Принцип работы винтового насоса. Винтовой насос Недостатки винтовых насосов

Погружные винтовые электронасосные агрегаты ЭВН5 всех типоразмеров изготавливаются по одной и той же конструктивной схеме с двумя рабочими органами, соединенными параллельно, что обеспечивает:

  • - удвоение подачи при одном и том же поперечном габарите;
  • - рабочие органы (винтовые пары) гидравлически взаимно уравновешенны, что исключает передачу значительных осевых сил на опорные подшипники насоса и пяту электродвигателя.

Погружной винтовой электронасосный агрегат ЭВН5 (рисунок 5) состоит из следующий элементов: пусковая кулачковая муфта центробежного действия, основание с приводным валом, сетчатые фильтры, установленные на приеме насоса, рабочие органы с правыми и левыми обоймами и винтами, две эксцентриковые шарнирные муфты, предохранительный клапан и шламовая труба.

При работе агрегата, крутящий момент от электродвигателя через вал протектора гидрозащиты, пусковую муфту и эксцентриковые муфты насоса передается рабочим винтам. По принципу действия насосы относят к объемным, а по способу передачи энергии жидкости к ротационным. Основными рабочими органами являются однозаходные геликсоидальные роторы с правым и левым направлением спирали и две резиново-металлические обоймы, внутренняя полость которых представляет собой двухзаходную винтовую поверхность с шагом в 2 раза большим, чем шаг винта, выполненную из маслобензиностойкой резины или другого эластомера.

Принцип действия насоса заключается в том, что между винтом и обоймой по всей длине образуется ряд замкнутых полостей, которые при вращении винта заполняются перекачиваемой жидкостью, перемещаемой от приема насоса к его выкиду. Винты вращаются вокруг своей оси и по окружности с радиусом равным эксцентриситету.

Жидкость поступает одновременно в левый и правый органы насоса через приемные сетки-фильтры. В камере между винтами потоки соединяются, и следуя дальше по кольцевому каналу между корпусом насоса и верхней обоймы, жидкость через предохранительный клапан поступает в напорную линию.

Пластовая жидкость перекачивается практически без пульсации, не создавая стойкой эмульсии из нефти и воды. Подача насоса равна сумме подач рабочих пар, а напор насоса - напору каждой рабочей пары.

Все основные узлы и детали диафрагментных насосов унифицированы и применяются, за некоторым исключением, во всех насосных агрегатов.

В винтовых насосах типа ЭВН5 имеется ряд специфических деталей: пусковая кулачковая муфта, эксцентриковые шарнирные муфты, предохранительный клапан, шламовая труба, сетчатый фильтр.

Пусковая кулачковая муфта центробежного типа соединяет валы протектора и насоса и обеспечивает с помощью выдвижных кулачков пуск насоса при движении максимального крутящего момента на валу двигателя, соответствующем частоте вращения 800-1200 об/мин.

Это вызвано тем, что винтовой насос имеет большую инерцию покоя и, чтобы запустить его (преодолеть силы трения), требуется повышенный пусковой момент. Кроме того, пусковая муфта не позволяет валу насоса вращаться в обратную сторону.

При обратном вращении за счет скоса на кулачках, муфта не включается, и кулачки проскальзывают и тем самым предохраняют насос от отворачиваний резьбовых соединений. Муфта так же защищает насос от аварийного режима работы, т.к. при выходе из строя одного из рабочих органов отключается последний. Внутри основания насоса расположен вал с подшипниками и опорные пяты из силицированного графита.

В основании нет сальника, а смазка трущихся поверхностей осуществляется пластовой жидкостью. На приводной вал надеты защитные втулки из нержавеющей стали, которые вращаются в бронзовых втулках. Концевые неподвижные пяты опираются на резиновые прокладки для равномерной пердачи усилий на всю поверхность пяты.

Эксцентриковая муфта обеспечивает возможность сложного планетарного вращения в обоймах. Благодаря чему жидкость проталкивается вдоль оси винта и создается необходимый напор для подъема жидкости на поверхность.

В верхней части насоса расположен золотниковый предохранительный клапан, который состоит из корпуса, золотника, поршня, амортизатора и корпусных деталей. Клапан выполняет следующие функции:

  • - пропускает жидкость в колонну нкт при спуске насосного агрегата в скважину;
  • - обеспечивает слив жидкости из колонны нкт при подъеме агрегата из скважины;
  • - препятствует при остановках насоса сливу жидкости из колонны труб через рабочие органы насоса (вся жидкость сливается через клапан в затрубное пространство);
  • - защищает насос от сухого трения и повышенного давления в напорной линии;
  • - обеспечивает перепуск жидкости из напорной линии обратно в скважину или при недостаточном притоке жидкости из пласта, или при содержании в жидкости большого количества газа.

Шламовая труба защищает насос от механических примесей, окалины, выпадающих из колонны НКТ при остановке насоса, монтаже и выполняет роль отстойника.

Назначение и область применения насосов

Установки погружных винтовых насосов с наземным приводом часто называют УШВН (установка штангового винтового насоса), предназначены для откачки высоковязкой пластовой жидкости из нефтедобывающих скважин.

Установка представляет собой погружной штанговый насос (ШВН), статор которого неподвижно крепится на колонне труб НКТ, а винт к колонне штанг. К нижней части статора крепится клапанный узел. Наземное оборудование включает колонную головку, превентор-тройник, редуктор, модульную вставку, электродвигатель.

Вращение винта осуществляется колонной штанг, размещенной внутри колонны НКТ, от наземного привода, состоящего из вращателя (редуктора) и электродвигателя.

Винтовой насос обеспечивает высокую работоспособность при откачке высоковязкой жидкости с повышенным газовым фактором и значительным содержанием механических примесей.

В наклонно-направленных скважинах для уменьшения сил трения и износа труб НКТ устанавливаются муфты-центраторы, которые выполняют функцию промежуточных радиальных опор, могут быть представлены в двух конструктивных исполнениях:

  • - неразборные, размещенные непосредственно на полноразмерной или укороченной штанге по специальной технологии в заводских условиях;
  • - разборные, устанавливаемые между муфтами стандартных штанг.

