а в некоторых случаях и более децибел); для »запуска» генератора, оснащенного таким ветроколесом, требуется достаточно сильный воздушный поток — порядка 8-10 м/с (попробуйте отыскать район на планете, где ветер постоянно дул бы с такой скоростью!), как следствие — применение высоченных мачт для расположения таких конструкций; для установки ветроколеса »по ветру» требуется применение специальных »рулевых» механизмов; кроме этого необходима система торможения на случай сильного ветра. Всех этих недостатков лишена конструкция аксиального ветрогенератора с вертикальной осью вращения (см.фото). Конструкцию не нужно поднимать высоко над землей — достаточно 1-4 метров (для генератора мощностью 1,5 кВт); высота лопасти ветроколеса равна примерно 1 метру (против 3-х для генератора такой же мощности, но с горизонтальным расположением оси винта); для вращения такого агрегата, при котором он способен отдавать в нагрузку достаточную мощность, хватает легкого ветерка (1,5 м/c). Все эти факторы являются надежной предпосылкой к покупке или самостоятельному изготовлению для дома таких ветроагрегатов.

Полученную энергию легко применять для бытовых целей напрямую (с помощью инвертора) и запасать (аккумуляторы). Мощность (количество) ветроагрегатов и аккумуляторов можно высчитать по простым формулам: Wобщая = Wнагрузки * (1,3 или 1,5) — эта величина зависит от »ветроресурсов» вашего района.Количество требуемых батарей тоже можно примерно расчитать, помножив необходимую вам мощность (W) потребления в сутки на количество безветренных дней. Кроме этого, в практике самодельщиков появились схемы отопления жилища с применением ветрогенераторов, где нагрузкой являются низковольтные нагреватели (ТЭНы) погруженные в энергоемкий теплоноситель. Целесообразным считается и применение гибридных схем альтернативного энергоснабжения, с совмесным применением ветрогенераторов и солнечных батарей — смотрите нашу статью-анонс »Солнечные батареи ». В заключении хочется привести небольшое но очень важное замечание: при самостоятельном изготовлении ветрогенераторов, соблюдайте правила безопасности при работе с мощными неодимовыми магнитами — испорченный телевизор, деформированная дверца холодильника или вашей любимой машины еще не самое страшное. Гораздо страшнее раздробленные кости пальцев, зажатые между двумя магнитами или пробитые острыми металлическими инструментами руки — не очень приятно, когда лежащий на верстаке нож вдруг взлетает и с расстояния в пол-метра втыкается вам в руку, в которой находится магнит. Не нагревайте и не применяйте сильных ударных нагрузок к магнитам — нагревание (в результате обработки) приводит к потери магнитных свойств, а сильное нагревание приводит к воспламенению с выделением ядовитых веществ. Что, напугали мы вас? Не печальтесь — соблюдение всех вышеизложенных правил позволит вам избежать травм и порчи имущества, а изготовленный для дома агрегат будет радовать своей безотказной работой! Автор статьи: Электродыч.