Теплоемкость воздуха ккал м3. Физические свойства воздуха: плотность, вязкость, удельная теплоемкость. Плотность воздуха в зависимости от температуры
Транспортная энергетика (хладотранспорт) Влажность воздуха. Теплоёмкость и энтальпия воздухаВлажность воздуха. Теплоёмкость и энтальпия воздуха
Атмосферный воздух представляет собой смесь сухого воздуха и водяного пара (от 0,2% до 2,6%). Таким образом, воздух практически всегда можно рассматривать как влажный.
Механическая смесь сухого воздуха с водяным паром называется влажным воздухом или воздушно-паровой смесью. Максимально возможное содержание парообразной влаги в воздухе m п.н зависит от температуры t и давления P смеси. При изменении t и P воздух может перейти из первоначально ненасыщенного в состояние насыщения водяными парами, и тогда избыточная влага начнёт выпадать в газовом объёме и на ограждающих поверхностях в виде тумана, инея или снега.
Основными параметрами, характеризующими состояние влажного воздуха, являются: температура, давление, удельный объем, влагосодержание, абсолютная и относительная влажность, молекулярная масса, газовая постоянная, теплоемкость и энтальпия.
По закону Дальтона для газовых смесей полное давление влажного воздуха (Р) есть сумма парциальных давлений сухого воздуха Р c и водяных паров Р п: Р = Р c + Р п.
Аналогично, объём V и масса m влажного воздуха будет определятся соотношениями:
V = V c + V п, m = m c + m п.
Плотность и удельный объем влажного воздуха (v) определяется:
Молекулярная масса влажного воздуха:
где В - барометрическое давление.
Поскольку в процессе сушки влажность воздуха непрерывно увеличивается, а количество сухого воздуха в паровоздушной смеси остается постоянным, то о процессе сушки судят по тому, как изменяется количество водяного пара на 1 кг сухого воздуха, и все показатели паровоздушной смеси (теплоемкость, влагосодержание, энтальпия и др.) относят к 1 кг сухого воздуха, находящегося во влажном воздухе.
d = m п / m c , г/кг, или, Х = m п /m c .
Абсолютная влажность воздуха - масса пара в 1 м 3 влажного воздуха. Эта величина численно равна .
Относительная влажность воздуха - это отношение абсолютной влажности ненасыщенного воздуха к абсолютной влажности насыщенного воздуха при заданных условиях:
здесь , но чаще относительную влажность задают в процентах.
Для плотности влажного воздуха справедливо соотношение:
Удельная теплоёмкость влажного воздуха:
c = с c + с п ×d/1000 = с c + с п ×X, кДж/(кг× °С),
где с c - удельная теплоёмкость сухого воздуха, с c = 1,0;
с п - удельная теплоёмкость пара; с п = 1,8.
Теплоемкость сухого воздуха при постоянном давлении и небольших интервалах температур (до 100 о С) для приближенных расчетов можно считать постоянной, равной 1,0048 кДж/(кг×°С). Для перегретого пара средняя изобарная теплоемкость при атмосферном давлении и невысоких степенях перегрева может быть принято также постоянной и равной 1,96 кДж/(кг×К).
Энтальпия (i) влажного воздуха - это один из основных его параметров, который широко применяется при расчетах сушильных установок главным образом для определния теплоты, расходуемой на испарение влаги из подсушиваемых материалов. Энтальпию влажного воздуха относят к одному килограмму сухого воздуха в паровоздушной смеси и определяют как сумму энтальпий сухого воздуха и водяного пара, то есть
i = i c + i п ×Х, кДж/кг.
При расчете энтальпии смесей начальная точка отсчета энтальпий каждого из компонентов должна быть одной и той же. Для расчетов влажного воздуха можно принять, что энтальпия воды равна нулю при 0 о С, тогда и энтальпию сухого воздуха также отсчитываем от 0 о С, то есть i в = с в *t = 1,0048t.
Под удельной теплоемкостью вещества понимают количество теплоты, которое нужно сообщить или отнять от единицы вещества (1 кг, 1 м 3 , 1 моль), чтобы изменить его температуру на один градус.
В зависимости от единицы заданного вещества различают следующие удельные теплоемкости:
Массовую теплоемкость С , отнесенную к 1 кг газа, Дж/(кг∙К);
Молярную теплоемкость µС , отнесенную к 1 кмолю газа, Дж/(кмоль∙К);
Объемную теплоемкость С′ , отнесенную к 1 м 3 газа, Дж/(м 3 ∙К).
Удельные теплоемкости связаны между собой соотношением:
где υ н - удельный объем газа при нормальных условиях (н.у.), м 3 /кг; µ - молярная масса газа, кг/кмоль.
Теплоемкость идеального газа зависит от характера процесса подвода (или отвода) теплоты, от атомности газа и температуры (теплоемкость реальных газов зависит также от давления).
Связь между массовыми изобарной С P и изохорной С V теплоемкостями устанавливается уравнением Майера:
С P - С V = R , (1.2)
где R – газовая постоянная, Дж/(кг∙К).
При нагревании идеального газа в замкнутом сосуде постоянного объема теплота расходуется только на изменение энергии движения его молекул, а при нагревании при постоянном давлении, благодаря расширению газа, одновременно совершается работа против внешних сил.
Для молярных теплоемкостей уравнение Майера имеет вид:
µС р - µС v = µR , (1.3)
где µR =8314Дж/(кмоль∙К) – универсальная газовая постоянная.