Наиболее рационально использовать штанговые центраторы, обеспечивающие их неподвижность относительно колонны НКТ, что приводит к снижению расхода электроэнергии и износа труб. Несколько нижних штанг, расположенных непосредственно близко к эксцентрично вращающемуся ротору, центраторами не оснащаются.

Рациональной областью применения УШВН являются вертикальные скважины или скважины с малыми темпами набора кривизны с пластовыми жидкостями высокой вязкости, с повышенным содержанием газа и механических примесей. Чаще всего УШВН применяются для дебитов от 3 до 50--100 м3/сутки с напором до 1000--1500 м, однако, некоторые типоразмеры УШВН могут иметь гораздо большие добычные возможности.


Винтовой насос – это агрегат, предназначенный для перекачивания растворов и жидкостей повышенной вязкости. Такого рода оборудование используется во многих сферах промышлености – текстильном химическом и металлообрабатывающем производстве. Винтовые насосы обладают простой конструкцией, отличаются надежностью и длительным рабочим ресурсом.

Устройство винтового насоса – из чего состоит прибор?

Основным элементом винтового насоса является ротор. Он имеет цилиндрическую форму и спиральный желоб, напоминающий винт или шнек. Ротор расположен внутри статора, снабженного эластомерной гильзой и спиралевидным каналом. Сам статор имеет форму стальной трубы. Роторная спираль может оборудоваться несколькими заходами. При этом статорная спираль всегда оборудована одним заходом больше.


Вдоль контактной линии между статором и ротором расположены защищенные от проникновения воды участки, разделяющие рабочую полость насоса на несколько частей. Благодаря особенному расположению ротора в статоре, эти участки поочередно открываются и закрываются.

Регулировка объемов откачиваемой жидкости осуществляется посредством изменения количества оборотов ротора. Для этого следует использовать частотный привод.

Все элементы насоса помещены в прочный корпус из пластика или чугуна. При этом, если используется винтовой насос для скважины, то его корпус изготавливается из нержавеющей стали.

Принцип действия каждого винтового агрегата основан на перемещении жидкости вдоль винтовой оси внутри камеры. Ось образуется между поверхностью корпуса и винтовыми канавками путем вхождения винтовых выступов в смежные канавки. Благодаря такому принципу работы, внутри прибора создается замкнутое пространство, которое не позволяет жидкости перемещаться назад из прибора.


В наши дни винтовые насосы используются во многих сферах жизнедеятельности человека. Чаще всего это оборудованием применяется:

  • На пищевых фабриках – при производстве продуктов питания агрегаты применяются в качестве дозаторов;
  • В строительстве – насосы используются для подачи смесей, используемых с целью производства наливных полов и кровли;
  • На скважинах – приборы выкачивают загрязненную воду с большим количеством примесей. Винтовой скважинный насос может использоваться, как для источника с чистой водой, так и для скважины с песком;
  • В химической промышленности – винтовые насосы перекачивают большие объемы густых веществ для их дальнейшей обработки.

Высокая надежность и способность работать под высокими нагрузками делает винтовые насосы одним из наиболее прогрессивных видов насосного оборудования.

Преимущества и недостатки винтовых насосов

Высокий спрос на винтовые насосы обусловлен множеством их достоинств. Среди них нужно выделить:

  • Высокий КПД приборов – от 50 до 70 %;
  • Агрегаты способны работать с очень вязкой жидкостью, создавая напор гораздо выше, чем импеллерные помпы;
  • Винтовые насосы способны перекачивать жидкости с большим количеством твердых примесей;
  • Принцип работы винтового прибора исключает образование пульсаций, которые характерны для оборудования других видов;
  • Винтовые насосы являются самовсасывающими приборами, а максимальная глубина забора жидкости может составлять 8,5 м;
  • Приборы отличаются компактностью и низким уровнем шума;
  • Благодаря высокой надежности, винтовые насосы крайне редко требуют ремонта и не нуждаются в частом обслуживании.

Как и другие виды насосов, винтовое оборудование имеет свои слабые стороны. Первый минус заключается в высокой стоимости агрегатов, из-за чего использовать их на своем производстве могут позволить себе далеко не все предприятия. Второй недостаток заключается в отсутствии возможности регулировки объемов откачиваемой жидкости.

Виды винтового насосного оборудования

Так как винтовые приборы задействованы во многих сферах применения, они отличаются между собой особенностями конструкции. По своему устройству агрегаты делятся на такие типы:

  • Шнековые насосы – эти агрегаты предназначены для перекачивания больших объемов агрессивных химических и абразивных веществ. Шнековый прибор эффективно работает, как в вертикальном, так и в горизонтальном положении. Нередко такое оборудование используется для воды из скважин и глубоких колодцев. Шнековые агрегаты обладают простой конструкцией и сравнительно невысокой стоимостью;

  • Штанговые насосы – такого рода устройства используются для высоковязких сред в предприятиях по добыче и переработки нефти. В конструкцию штангового насоса входит устьевой сальник, вращательная колонна и поверхностный привод. Агрегаты этого типа отличаются высокой производительностью и достаточно высокой стоимостью;

  • Вакуумные насосы – эти агрегаты оборудуются двумя винтовыми роторами, вращающимися в противоположные стороны. Благодаря такой конструкции вакуумного насоса, жидкость сначала попадает в область между винтовыми камерами и цилиндром, а затем попадает в отверстие для выхлопных газов.


Насос винтовой для вязких жидкостей показывает высокую производительность, однако эффективность работы устройства во многом зависит от правильности его использования. В связи с этим прежде, чем покупать прибор для бытовых или промышленных целей, нужно убедиться в его соответствии с выбранной областью применения.

Какой насос лучше – центробежный или винтовой насос?

Многие люди, которые хотят купить насос для бытовых целей, задумываются о том, что же лучше – центробежный или винтовой насос. Оба эти вида отличаются между собой областями использования и особенностями конструкции.