Объем идеального газа V н , приведенный к нормальным условиям, определяется из следующего соотношения:
(1.4)
где Р н – давление при нормальных условиях, Р н = 101325 Па = 760 мм ртст; Т н – температура при нормальных условиях, Т н = 273,15 K; P t , V t , T t – рабочие давление, объем и температура газа.
Отношение изобарной теплоемкости к изохорной обозначают k и называют показателем адиабаты :
(1.5)
Из (1.2) и с учетом (1.5) получаем:
Для точных расчетов средняя теплоемкость определяется по формуле:
(1.7)
В тепловых расчетах различного оборудования часто определяется количество тепла, которое требуется для нагрева или охлаждения газов:
Q = C∙m ∙(t 2 - t 1), (1.8)
Q = C′∙V н ∙(t 2 - t 1), (1.9)
где V н – объем газа при н.у., м 3 .
Q = µC∙ν ∙(t 2 - t 1), (1.10)
где ν – количество газа, кмоль.
Теплоемкость. Использование теплоемкости для описания процессов в закрытых системах
В соответствии с уравнением (4.56) теплота может быть определена, если известно изменение энтропии S системы. Однако то обстоятельство, что энтропия не может быть измерена непосредственно, создает некоторые осложнения, особенно при описании изохорных и изобарных процессов. Возникает необходимость в определении количества теплоты с помощью измеряемой на опыте величины.
В качестве такой величины может выступать теплоемкость системы. Наиболее общее определение теплоемкости вытекает из выражения первого закона термодинамики (5.2), (5.3). Исходя из него, любая емкость системы С по отношению к работе вида m определяется уравнением
C m = dA m / dP m = P m d e g m / dP m , (5.42)
где С m – емкость системы;
P m и g m – соответственно обобщенный потенциал и координата состояния вида m.
Величина C m показывает, какое количество работы вида m необходимо совершить при заданных условиях, чтобы изменить m-й обобщенный потенциал системы на единицу его измерения.
Понятие емкости системы по отношению к той или иной работе в термодинамике широко используется лишь при описании теплового взаимодействия между системой и окружающей средой.
Емкость системы по отношению к теплоте называется теплоемкостью и задается равенством
С = d e Q / dT = Td e S тепл / dT . (5.43)
Таким образом, теплоемкость может быть определена как количество теплоты, которое необходимо сообщить системе, чтобы изменить ее температуру на один Кельвин.
Теплоемкость, подобно внутренней энергии и энтальпии, является экстенсивной величиной, пропорциональной количеству вещества. На практике используют теплоемкость, отнесенную к единице массы вещества, – удельную теплоемкость , и теплоемкость, отнесенную к одному молю вещества, – молярную теплоемкость . Удельная теплоемкость в СИ выражается в Дж/(кг·К), а молярная – в Дж/(моль·К).
Удельная и молярная теплоемкости связаны соотношением:
С моль = С уд М, (5.44)
где М - молекулярная масса вещества.
Различают истинную (дифференциальную) теплоемкость , определяемую из уравнения (5.43) и представляющую собой элементарное приращение теплоты при бесконечно малом изменении температуры, и среднюю теплоемкость, представляющую собой отношение полного количества теплоты к полному изменению температуры в данном процессе:
Q/DT . (5.45)
Связь между истинной и средней удельной теплоемкостью устанавливается соотношением
При постоянных давлении или объеме теплота и соответственно теплоемкость приобретают свойства функции состояния, т.е. становятся характеристиками системы. Именно эти теплоемкости - изобарную С Р (при постоянном давлении) и изохорную С V (при постоянном объеме) наиболее широко используют в термодинамике.
Если система нагревается при постоянном объеме, то в соответствии с выражением (5.27) изохорная теплоемкость C V записывается в виде
C V = . (5.48)
Если система нагревается при постоянном давлении, то в соответствии с уравнением (5.32) изобарная теплоемкость С Р предстает в виде
С Р = . (5.49)
Чтобы найти связь между С Р и С V , надо продифференцировать выражение (5.31) по температуре. Для одного моля идеального газа это выражение с учетом уравнения (5.18) можно представить в виде
H = U + pV = U + RT . (5.50)
dH/dT = dU/dT + R, (5.51)
а разность между изобарной и изохорной теплоемкостями для одного моля идеального газа численно равна универсальной газовой постоянной R:
С Р - С V = R . (5.52)
Теплоемкость при постоянном давлении всегда больше теплоемкости при постоянном объеме, так как нагревание вещества при постоянном давлении сопровождается работой расширения газа.
Используя выражение внутренней энергии идеального одноатомного газа (5.21), получим значение его теплоемкости для одного моля идеального одноатомного газа:
C V = dU/dT = d(3/2 RT)dT = 3/2 R » 12,5 Дж/(моль·К); (5.53)
C Р = 3/2R + R = 5/2 R » 20,8 Дж/(моль·К). (5.54)
Таким образом, для одноатомных идеальных газов C V иC p не зависит от температуры, поскольку вся подведенная тепловая энергия расходуется только на ускорение поступательного движения. Для многоатомных молекул наряду с изменением поступательного движения может происходить и изменение вращательного и колебательного внутримолекулярного движения. Для двухатомных молекул обычно учитывают дополнительно вращательное движение, вследствие чего численные значения их теплоемкостей составляют:
C V = 5/2 R » 20,8 Дж/(моль·К); (5.55)
C p = 5/2 R + R = 7/2 R » 29,1 Дж/(моль·К). (5.56)
Попутно коснемся теплоемкостей веществ в других (кроме газообразного) агрегатных состояниях. Для оценки теплоемкостей твердых химических соединений нередко используют приближенное правило аддитивности Неймана и Коппа, согласно которому молярная теплоемкость химических соединений в твердом состоянии равна сумме атомных теплоемкостей элементов, входящих в данное соединение. Так, теплоемкость сложного химического соединения с учетом правила Дюлонга и Пти можно оценить так:
C V = 25n Дж/(моль·К), (5.57)
где n - число атомов в молекулах соединений.
Теплоемкости жидкостей и твердых тел вблизи температуры плавления (кристаллизации) почти равны. Вблизи нормальной температуры кипения большинство органических жидкостей имеет удельную теплоемкость 1700 - 2100 Дж/кг·К. В промежутках между этими температурами фазовых переходов теплоемкость жидкости может значительно отличаться (зависит от температуры). В общем виде зависимость теплоемкости твердых тел от температуры в интервале 0 – 290К в большинстве случаев хорошо передается полуэмпирическим уравнением Дебая (для кристаллической решетки) в области низких температур
C Р » C V = eT 3 , (5.58)
в котором коэффициент пропорциональности (e) зависит от природы вещества (эмпирическая константа).
Зависимость теплоемкости газов, жидкостей и твердых тел от температуры при обычных и высоких температурах принято выражать с помощью эмпирических уравнений, имеющих вид степенных рядов:
С Р = a + bT + cT 2 (5.59)
С Р = a + bT + c"T -2 , (5.60)
где a, b, c и c" - эмпирические температурные коэффициенты.
Возвращаясь к описанию процессов в закрытых системах с привлечением метода теплоемкостей, запишем некоторые уравнения, приведенные в параграфе 5.1, в несколько ином виде.
Изохорный процесс . Выражая внутреннюю энергию (5.27) через теплоемкость, получим
dU V = dQ V = U 2 – U 1 = C V dT = C V dT . (5.61)
С учетом того, что теплоемкость идеального газа не зависит от температуры, уравнение (5.61) можно записать так:
DU V = Q V = U 2 - U 1 = C V DT . (5.62)
Чтобы вычислить значение интеграла (5.61) для реальных одно- и многоатомных газов, надо знать конкретный вид функциональной зависимости C V = f(T) типа (5.59) или (5.60).
Изобарный процесс. Для газообразного состояния вещества первый закон термодинамики (5.29) для этого процесса с учетом записи работы расширения (5.35) и с использованием метода теплоемкостей записывается так:
Q Р = С V DT + RDT = C Р DT = DH (5.63)
Q Р = DH Р = H 2 – H 1 = C Р dT . (5.64)
Если система является идеальным газом и теплоемкость С Р не зависит от температуры, соотношение (5.64) переходит в (5.63). Для решения уравнения (5.64), описывающего реальный газ, необходимо знать конкретный вид зависимости C p = f(T).
Изотермический процесс. Изменение внутренней энергии идеального газа в процессе, протекающем при постоянной температуре
dU T = C V dT = 0. (5.65)
Адиабатический процесс. Так как dU = C V dT, то для одного моля идеального газа изменение внутренней энергии и совершаемая работа равны соответственно:
DU = C V dT = C V (T 2 - T 1); (5.66)
А мех = -DU = C V (T 1 - T 2). (5.67)
Анализ уравнений, характеризующих различные термодинамические процессы при условиях: 1) p = сonst; 2) V = сonst; 3) T = сonst и 4) dQ = 0 показывает, что все они могут быть представлены общим уравнением:
pV n = сonst. (5.68)
В этом уравнении показатель "n" может принимать значения от 0 до¥ для разных процессов:
1. изобарного (n = 0);
2. изотермического (n = 1);
3. изохорного (n = ¥);
4. адиабатического (n = g; где g = C Р /C V – адиабатический коэффициент).
Полученные соотношения справедливы для идеального газа и представляют собой следствие его уравнения состояния, а рассмотренные процессы - частные и предельные проявления реальных процессов. Реальные же процессы, как правило, являются промежуточными, протекают при произвольных значениях "n" и получили название политропных процессов.
Если сравнить работу расширения идеального газа, производимую в рассмотренных термодинамических процессах, с изменением объема от V 1 до V 2 , то, как видно из рис. 5.2, наибольшая работа расширения совершается в изобарном процессе, меньшая – в изотермическом и еще меньшая – в адиабатическом. Для изохорного процесса работа равна нулю.
Рис. 5.2. P = f (V) –зависимость для различных термодинамических процессов (заштрихованные области характеризуют работу расширения в соответствующем процессе)
Лабораторная работа № 1
Определение массовой изобарной
теплоемкости воздуха
Теплоемкость – это теплота, которую необходимо подвести к единичному количеству вещества, чтобы нагреть его на 1 К. Единичное количество вещества можно измерить в килограммах, кубометрах при нормальных физических условиях и кило молях. Киломоль газа – это масса газа в килограммах, численно равная его молекулярной массе. Таким образом, существует три вида теплоемкостей: массовая c, Дж/(кг⋅К); объемная с′, Дж/(м3⋅К) и мольная , Дж/(кмоль⋅К). Поскольку киломоль газа имеет массу в μ раз больше одного килограмма, отдельного обозначения для мольной теплоемкости не вводят. Соотношения между теплоемкостями:
где = 22,4 м3/кмоль – объем киломоля идеального газа при нормальных физических условиях; – плотность газа при нормальных физических условиях, кг/м3.
Истинная теплоемкость газа – это производная от теплоты по температуре:
Подведенная к газу теплота зависит от термодинамического процесса. Она может быть определена по первому закону термодинамики для изохорного и изобарного процессов:
Здесь – теплота, подведенная к 1 кг газа в изобарном процессе; – изменение внутренней энергии газа; – работа газов против внешних сил.