Центробежный насос — достаточно дорогостоящий прибор, который хорошо справиться с обеспечением водой загородного коттеджа. Эти насосы можно использоваться, как для скважин, так и для колодцев. В устройство агрегата входит зафиксированное на валу рабочее колесо, которое выталкивает воду наверх. Это оборудование подходит только для перекачивания чистой воды, имеет высокий КПД и потребляет небольшое количество электроэнергии. Центробежные насосы отличаются высокой надежностью и длительными сроками эксплуатации.


Винтовые насосы используются преимущественно в промышленности. Гораздо реже погружной агрегат такого рода применяется в быту и хозяйстве. Если же для обслуживания частного дома был выбран именно такой прибор, то его следует использовать для перекачивания не слишком загрязненной воды, количество твердых примесей в которой не должно превышать 150 г/м 3 жидкости.

Выбор насосного оборудования в основном зависит от воды, которую он будет перекачивать. Если агрегат требуется для подачи чистой питьевой воды, то лучше выбрать центробежный насос. Если жидкость нужна для полива, то лучше отдать предпочтение винтовому оборудованию.

Винтовые и лопастные насосы – в чем отличия?

Большинство неопытных покупателей часто ошибаются, принимая лопастной насос за винтовой. Отличия между агрегатами этих видов заключается в областях применения и характеристиках агрегатов.

Винтовые устройства в большинстве своем используются в промышленных целях, гораздо реже – в быту. Среди их преимуществ следует выделить:

  • Равномерный объем подачи перекачиваемой жидкости;
  • Способность к самовсасыванию;
  • Отлично сбалансированная конструкция;
  • Агрегат эффективно работает даже при наличии в жидкости твердых примесей;
  • Высокая прочность деталей.

К недостаткам винтовых насосов относится высокая стоимость оборудования, большие габариты, повышенное трение его запчастей, высокий уровень шума и не эффективное охлаждение.

Лопастные насосы применяются в быту. Насос лопастной центробежный обладает такими достоинствами:

  • Простота в эксплуатации и обслуживании;
  • Возможность подключения к одному трубопроводу сразу нескольких лопастных насосов;
  • Скромные габариты и вес;
  • Низкий уровень шума при работе;
  • Невысокая стоимость большинства моделей;
  • Наличие эффективной системы охлаждения.

Среди минусов ролико-лопастного насоса следует выделить отсутствие возможности работать с загрязненной водой. Насос лопастной центробежный обладает низким КПД, а, при сужении проточных каналов, большинство агрегатов перегреваются, что приводит к их поломке. Для производства большинства моделей используются тяжелые стальные запчасти, которые, в паре с легким пластиковым корпусом, ухудшают баланс и устойчивость приборов.

Важная характеристика лопастного насоса – это его производительность. Она сильно зависит от качества воды и мощности агрегата. Если насос не обладает высокой мощностью, то он не будет перекачивать необходимое для обслуживания частного дома количество жидкости. Поэтому для загородного жилья следует выбирать более мощное оборудование, покупка которого обойдется гораздо дороже.

Винтовой насос - это устройство, в котором образование напора нагнетаемой жидкости происходит благодаря вытеснению жидкости винтовыми роторами, выполненными из металла, вращающимися вокруг статора определенной формы.

Винтовые насосы - разновидность роторно-зубчатых насосов, получаемых из шестеренных за счет уменьшения числа зубьев и увеличения их угла налона.

По принципу действия относятся к объемным роторным гидромашинам.

В настоящее время создано большое количество винтовых насосов с диапазоном подач от 0,5 до 1000 м3/сут и давлением от 6 до 30 МПа.

История возникновения винтовых насосов

Впервые винтовой насос для перекачки вязких жидкостей и различных растворов был разработан в 1920-х годах. И сразу же эти получил широкое распространение во многих отраслях промышленности (пищевая, химическая, бумажная, металлообрабатывающая, текстильная, табачная, нефтяная и т.д.).

Данный вид насоса был предложен французским инженером Муано (R. Moineau). Новый принцип гидравлической машины, названный «капсулизмом», позволил исключить клапапанные и золотниковые распределители.

В конце 70-х годов, винтовые насосы впервые были применены на нефтяных месторождениях Канады с тяжелой нефтью и большим содержанием мелкодисперсного песка.

В 1980-х гг. началось использование винтовых насосов для механизированной добычи, в результате, они постепенно внедрились в нефтяную промышленность.

К 2003 году винтовые насосы стали использовать на более чем 40000 скважин по всему миру. Добыча вязких и высоковязких нефтей стала более рентабельной для нефтяной промышленности. Винтовые насосы применяются от Аляски до Южной Америки, в горах Японии, в Африке, в России. Также такие насосы применяются для добычи угольного метана и легкой нефти в Новокузнецке, Нижневартовске .

Устройство и принцип действия

Основными элементами винтового насоса для добычи нефти являются ротор (рисунок 1 а) в виде простой спирали (винта) с шагом lрот и статора (рисунок 1 б) в виде двойной спирали с шагом lст, в два раза превышающим шаг ротора.

а - ротор; б - статор; в - насос в сборе;

1 - корпус насоса; 2 - полость между статором и ротором

Рисунок 1 - Глубинный винтовой насос

Винт имеет однозаходную плавную нарезку с весьма большим отношением длины винта к глубине (1530). Обойма насоса имеет внутреннюю поверхность, соответствующую двухзаходному винту, у которого шаг равен удвоенному шагу винта насоса.

Принцип действия заключается в том, что винт насоса и его обойма образуют по всей длине ряд замкнутых полостей, которые при вращении винтов передвигаются от приема насоса к его выкиду. В начальный момент, каждая полость сообщается с областью приема насоса, при продвижении вдоль оси насоса ее объем увеличивается, заполняясь перекачиваемой жидкостью, после чего становится полностью замкнутым. У выкида объем полости сообщается с полостью нагнетания, постепенно уменьшается, а жидкость выталкивается в трубопровод.