По существу формула (4) формулирует 1-е начало термодинамики, откуда следует уравнение Майера:
Если положить = 1 К, то , то есть физический смысл газовой постоянной – это работа 1 кг газа в изобарном процессе при изменении его температуры на 1 К.
Уравнение Майера для 1 кило моля газа имеет вид
где = 8314 Дж/(кмоль⋅К) – универсальная газовая постоянная.
Кроме уравнения Майера, изобарная и изохорная массовые теплоемкости газов связаны между собой через показатель адиабаты k (табл.1):
Таблица 1.1
Значения показателей адиабаты для идеальных газов
Атомность газов | |
Одноатомные газы | |
Двухатомные газы | |
Трех - и многоатомные газы |
ЦЕЛЬ РАБОТЫ
Закрепление теоретических знаний по основным законам термодинамики. Практическое освоение метода определения теплоемкости воздуха на основе энергетического баланса.
Экспериментальное определение удельной массовой теплоемкости воздуха и сопоставление полученного результата со справочным значением.
1.1. Описание лабораторной установки
Установка (рис. 1.1) состоит из латунной трубы 1 внутренним диаметром d =
= 0,022 м, на конце которой расположен электронагревас тепловой изоляцией 10. Внутри трубы движется поток воздуха, который подается 3. Расход воздуха может регулироваться изменением числа оборотов вентилятора. В трубе 1 установлена трубка полного напора 4 и избыточного статического давления 5, которые подсоединены к манометрам 6 и 7. Кроме того, в трубе 1 установлена термопара 8, которая может перемещаться по сечению одновременно с трубкой полного напора. Величина ЭДС термопары определяется по потенциометру 9. Нагрев воздуха, движущегося по трубе, регулируется с помощью лабораторного автотрансформатора 12 путем изменения мощности нагревателя, которая определяется по показаниям амперметра 14 и вольтметра 13. Температура воздуха на выходе из нагревателя определяется термометром 15.
1.2. МЕТОДИКА ПРОВЕДЕНИЯ ЭКСПЕРИМЕНТА
Тепловой поток нагревателя, Вт:
где I – ток, А; U – напряжение, В; = 0,96; =
= 0,94 – коэффициент тепловых потерь.
Рис.1.1. Схема экспериментальной установки:
1 – труба; 2 – конфузор; 3 – вентилятор; 4 – трубка для измерения динамического напора;
5 – патрубок; 6, 7 – дифманометры; 8 – термопара; 9 – потенциометр; 10 – изоляция;
11 – электронагреватель; 12 – лабораторный автотрансформатор; 13 – вольтметр;
14 – амперметр; 15 – термометр
Тепловой поток, воспринятый воздухом, Вт:
где m – массовый расход воздуха, кг/с; – экспериментальная, массовая изобарная теплоемкость воздуха, Дж/(кг·К); – температура воздуха на выходе из нагревательного участка и на входе в него, °С.
Массовый расход воздуха, кг/с:
. (1.10)
Здесь – средняя скорость воздуха в трубе, м/с; d – внутренний диаметр трубы, м; – плотность воздуха при температуре , которая находится по формуле, кг/м3:
, (1.11)
где = 1,293 кг/м3 – плотность воздуха при нормальных физических условиях; B – давление, мм. рт. ст; – избыточное статическое давление воздуха в трубе, мм. вод. ст.
Скорости воздуха определяются по динамическому напору в четырех равновеликих сечениях, м/с:
где – динамический напор, мм. вод. ст. (кгс/м2); g = 9,81 м/с2 – ускорение свободного падения.
Средняя скорость воздуха в сечении трубы, м/с:
Средняя изобарная массовая теплоемкость воздуха определяется из формулы (1.9), в которую тепловой поток подставляется из уравнения (1.8). Точное значение теплоемкости воздуха при средней температуре воздуха находится по таблице средних теплоемкостей или по эмпирической формуле, Дж/(кг⋅К):
. (1.14)
Относительная погрешность эксперимента, %:
. (1.15)
1.3. Проведение эксперимента и обработка
результатов измерений
Эксперимент проводится в следующей последовательности.
1. Включается лабораторный стенд и после установления стационарного режима снимаются следующие показания:
Динамический напор воздуха в четырех точках равновеликих сечений трубы;
Избыточное статическое давление воздуха в трубе ;
Ток I, А и напряжение U, В;
Температура воздуха на входе , °С (термопара 8);
Температура на выходе , °С (термометр 15);
Барометрическое давление B, мм. рт. ст.
Эксперимент повторяется для следующего режима. Результаты измерений заносятся в табл.1.2. Расчеты выполняются в табл. 1.3.
Таблица 1.2
Таблица измерений
Наименование величины | |||
Температура воздуха на входе , °C | |||
Температура воздуха на выходе , °C |
|||
Динамический напор воздуха , мм. вод. ст. | |||
Избыточное статическое давление воздуха , мм. вод. ст. |
|||
Барометрическое давление B, мм. рт. ст. |
|||
Напряжение U, В |
Таблица 1.3
Таблица расчетов
Наименование величин |
|
|||
Динамический напор , Н/м2 | ||||
Средняя температура потока на входе , °C |
ТЕМПЕРАТУРА . Измеряется как в Кельвинах (К), так и в градусах Цельсия (°С). Размер градуса Цельсия и размер кельвина один и тот же для разности температур. Соотношение между температурами:
t = T — 273,15 K,
где t — температура, °С, T — температура, K.