Основные характеристики винтовых насосов

Основными характеристиками винтовых насосов являются:

Рабочая глубина по вертикали (до 3200 м);

Дебит (1-800 м3/сут);

Температура продукта (до 120 0С);

Плотность жидкости (более 850 г/см3);

Кривизна ствола скважины (до 900).

Виды винтовых насосов. Используемый материал

По количеству винтов насосы делят на:

Одновинтовые;

Двухвинтовые;

Трехвинтовые;

Многовинтовые.

Чаще всего используются одновинтовые и двухвинтовые насосы.

В данном курсовой работе рассмотрим 2 вида насосов:

С поверхностным электродвигателем;

С погружным электродвигателем.

Наиболее технологически простым является однозаходный винт с поперечным сечением в виде правильного круга.

1 - исходное положение; 2 - положение при повороте на 900; 3 - положение при повороте на 1800

Рисунок 2 - Положение однозаходного винта в обойме во время работы на 1/2 оборота

Если рассматривать многозаходный винт, то тогда необходимо учитывать кинематическое соотношение ротора и статора.

Рисунок 3 - Зависимость рабочих параметров n и MT винтового насоса от кинематического соотношения i

Графики показывают, что двигатели с малозаходными винтовыми механизмами развивают большие скорости вращения при минимальном вращающем моменте. По мере увеличения заходности ротора наблюдается рост вращающего момента и снижение частоты вращения. Это объясняется тем, что винтовой механизм с многозаходным ротором выполняет роль двигателя и одновременно понижающего редуктора (мультипликатора), передаточное число которого пропорционально заходности ротора.

Для изготовления винта могут использовать сталь, легированную хромом, или титановый сплав, который примерно в 1,7 раза легче стали и не уступает ей по прочности. Выигрыш в массе позволяет во столько же раз снизить нагрузку на эластомер от центробежной силы при вращении винта. Обрабатывается винт на токарном станке, обычно с приспособлением для вихревой нарезки, что позволяет получить высокую точность при наиболее высокой производительности труда.

Поверхности винта должны удовлетворять требованиям высокой твердости и чистоты обработки. Эти условия выполняются нанесением на поверхность твердого слоя хрома и его полированием в специальном приспособлении .

Назначение и техническая характеристика

Установки погружных винтовых сдвоенных электронасосов предназначены для добычи нефти преимущественно повышенной вязкости и газосодержания.

В настоящее время отечественной промышленностью выпускаются электропогружные винтовые насосы для добычи нефти следующего параметрического ряда:

УЭВН5-12-1200

УЭВН5-12-1500

УЭВН5-16-1200

УЭВН5-16-1500

УЭВН5-25-1000

УЭВН5-25-1500

УЭВН5-63-1200

УЭВН5-100-1000

УЭВН5-100-1200

УЭВН5-200-900.

Показатели применимости установок:

Максимальная кинематическая вязкость, м 2 /с - 1*10-3

Максимальное содержание попутной воды, % - 99

Максимальное содержание свободного газа на приёме насоса, % по объёму-50

Максимальная массовая концентрация твердых частиц, г/л - 0,8

Микротвердость частиц, HRC не более - 55

Максимальная температура, °С - 110.

Винтовые насосы характеризуются основными гидравлическими параметрами: напор, давление, мощность, КПД.

В приведенных ниже табл. 2 и 3 представлены технические характеристики установок электропогружных винтовых насосов и самих насосов.

Принцип действия винтового насоса

В объемном насосе рабочий процесс основан на вытеснении жидкости из рабочей камеры, герметично отделенной от полости всасывания и нагнетания. Насосы этого типа имеют большую жесткость характеристик при изменении параметров, возможность перекачивания небольших объемов жидкостей при высоких давлениях, а также жидкостей с широким диапазоном значений вязкости и жидкости с газовой составляющей.

Надежность и долговечность работы в заданных условиях служат одними из решающих факторов при выборе типа насоса.

Отличительная особенность одновинтового насоса как насоса роторного типа заключается в наличии развитых поверхностей трения, мест со щелевым уплотнением. Отсюда вывод, что обеспечение режима жидкостного трения между ротором и статором является необходимым и достаточным условием высокого ресурса насоса.

Рассмотрим условия работы насоса при установившемся режиме (n=const).

На обеспечение режима жидкостного трения будут влиять геометрические параметры винтовых поверхностей ротора и статора и в конечном итоге зазор между ними, свойства материалов и чистота обработки поверхностей ротора и статора, скорость перемещения ротора в статоре; свойства перекачиваемой среды; обеспечение теплового баланса поверхностей скольжения в пределах, допускаемых выбранными материалами. Наиболее часто используется максимально простое конструктивное и технологическое решение одновинтового насоса: ротором служит винт, а статором - обойма насоса. Винт металлический, а обойма - резино-металлическая с внутренней поверхностью из синтетического каучука или другого эластомера.

Винт в обойме совершает сложное планетарное движение. Он вращается не только вокруг своей оси О 2 , его ось одновременно перемещается по окружности диаметром, равным двум эксцентриситетам (2е) в обратном направлении. Это второе движение винта вызывается его качением на отрезке 2-3 и скольжением на отрезке 5-6 стенок обоймы. Неподвижное зубчатое колесо m с внутренним зацеплением и центром О 1 , являющимся осью обоймы, имеет диаметр D = 4е. По нему без скольжения катится колесо n диаметром d 1 = 2e, которое принадлежит винту и вращается вокруг своей оси в обратном направлении. Во время вращения винта центр любого его поперечного сечения непрерывно перемещается по прямой от верхнего положения А до нижнего положения В и обратно. Это перемещение сверху вниз совершается за один оборот винта, причем точка на окружности n, перемещаясь внутри неподвижной окружности m, описывает гипоциклоиду. Если диаметр перемещающейся окружности равен половине диаметра неподвижной окружности, то гипоциклоида преобразуется в прямую линию AВ длиной, равной диаметру неподвижной окружности m.

При качении окружности n по окружности m в направлении по часовой стрелке из положения 1 в положение 5 круг К (сечение винта) движется вниз, причем он вращается против часовой стрелки и скользит но стенке 6-5 обоймы. Прямая АВ поворачивается на определенный угол, отвечающий форме и шагу винтовой линии обоймы.

Геликоидальная поверхность винта (рис. 16) образуется перемещением окружности К, вдоль оси винта О-О при условии, что центр окружности перемещается по винтовой линии М-М. отстоящей от оси О-О на величину эксцентриситета е винта.

Внутренняя поверхность обоймы образуется винтообразным движением плоскости поперечного сечения 1 - 2 - 3 - 4 - 5 - 6 (см. рис. 14), которая вращается вокруг оси О 1 обоймы и соразмерно перемещается вдоль этой оси.

Полный поворот этой плоскости на 360° при равномерном перемещении ее вдоль оси обоймы составит длину шага обоймы

где t - шаг винта.

Между винтом и обоймой образуются замкнутые полости (см. рис. 15), которые заполняются перекачиваемой жидкостью. Сечение этих полостей имеет форму полумесяца.

Вместе с вращением винта полости или камеры, наполненные жидкостью, перемещаются вдоль оси обоймы из приемной полости в полость нагнетания, причем за каждый оборот винта жидкость в камере переместится в осевом направлении на длину шага обоймы Т.

Сечение, заполняемое жидкостью, постоянно по длине обоймы и определяется площадью прямоугольника со сторонами 4е и D или

где D - диаметр винта.

При частоте вращения n оборотов теоретическая подача, насоса

а действительная подача

Qg = Qt ?об = 4eDTn ?об,

где? об - объемный КПД одновинтового насоса.

Оптимальным законом распределения давления по длине обоймы должна быть эпюра 1 в форме треугольника ОАБ (рис. 17), где ОБ - длина обоймы, а р - заданное давление. На практике могут быть нежелательные отклонения. Так, гипотенуза 2 треугольника ВАБ показывает, что рабочее давление р насоса распределяется не на всю длину насоса ОБ, а лишь на крайние витки ВБ. Это значит, что натяг в рабочих органах велик и эластомер будет интенсивно разрушаться.

Гипотенуза 3 треугольника А"ОБ показывает, что насос собран с зазором и не развивает заданного давления р, что также неприемлемо. Оптимален вариант, когда давление р распределяется по всей длине обоймы равномерно.

Экспериментальные кривые 4, 5, 6 и 7 сняты на идентичных по натягу насосах с различной длиной обоймы. Фактические данные хорошо корреспондируются с теоретической эпюрой 1 и подтверждают возможность получения пропорционального нарастания давления по длине обоймы. Учитывая, что на максимальном достигнутом давлении в 250 кгс/см 2 насос не будет иметь достаточного ресурса, на основании многолетнего опыта рекомендуется брать в расчет перепад давления между соседними камерами: ? р = 45-50 м.

Длина обоймы L связана с напором насоса Н, шагом винта и перепадом давления между соседними камерами следующей зависимостью:

L = (H / ? р + 2) t

Под натягом понимается разность между диаметром поперечного сечения винта и внутренним диаметром обоймы. Если эта разность отрицательна, имеется зазор в этой рабочей паре.

В этой статье мы постарались собрать все возможные принципы работы насосов. Часто, в большом разнообразии марок и типов насосов достаточно трудно разобраться не зная как работает тот или иной агрегат. Мы постарались сделать это наглядным, так как лучше один раз увидеть, чем сто раз услышать.
В большинстве описаний работы насосов в интернете есть только разрезы проточной части (в лучшем случае схемы работы по фазам). Это не всегда помогает разобраться в том как именно функционирует насос. Тем более, что не все обладают инженерным образованием.
Надеемся, что этот раздел нашего сайта не только поможет вам в правильном выборе оборудования, но и расширит ваш кругозор.



С давних времен стояла задача подъема и транспортировки воды. Самыми первыми устройствами такого типа были водоподъемные колеса. Считается, что их изобрели Египтяне.
Водоподъемная машина представляла собой колесо, по окружности которого были прикреплены кувшины. Нижник край колеса был опущен в воду. При вращении колеса вокруг оси, кувшины зачерпывали воду из водоема, а затем в верхней точке колеса, вода выливалась из кувшинов в специальный приемный лоток. для вращения устройства применялать мускульная сила человека или животных.




Архимед (287–212 гг. до н. э.), великий ученый древности, изобрел винтовое водоподъемное устройство, позже названное в его честь. Это устройство поднимало воду с помощью вращающегося внутри трубы винта, но некоторое количество воды всегда стекало обратно, т. к. в те времена эффективные уплотнения были неизвестны. В результате, была выведена зависимость между наклоном винта и подачей. При работе можно было выбрать между большим объемом поднимаемой воды или большей высотой подъема. Чем больше наклон винта, тем больше высота подачи при уменьшении производительности.




Первый поршневой насос для тушения пожаров, изобратенный древнегреческим механиком Ктесибием, был описан еще в 1 веке до н. э. Эти насосы, по праву, можно считать самыми первыми насосами. До начала 18 века насосы этого типа использовались довольно редко, т.к. изготовленные из дерева они часто ломались. Развитие эти насосы получили после того, как их начали изготавливать из металла.
С началом промышленной революции и появлением паровых машин, поршневые насосы стали использовать для откачки воды из шахт и рудников.
В настоящее время, поршневые насосы используются в быту для подъема воды из скважин и колодцев, в промышленности - в дозировочных насосах и насосах высокого давления.



Существуют и поршневые насосы, объединенные в группы: двухплунжерные, трехплунжерные, пятиплунжерные и т.п.
Принципиально отличаются количеством насосов и их взаимным расположением относительно привода.
На картинке вы можете увидеть трехплунжерный насос.




Крыльчатые насосы являются разновидностью поршневых насосов. Насосы этого типа были изобретены в середине 19 века.
Насосы являются двухходовыми, то есть подают воду без холостого хода.
Применяются, в основном, в качестве ручных насосов для подачи топлива, масел и воды из скважин и колодцев.