ДАВЛЕНИЕ
. Давление влажного воздуха p
и его составляющих измеряется в Па (Паскаль) и кратных единицах (кПа, ГПа, МПа).
Барометрическое давление влажного воздуха p б
равно сумме парциальных давлений сухого воздуха p в
и водяного пара p п
:
p б = p в + p п
ПЛОТНОСТЬ . Плотность влажного воздуха ρ , кг/м3, представляет собой отношение массы воздушно-паровой смеси к объему этой смеси:
ρ = M/V = M в /V + M п /V
Плотность влажного воздуха может определяться по формуле
ρ = 3,488 p б /T — 1,32 p п /T
УДЕЛЬНЫЙ ВЕС . Удельный вес влажного воздуха γ — это отношение веса влажного воздуха к занимаемому им объему, Н/м 3 . Плотность и удельный вес связаны между собой зависимостью
ρ = γ /g,
где g — ускорение свободного падения, равное 9.81 м/с 2 .
ВЛАЖНОСТЬ ВОЗДУХА
. Содержание в воздухе водяного пара. характеризуется двумя величинами: абсолютной и относительной влажностью.
Абсолютная
влажность воздуха. количество водяного пара, кг или г, содержащегося в 1 м 3 воздуха.
Относительная
влажность воздуха φ
, выраженная в % . отношение парциального давления водяного пара pп, содержащегося в воздухе, к парциальному давлению водяного пара в воздухе при полном его насыщении водяными парами p п.н. :
φ = (p п /p п.н.) 100%
Парциальное давление водяного пара в насыщенном влажном воздухе может быть определено из выражения
lg p п.н. = 2,125 + (156 + 8,12t в.н.)/(236 + t в.н.),
где t в.н. — температура насыщенного влажного воздуха, °С.
ТОЧКА РОСЫ . Температура, при которой парциальное давление водяного пара p п , содержащегося во влажном воздухе, равно парциальному давлению насыщеного водяного пара p п.н. при той же температуре. При температуре росы начинается конденсация влаги из воздуха.
d = M п / M в
d = 622p п / (p б — p п) = 6,22φp п.н. (p б — φp п.н. /100)
УДЕЛЬНАЯ ТЕПЛОЕМКОСТЬ . Удельная теплоемкость влажного воздуха c, кДж/(кг * °С) — это количество теплоты, требуемой для нагрева 1 кг смеси сухого воздуха и водяных паров на 10 и отнесенное к 1 кг сухой части воздуха:
с = с в + с п d /1000,
где c в — средняя удельная теплоемкость сухого воздуха, принимаемая в интервале температур 0-1000С равной 1,005 кДж/(кг * °С); с п — средняя удельная теплоемкость водяного пара, равная 1,8 кДж/(кг * °C). Для практических расчетов при проектировании систем отопления, вентиляции и кондиционирования воздуха допускается применять удельную теплоемкость влажного воздуха с = 1,0056 кДж/(кг * °C) (при температуре 0°С и барометрическом давлении 1013,3 ГПа)
УДЕЛЬНАЯ ЭНТАЛЬПИЯ . Удельная энтальпия влажного воздуха — это энтальпия I , кДж, отнесенная к 1 кг массы сухого воздуха:
I = 1,005t + (2500 + 1,8068t) d / 1000,
или I = ct + 2.5d
КОЭФФИЦИЕНТ ОБЪЕМНОГО РАСШИРЕНИЯ . Температурный коэффициент объемного расширения
α = 0,00367 °C
-1
или α = 1/273 °C -1 .
ПАРАМЕТРЫ СМЕСИ
.
Температура смеси воздуха
t см = (M 1 t 1 + M 2 t 2) / (M 1 + M 2)
d см = (M 1 d 1 + M 2 d 2) / (M 1 + M 2)
Удельная энтальпия смеси воздуха
I см = (M 1 I 1 + M 2 I 2) / (M 1 + M 2)
где M 1 , M 2 — массы смешиваемого воздуха
КЛАССЫ ФИЛЬТРОВ
Применение | Класс очистки | Степень очистки | ||||
Стандарты |
DIN 24185
DIN 24184 |
EN 779 | EUROVENT 4/5 | EN 1882 | ||
Фильтр для грубой очистки с невысокими требованиями к чистоте воздуха | Грубая очистка | EU1 | G1 | EU1 | — | A% |
Фильтр, применяемый при высокой концентрации пыли с грубой очисткой от нее, Кондиционирование воздуха и вытяжная эентиляция с невысокими требованиями к чистоте воздуха в помещении. | 65 | |||||
EU2 | G2 | EU2 | — | 80 | ||
EU3 | G3 | EU3 | — | 90 | ||
EU4 | G4 | EU4 | — | |||
Сепарирование тонкой пыли в вентиляционном оборудовании, применяемом в помещениях с высокими требованиями к шстоте воздуха. Фильтр для очень тонкой фильтрации. Вторая сепень очистки (доочистка) в помещениях со средними требованиями к чистоте воздуха. | Тонкая очистка | EU5 | EU5 | EU5 | — | E% |
60 | ||||||