Конструкция:
Внутри чугунного корпуса размещены рабочие органы насоса: крыльчатка, совершающая возвратно-поступательные движения и две пары клапанов (впускные и выпускные). При движении крыльчатки происходит перемещение перекачиваемой жидкости из всасывающей полости в нагнетательную. Система клапанов препятствует перетоку жидкости в обратном направлении




Насосы этого типа имеют в своей конструкции сильфон ("гармошку"), сжимая который производят перекачку жидкости. Конструкция насоса очень простая и состоит всего из нескольких деталей.
Обычно, такие насосы изготавливают из пластика (полиэтилена или полипропилена).
Основное применение - выкачивание химически активных жидкостей из бочек, канистр, бутылей и т.п.

Низкая цена насоса позволяет использовать его в качестве одноразового насоса для перекачивания едких и опасных жидкостей с последующей утилизацией этого насоса.




Пластинчато-роторные (или шиберные) насосы представляют собой самовсасывающие насосы объемного типа. Предназначены для перекачивания жидкостей. обладающих смазывающей способностью (масла. дизельное топливо и т.п.). Насосы могут всасывать жидкость "на сухую", т.е. не требуют предварительного заполнени корпуса рабочей жидкостью.

Принцип работы: Рабочий орган насоса выполнен в виде эксцентрично расположенного ротора, имеющего продольные радиальные пазы, в которых скользят плоские пластины (шиберы), прижимаемые к статору центробежной силой.
Так как ротор расположен эксцентрично, то при его вращении пластины, находясь непрерывно в соприкосновении со стенкой корпуса, то входят в ротор, то выдвигаются из него.
Во время работы насоса на всасывающей стороне образуется разрежение и перекачиваемая масса заполняет пространство между пластинами и далее вытесняется в нагнетательный патрубок.




Шестеренные насосы с наружным зацеплением шестерен предназначены для перекачивания вязких жидкостей, обладающих смазывающей способность.
Насосы обладают самовсасыванием (обычно, не более 4-5 метров).

Принцип действия:
Ведущая шестерня находится в постоянном зацеплении с ведомой и приводит её во вращательное движение. При вращении шестерён насоса в противоположные стороны в полости всасывания зубья, выходя из зацепления, образуют разрежение (вакуум). За счёт этого в полость всасывания поступает жидкость, которая, заполняя впадины между зубьями обеих шестерён, перемещается зубьями вдоль цилиндрических стенок в корпусе и переносится из полости всасывания в полость нагнетания, где зубья шестерён, входя в зацепление, выталкивают жидкость из впадин в нагнетательный трубопровод. При этом между зубьями образуется плотный контакт, вследствие чего обратный перенос жидкости из полости нагнетания в полость всасывания невозможен.




Насосы аналогичны по принципу работы обычному шестеренному насосу, но имеют более компактные размеры. Из минусов можно назвать сложность изготовления.

Принцип действия:
Ведущая шестерня приводится в действие валом электродвигателя. Посредством захвата зубьями ведущей шестерни, внешнее зубчатое колесо также вращается.
При вращении проемы между зубьями освобождаются, объем увеличивается и создается разряжение на входе, обеспечивая всасывание жидкости.
Среда перемещается в межзубьевых пространствах на сторону нагнетания. Серп, в этом случае, служит в качестве уплотнителя между отделениями засасывания и нагнетания.
При внедрении зуба в межзубное пространство объем уменьшается и среде вытесняется к выходу из насоса.




Кулачковые (коловратные или роторные) насосы предназначены для бережной перекачки вызких продуктов, содержащих частицы.
Различная форма роторов, устанавливаемая в этих насосах, позволяет перекачивать жидкости с большими включениями (например, шоколад с цельными орехами и т.п.)
Частота вращения роторов, обычно, не превышает 200...400 оборотов, что позволяет производить перекачивание продуктов не разрушая их структуру.
Применяются в пищевой и химической промышленности.


На картинке можно посмотреть роторный насос с трехлепестковыми роторами.
Насосы такой конструкции применяются в пищевом производстве для бережной перекачки сливок, сметаны, майонеза и тому подобны жидкостей, которые при перекачивании насосами других типов могут повреждать свою структуру.
Например, при перекачке центробежным насосом (у которого частота вращения колеса 2900 об/мин) сливок, они взбиваются в масло.




Импеллерный насос (ламельный, насос с мягким ротором) является разновидностью пластинчато-роторного насоса.
Рабочим органом насоса является мягкий импеллер, посаженый с эксцентриситетом относительно центра корпуса насоса. За счет этого при вращении рабочего колеса изменяется объем между лопастями и создается разряжение на всасывании.
Что происходит дальше видно на картинке.
Насосы являются самовсасывающими (до 5 метров).
Преимущество - простота конструкции.




Название этого насоса происходит от формы рабочего органа – диска, выгнутого по синусоиде. Отличительной особенностью синусных насосов является возможность бережного перекачивания продуктов содержащих крупные включения без их повреждения.
Например, можно легко перекачивать компот из персиков с включениями их половинок (естественно, что размер перекачиваемых без повреждения частиц зависит от объема рабочей камеры. При выборе насоса нужно обращать на это внимание).

Размер перекачиваемых частиц зависит от объема полости между диском и корпусом насоса.
Насос не имеет клапанов. Конструктивно устроен очень просто, что гарантирует долгую и безотказную работу.


Принцип работы:

На валу насоса, в рабочей камере, установлен диск, имеющий форму синусоиды. Камера разделена сверху на 2 части шиберами (до середины диска), которые могут свободно перемещаться в перпендикулярной к диску плоскости и герметизировать эту часть камеры не давая жидкости перетекать с входа насоса на выход (см. рисунок).
При вращении диска он создает в рабочей камере волнообразное движение, за счет которого происходит перемещение жидкости из всасывающего патрубка в нагнетательный. За счет того, что камера наполовину разделена шиберами, жидкость выдавливается в нагнетательный патрубок.