EU6 | EU6 | EU6 | — | 80 | ||
EU7 | EU7 | EU7 | — | 90 | ||
EU8 | EU8 | EU8 | — | 95 | ||
EU9 | EU9 | EU9 | — | |||
Очистка от сверхтонкой пыли. Применяется в помещениях с повышенными требованиями к чистоте воздуха ("чистая комната"). Финишная очистка воздуха в помещенияхс прецизионной техникой, хирургических блоках, реанимационных палатах, в фармацевтической промышленности. | Особо тонкая очистка | — | — | — | EU5 | С% |
97 | ||||||
— | — | — | EU6 | 99 | ||
— | — | — | EU7 | 99,99 | ||
— | — | — | EU8 | 99,999 |
РАСЧЕТ МОЩНОСТИ КАЛОРИФЕРА
Подогрев, °С | ||||||||||
м 3 /ч | 5 | 10 | 15 | 20 | 25 | 30 | 35 | 40 | 45 | 50 |
100 | 0.2 | 0.3 | 0.5 | 0.7 | 0.8 | 1.0 | 1.2 | 1.4 | 1.5 | 1.7 |
200 | 0.3 | 0.7 | 1.0 | 1.4 | 1.7 | 2.0 | 2.4 | 2.7 | 3.0 | 3.4 |
300 | 0.5 | 1.0 | 1.5 | 2.0 | 2.5 | 3.0 | 3.6 | 4.1 | 4.6 | 5.1 |
400 | 0.7 | 1.4 | 2.0 | 2.7 | 3.4 | 4.1 | 4.7 | 5.4 | 6.1 | 6.8 |
500 | 0.8 | 1.7 | 2.5 | 3.4 | 4.2 | 5.1 | 5.9 | 6.8 | 7.6 | 8.5 |
600 | 1.0 | 2.0 | 3.0 | 4.1 | 5.1 | 6.1 | 7.1 | 8.1 | 9.1 | 10.1 |
700 | 1.2 | 2.4 | 3.6 | 4.7 | 5.9 | 7.1 | 8.3 | 9.5 | 10.7 | 11.8 |
800 | 1.4 | 2.7 | 4.1 | 5.4 | 6.8 | 8.1 | 9.5 | 10.8 | 12.2 | 13.5 |
900 | 1.5 | 3.0 | 4.6 | 6.1 | 7.6 | 9.1 | 10.7 | 12.2 | 13.7 | 15.2 |
1000 | 1.7 | 3.4 | 5.1 | 6.8 | 8.5 | 10.1 | 11.8 | 13.5 | 15.2 | 16.9 |
1100 | 1.9 | 3.7 | 5.6 | 7.4 | 9.3 | 11.2 | 13.0 | 14.9 | 16.7 | 18.6 |
1200 | 2.0 | 4.1 | 6.1 | 8.1 | 10.1 | 12.2 | 14.2 | 16.2 | 18.3 | 20.3 |
1300 | 2.2 | 4.4 | 6.6 | 8.8 | 11.0 | 13.2 | 15.4 | 17.6 | 19.8 | 22.0 |
1400 | 2.4 | 4.7 | 7.1 | 9.5 | 11.8 | 14.2 | 16.6 | 18.9 | 21.3 | 23.7 |
1500 | 2.5 | 5.1 | 7.6 | 10.1 | 12.7 | 15.2 | 17.8 | 20.3 | 22.8 | 25.4 |
1600 | 2.7 | 5.4 | 8.1 | 10.8 | 13.5 | 16.2 | 18.9 | 21.6 | 24.3 | 27.1 |
1700 | 2.9 | 5.7 | 8.6 | 11.5 | 14.4 | 17.2 | 20.1 | 23.0 | 25.9 | 28.7 |
1800 | 3.0 | 6.1 | 9.1 | 12.2 | 15.2 | 18.3 | 21.3 | 24.3 | 27.4 | 30.4 |
1900 | 3.2 | 6.4 | 9.6 | 12.8 | 16.1 | 19.3 | 22.5 | 25.7 | 28.9 | 32.1 |
2000 | 3.4 | 6.8 | 10.1 | 13.5 | 16.9 | 20.3 | 23.7 | 27.1 | 30.4 | 33.8 |
СТАНДАРТЫ И НОРМАТИВНЫЕ ДОКУМЕНТЫ
СНиП 2.01.01-82 — Строительная климатология и геофизика
Информация о климатических условиях конкретных территорий.
СНиП 2.04.05-91* — Отопление, вентиляция и кондиционирование воздуха
Настоящие строительные нормы следует соблюдать при проектировании отопления, вентиляции и кондиционирования воздуха в помещениях зданий и сооружений (далее — зданий). При проектировании следует также соблюдать требования по отоплению, вентиляции и кондиционированию воздуха СНиП соответствующих зданий и помещений, а также ведомственных нормативов и других нормативных документов, утвержденных и согласованных с Госстроем России.
СНиП 2.01.02-85* — Противопожарные нормы
Настоящие нормы должны соблюдаться при разработке проектов зданий и сооружений.
Настоящие нормы устанавливают пожарно-техническую классификацию зданий и сооружений, их элементов, строительных конструкций, материалов, а также общие противопожарные требования к конструктивным и планировочным решениям помещений, зданий и сооружений различного назначения.
Настоящие нормы дополняются и уточняются противопожарными требованиями, изложенными в СНиП части 2 и в других нормативных документах, утвержденных или согласованных Госстроем.
СНиП II-3-79* — Строительная теплотехника
Настоящие нормы строительной теплотехники должны соблюдаться при проектировании ограждающих конструкций (наружных и внутренних стен, перегородок, покрытий, чердачных и междуэтажных перекрытий, полов, заполнений проемов: окон, фонарей, дверей, ворот) новых и реконструируемых зданий и сооружений различного назначения (жилых, общественных, производственных и вспомогательных промышленных предприятий, сельскохозяйственных и складских, с нормируемыми температурой или температурой и относительной влажностью внутреннего воздуха).
СНиП II-12-77 — Защита от шума
Настоящие нормы и правила должны соблюдаться при проектировании защиты от шума для обеспечения допустимых уровней звукового давления и уровней звука в помещениях на рабочих местах в производственных и вспомогательных зданиях и на площадках промышленных предприятий, в помещениях жилых и общественных зданий, а также на селитебной территории городов и других населенных пунктов.
СНиП 2.08.01-89* — Жилые здания
Настоящие нормы и правила распространяются на проектирование жилых зданий (квартирных домов, включая квартирные дома для престарелых и семей с инвалидами, передвигающимися на креслах-колясках, в дальнейшем тексте. семей с инвалидами, а также общежитий) высотой до 25 этажей включительно.
Настоящие нормы и правила не распространяются на проектирование инвентарных и мобильных зданий.
СНиП 2.08.02-89* — Общественные здания и сооружения
Настоящие нормы и правила распространяются на проектирование общественных зданий (высотой до 16 этажей включительно) и сооружений, а также помещений общественного назначения, встроенных в жилые здания. При проектировании помещений общественного назначения, встроенных в жилые здания, следует дополнительно руководствоваться СНиП 2.08.01-89* (Жилые здания).
СНиП 2.09.04-87* — Административные и бытовые здания
Настоящие нормы распространяются на проектирование административных и бытовых зданий высотой до 16 этажей включительно и помещений предприятий. Настоящие нормы не распространяются на проектирование административных зданий и помещений общественного назначения.
При проектировании зданий, перестраиваемых в связи с расширением, реконструкцией или техническим перевооружением предприятий, допускаются отступления от настоящих норм в части геометрических параметров.
СНиП 2.09.02-85* — Производственные здания
Настоящие нормы распространяются на проектирование производственных зданий и помещений. Настоящие нормы не распространяются на проектирование зданий и помещений для производства и хранения взрывчатых веществ и средств взрывания, подземных и мобильных (инвентарных) зданий.
СНиП 111-28-75 — Правила производства и приемки работ
Пусковые испытания смонтированных систем вентиляции и кондиционирования проводятся в соответствии с требованиями СНиП 111-28-75 "Правила производства и приемки работ" после механического опробования вентиляционного и связанного с ним энергетического оборудования. Целью пусковых испытаний и регулировки систем вентиляции и кондиционирования является установление соответствия параметров их работы проектным и нормативным показателям.
До начала испытаний установки вентиляции и кондиционирования должны непрерывно и исправно проработать в течение 7 часов.
При пусковых испытаниях должны быть произведены:
- Проверка соответствия параметров установленного оборудования и элементов вентиляционных устройств, принятым в проекте, а также соответствия качества их изготовления и монтажа требованиям ТУ и СНиП.
- Выявление неплотностей в воздуховодах и других элементах систем
- Проверка соответствия проектным данным объемных расходов воздуха, проходящего через воздухоприемные и воздухораспределительные устройства общеобменных установок вентиляции и кондиционирования воздуха
- Проверка соответствия паспортным данным вентиляционного оборудования по производительности и напору
- Проверка равномерности прогрева калориферов. (При отсутствии теплоносителя в теплый период года проверка равномерности прогрева калориферов не производится)
ТАБЛИЦА ФИЗИЧЕСКИХ ВЕЛИЧИН
Фундаментальные константы | ||
Постоянная (число) Авогадро | N A | 6.0221367(36)*10 23 моль -1 |
Универсальная газовая постоянная | R | 8.314510(70) Дж/(моль*K) |
Постоянная Больцмана | k=R/NA | 1.380658(12)*10 -23 Дж/К |
Абсолютный нуль температуры | 0K | -273.150C |
Скорость звука в воздухе при нормальных условиях | 331.4 м/с | |
Ускорение силы тяжести | g | 9.80665 м/с 2 |
Длина (м) | ||
микрон | μ(мкм) | 1 мкм = 10 -6 м = 10 -3 см |
ангстрем | - | 1 - = 0.1 нм = 10 -10 м |
ярд | yd | 0.9144 м = 91.44 см |
фут | ft | 0.3048 м = 30.48 см |
дюйм | in | 0.0254 м = 2.54 см |
Площадь (м 2) | ||
квадратный ярд | yd 2 | 0.8361 м 2 |
квадратный фут | ft 2 | 0.0929 м 2 |
квадратный дюйм | in 2 | 6.4516 см 2 |
Объем (м 3) | ||
кубический ярд | yd 3 | 0.7645 м 3 |
кубический фут | ft 3 | 28.3168 дм 3 |