Основной рабочей частью эксцентрикового шнекового насоса является винтовая (героторная) пара, которая определяет как принцип работы, так и все базовые характеристики насосного агрегата. Винтовая пара состоит из неподвижной части – статора, и подвижной – ротора.

Статор – это внутренняя n+1-заходная спираль, изготовленная, как правило, из эластомера (резины), нераздельно (либо раздельно) соединенного с металлической обоймой (гильзой).

Ротор – это внешняя n-заходная спираль, которая изготавливается, как правило, из стали с последующим покрытием или без него.

Стоит указать, что наиболее распространены в настоящее время агрегаты с 2-заходными статором и 1-заходным ротором, такая схема является классической практически для всех производителей винтового оборудования.

Важным моментом, является то, что центры вращения спиралей, как статора, так и ротора смещены на величину эксцентриситета, что и позволяет создать пару трения, в которой при вращении ротора внутри статора создаются замкнутые герметичные полости вдоль всей оси вращения. При этом количество таких замкнутых полостей на единицу длины винтовой пары определяет конечное давление агрегата, а объем каждой полости – его производительность.

Винтовые насосы относятся к объемным насосам. Эти типы насосов могут перекачивать высоковязкие жидкости, в том числе с содержанием большого количества абразивных частиц.
Преимущества винтовых насосов:
- самовсасывание (до 7...9 метров),
- бережное перекачивание жидкости, не разрушающее структуру продукта,
- возможность перекачивания высоковязких жидкостей, в том числе содержащих частицы,
- возможность изготовления корпуса насоса и статора из различных материалов, что позволяет перекачивать агрессивные жидкости.

Насосы этого типа получили большое распространение в пищевой и нефтехимической промышленности.



Насосы этого типа предназначены для перекачивания вязких продуктов с твердыми частицами. Рабочим органом является шланг.
Преимущество: простота конструкции, высокая надежность, самовсасывание.

Принцип работы:
При вращении ротора в глицерине башмак полностью пережимает шланг (рабочий орган насоса), расположенный по окружности внутри корпуса, и выдавливает перекачиваемую жидкость в магистраль. За башмаком шланг восстанавливает свою форму и всасывает жидкость. Абразивные частицы вдавливаются в эластичный внутренний слой шланга, затем выталкиваются в поток, не повреждая шланга.




Вихревые насосы предназначены для перекачивания различных жидкотекучих сред. насосы обладают самовсасыванием (после залива корпуса насоса жидкостью).
Преимущества: простота конструкции, высокий напор, малые размеры.

Принцип действия:
Рабочее колесо вихревого насоса представляет собой плоский диск с короткими радиальными прямолинейными лопатками, расположенными на периферии колеса. В корпусе имеется кольцевая полость. Внутренний уплотняющий выступ, плотно примыкая к наружным торцам и боковым поверхностям лопаток, разделяет всасывающий и напорный патрубки, соединенные с кольцевой полостью.

При вращении колеса жидкость увлекается лопатками и одновременно под воздействием центробежной силы закручивается. Таким образом, в кольцевой полости работающего насоса образуется своеобразное парное кольцевое вихревое движение, почему насос и называется вихревым. Отличительная особенность вихревого насоса заключается в том, что один и тот же объем жидкости, движущейся по винтовой траектории, на участке от входа в кольцевую полость до выхода из нее многократно попадает в межлопастное пространство колеса, где каждый раз получает дополнительное приращение энергии, а следовательно, и напора.




Газлифт (от газ и англ. lift - поднимать), устройство для подъёма капельной жидкости за счёт энергии, содержащейся в смешиваемом с ней сжатом газе. Газлифт применяют главным образом для подъёма нефти из буровых скважин, используя при этом газ, выходящий из нефтеносных пластов. Известны подъёмники, в которых для подачи жидкости, главным образом воды, используют атмосферный воздух. Такие подъёмники называют эрлифтами или мамут-насосами.

В газлифте, или эрлифте, сжатый газ или воздух от компрессора подаётся по трубопроводу, смешивается с жидкостью, образуя газожидкостную или водо-воздушную эмульсию, которая поднимается по трубе. Смешение газа с жидкостью происходит внизу трубы. Действие газлифта основано на уравновешивании столба газожидкостной эмульсии столбом капельной жидкости на основе закона сообщающихся сосудов. Один из них - буровая скважина или резервуар, а другой - труба, в которой находится газожидкостная смесь.




Мембранные насосы относятся к объемным насосам. Существуют одно- и двухмембранные насосы. Двухмембраные, обычно выпускаются с приводом от сжатого воздуха. На нашем рисунке показан именно такой насос.
Насосы отличатся простотой конструкции, обладают самовсасыванием (до 9 метров), могут перекачивать химически агрессивные жидкости и жидкости с большим содержанием частиц.

Принцип работы:
Две мембраны, соединенные валом, перемещаются вперед и назад под воздействием попеременного нагнетания воздуха в камеры позади мембран с использованием автоматического воздушного клапана.

Всасывание: Первая мембрана создает разрежение, когда она движется от стенки корпуса.
Нагнетание: Вторая мембрана одновременно передает давление воздуха на жидкость, находящуюся в корпусе, проталкивая ее по направлению к выпускному отверстию. Во время каждого цикла давление воздуха на заднюю стенку выпускающей мембраны равно давлению, напору со стороны жидкости. Поэтому мембранные насосы могут работать и при закрытом выпускном клапане без ущерба для срока службы мембраны





Шнековые насосы часто путают с винтовыми. Но это совершенно разные насосы, как можно увидеть в нашем описании. Рабочим органом является шнек.
Насосы этого типа могут перекачивать жидкости средней вязкости (до 800 сСт), обладают хорошей всасывающей способностью (до 9 метров), могут перекачивать жидкости с крупными частицами (размер определяется шагом шнека).
Применяются для перекачивания нефтешламов, мазутов, солярки и т.п.