кубический дюйм | in 3 | 16.3871 см 3 |
галлон (английский) | gal (UK) | 4.5461 дм 3 |
галлон (США) | gal (US) | 3.7854 дм 3 |
пинта (английская) | pt (UK) | 0.5683 дм 3 |
сухая пинта (США) | dry pt (US) | 0.5506 дм 3 |
жидкостная пинта (США) | liq pt (US) | 0.4732 дм 3 |
жидкостная унция (английская) | fl.oz (UK) | 29.5737 см 3 |
жидкостная унция (США) | fl.oz (US) | 29.5737 см 3 |
бушель (США) | bu (US) | 35.2393 дм 3 |
сухой баррель (США) | bbl (US) | 115.628 дм 3 |
Масса (кг) | ||
фунт | lb | 0.4536 кг |
слаг | slug | 14.5939 кг |
гран | gr | 64.7989 мг |
торговая унция | oz | 28.3495 г |
Плотность (кг/м 3) | ||
фунт на кубический фут | lb/ft 3 | 16.0185 кг/м 3 |
фунт на кубический дюйм | lb/in 3 | 27680 кг/м 3 |
слаг на кубический фут | slug/ft 3 | 515.4 кг/м 3 |
Термодинамическая температура (К) | ||
градус Ренкина | °R | 5/9 K |
Температура (К) | ||
градус Фаренгейта | °F | 5/9 K; t°C = 5/9*(t°F — 32) |
Сила, вес (Н или кг*м/c 2) | ||
ньютон | Н | 1 кг*м/c 2 |
паундаль | pdl | 0.1383 H |
фунт-сила | lbf | 4.4482 H |
килограмм-сила | kgf | 9.807 H |
Удельный вес (Н/м 3) | ||
фунт-сила на кубический дюйм | lbf/ft 3 | 157.087 H/м 3 |
Давление (Па или кг/(м*с 2) или Н/м 2) | ||
паскаль | Па | 1 Н/м 2 |
гектопаскаль | ГПа | 10 2 Па |
килопаскаль | КПа | 10 3 Па |
бар | bar | 10 5 Н/м 2 |
атмосфера физическая | atm | 1.013*10 5 Н/м 2 |
миллиметр ртутного столба | mm Hg | 1.333*10 2 Н/м 2 |
килограмм-сила на кубический сантиметр | kgf/cm 3 | 9.807*10 4 Н/м 2 |
паундаль на квадратный фут | pdl/ft 2 | 1.4882 Н/м 2 |
фунт-сила на квадратный фут | lbf/ft 2 | 47.8803 Н/м 2 |
фунт-сила на квадратный дюйм | lbf/in 2 | 6894.76 Н/м 2 |
фут водяного столба | ft H 2 O | 2989.07 Н/м 2 |
дюйм водяного столба | in H 2 O | 249.089 Н/м 2 |
дюйм ртутного столба | in Hg | 3386.39 Н/м 2 |
Работа, энергия, тепло (Дж или кг*м 2 /c 2 или Н*м) | ||
джоуль | Дж | 1 кг*м 2 /c 2 = 1 Н*м |
калория | cal | 4.187 Дж |
килокалория | Kcal | 4187 Дж |
киловатт-час | kwh | 3.6*10 6 Дж |
британская тепловая единица | Btu | 1055.06 Дж |
фут-паундаль | ft*pdl | 0.0421 Дж |
фут-фунт-сила | ft*lbf | 1.3558 Дж |
литр-атмосфера | l*atm | 101.328 Дж |
Мощность (Вт) | ||
фут-паундаль в секунду | ft*pdl/s | 0.0421 Вт |
фут-фунт-сила в секунду | ft*lbf/s | 1.3558 Вт |
лошадиная сила (английская) | hp | 745.7 Вт |
британская тепловая единица в час | Btu/h | 0.2931 Вт |
килограмм-сила-метр в секунду | kgf*m/s | 9.807 Вт |
Массовый расход (кг/с) | ||
фунт-масса в секунду | lbm/s | 0.4536 кг/с |
Коэффициент теплопроводности (Вт/(м*К)) | ||
британская тепловая единица на секунду-фут-градус Фаренгейта | Btu/(s*ft*degF) | 6230.64 Вт/(м*К) |
Коэффициент теплопередачи (Вт/(м 2 *К)) | ||
британская тепловая единица на секунду- квадратный фут-градус Фаренгейта | Btu/(s*ft 2 *degF) | 20441.7 Вт/(м 2 *К) |
Коэффициент температуропроводности, кинематическая вязкость (м 2 /с) | ||
стокс | St (Ст) | 10 -4 м 2 /с |
сантистокс | cSt (сСт) | 10 -6 м 2 /с = 1мм 2 /с |
квадратный фут на секунду | ft 2 /s | 0.0929 м 2 /с |
Динамическая вязкость (Па*с) | ||
пуаз | P (П) | 0.1 Па*с |
сантипуаз cP | (сП) | 10 6 Па*с |
паундаль-секунда на квадратный фут | pdt*s/ft 2 | 1.488 Па*с |
фунт-сила секунда на квадратный фут | lbf*s/ft 2 | 47.88 Па*с |
Удельная теплоемкость (Дж/(кг*К)) | ||
калория на грамм-градус Цельсия | cal/(g*°C) | 4.1868*10 3 Дж/(кг*К) |
британская тепловая единица на фунт-градус Фаренгейта | Btu/(lb*degF) | 4187 Дж/(кг*К) |
Удельная энтропия (Дж/(кг*К)) | ||
британская тепловая единица на фунт-градус Ренкина | Btu/(lb*degR) | 4187 Дж/(кг*К) |
Плотность теплового потока (Вт/м 2) | ||
килокалория на метр квадратный — час | Kcal/(m 2 *h) | 1.163 Вт/м 2 |
британская тепловая единица на квадратный фут — час | Btu/(ft 2 *h) | 3.157 Вт/м 2 |
Влагопроницаемость строительных конструкций | ||
килограмм в час на метр миллиметр водяного столба | kg/(h*m*mm H 2 O) | 28.3255 мг(с*м*Па) |
Объемная проницаемость строительных конструкций | ||
кубический метр в час на метр- миллиметр водяного столба | m 3 /(h*m*mm H 2 O) | 28.3255*10 -6 м 2 /(с*Па) |
Сила света | ||
кандела | кд | основная единица СИ |
Освещенность (лк) | ||
люкс | лк | 1 кд*ср/м 2 (ср — стерадиан) |
фот | ph (фот) | 10 4 лк |
Яркость (кд/м 2) | ||
стильб | st (ст) | 10 4 кд/м 2 |
нит | nt (нт) | 1 кд/м 2 |
Группа компаний ИНРОСТ