Внимание! Насосы НЕСАМОВСАСЫВАЮЩИЕ. Для работы в режиме всасывания требуется заливка корпуса насоса и всего всасывающего шланга)



Центробежный насос

Центробежные насосы являются самыми распространенными насосами. Название происходит от принципа действия: насос работает за счет центробежной силы.
Насос состоит из корпуса (улиитки) и расположенного внутри рабочего колеса с радиальными изогнутыми лопастями. Жидкость попадает в центр колеса и под действием центробежной силы отбрасывается к его перифирии а затем выбрасывается через напорный патрубок.

Насосы используются для перекачивания жидких сред. Существуют модели для химически активный жидкостей, песка и шлама. Отличаются материалами корпуса: для химических жидкостей используют различные марки нержавеющих сталей и пластика, для шламов - износостойкие чугуны или насосы с покрытием из резины.
Массовое использование центробежных насосов обусловлено простотой конструкции и низкой себестоимостью изготовления.



Многосекционный насос

Многосекционные насосы - это насосы с несколькоми рабочими колесами, расположенными последовательно. Такая компоновка нужна тогда, когда необходимо большое давление на выходе.

Дело в том, что обычное центробежное колесо выдает максимальное давление 2-3 атм.

По этому, для получения более высоких значение напора, используют несколько последовательно установленных центробежных колес.
(по сути, это несколько последовательно соединенных центробежных насосов).

Такие типы насосов используют в качестве погружных скважинных и в качестве сетевых насосов высокого давления.


Трехвинтовой насос

Трехвинтовые насосы предназначены для перекачивания жидкостей, обладающих смазывающей способностью, без абразивных механических примесей. Вязкость продукта - до 1500 сСт. Тип насоса объемный.
Принцип работы трехвинтового насоса понятен из рисунка.

Насосы этого типа применяются:
- на судах морского и речного флота, в машинных отделениях,
- в системах гидравлики,
- в технологических линиях подачи топлива и перекачивания нефтепродуктов.


Струйный насос

Струйный насос предназначен для перемещения (откачки) жидкостей или газов с помощью сжатого воздуха (или жидкости и пара), подающегося через эжектор. Принцип работы насоса основан на законе Бернули (чем выше скорость течения жидкости в трубе, тем меньше давление этой жидкости). Этим обусловлена форма насоса.

Конструкция насоса чрезвычайно проста и не имеет движущихся деталей.
Насосы этого типа можно использовать в качестве вакуумный насосов или насосов для перекачивания жидкости (в том числе, содержащих включения).
для работы насоса необходим подвод сжатого воздуха или пара.

Струйные насосы, работающие от пара, называют пароструйными насосами, работающие от воды - водоструйными насосами.
Насосы, отсасывающие вещество и создающие разряжение, называются эжекторами. Насосы нагнетающие вещество под давлением - инжекторами.




Этот насос работает без подвода электроэнергии, сжатого воздуха и т.п. Работа насоса этого типа основана на энергии поступающей самотеком воды и гидроудара, возникающего при резком её торможении.

Принцип работы гидротаранного насоса:
По всасывающей наклонной трубе вода разгоняется до некоторой скорости, при которой отбойный подпружиненный клапан (справа), преодолевает усилие пружины и закрывается, перекрывая поток воды. Инерция резко остановленной воды во всасывающей трубе создает гидроудар (т.е. кратковременно резко возрастает давление воды в питающей трубе). Величина этого давления зависит от длины питающей трубы и скорости потока воды.
Возросшее давление воды открывает верхний клапан насоса и часть воды из трубы проходит в воздушный колпак (прямоугольник сверху) и отводящую трубу (слева от колпака). Воздух в колпаке сжимается, накапливая энергию.
Т.к. вода в питающей трубе остановлена, давление в ней падает, что приводит к открытию отбойного клапана и закрытию верхнего клапана. После этого вода из воздушного колпака выталкивается давлением сжатого воздуха в отводящую трубу. Так как отбойный клапан открылся, вода снова разгоняется и цикл работы насоса повторяется.



Спиральный вакуумный насос


Спиральный вакуумный насос представляет собой объёмный насос внутреннего сжатия и перемещения газа.
Каждый насос состоит из двух высокоточных спиралей Архимеда (серповидные полости) расположенных со смещением в 180° друг относительно друга. Одна спираль неподвижна, а другая крутится двигателем.
Подвижная спираль совершает орбитальное вращение, что приводит к последовательному уменьшению газовых полостей, по цепочке сжимая и перемещая газ от периферии к центру.
Спиральные вакуумные насосы относятся к категории «сухих» форвакуумных насосов, в которых не используются вакуумные масла для уплотнения сопряженных деталей (нет трения - не нужно масло).
Одной из сфер применения данного вида насосов являются ускорители частиц и синхротроны, что само по себе уже говорит о качестве создаваемого вакуума.



Ламинарный (дисковый) насос


Ламинарный (дисковый) насос является разновидностью центробежного насоса, но может выполнять работу не только центробежных, но и прогрессивных полостных насосов, лопастных и шестеренчатых насосов, т.е. перекачивать вязкие жидкости.
Рабочее колесо ламинарного насоса представляет собой два и более параллельных диска. Чем больше расстояние между дисками, тем более вязкую жидкость может перекачивать насос. Теория физики процесса: в условиях ламинарного течения слои жидкости движутся с различной скоростью по трубе: слой, наиболее близкий к неподвижной трубе (так называемый пограничный слой), течёт медленнее, чем более глубокие (близкие к центру трубы) слои текущей среды.
Аналогично, когда жидкость поступает в дисковый насос, на вращающихся поверхностях параллельных дисков рабочего колеса образуется пограничный слой. По мере вращения дисков энергия переносится в последовательные слои молекул в жидкости между дисками, создавая градиенты скорости и давления по ширине условного прохода. Эта комбинация граничного слоя и вязкого перетаскивания приводит к возникновению перекачивающего момента, который «тянет» продукт через насос в плавном, почти не пульсирующем потоке.



*Информация взята из открытых источников.