Упражнения найти производную функции с решением. Калькулятор онлайн. Найти (с решением) производную функции
Задача нахождения производной от заданной функции является одной из основных в курсе математики старшей школы и в высших учебных заведениях. Невозможно полноценно исследовать функцию, построить ее график без взятия ее производной. Производную функции легко можно найти, зная основные правила дифференцирования, а также таблицу производных основных функций. Давайте разберемся, как найти производную функции.
Производной функции называют предел отношения приращения функции к приращению аргумента, когда приращение аргумента стремится к нулю.
Понять это определение достаточно сложно, так как понятие предела в полной мере не изучается в школе. Но для того, чтобы находить производные различных функций, понимать определение не обязательно, оставим его специалистам математикам и перейдем сразу к нахождению производной.
Процесс нахождения производной называется дифференцированием. При дифференцировании функции мы будем получать новую функцию.
Для их обозначения будем использовать латинские буквы f, g и др.
Существует много всевозможных обозначений производных. Мы будем использовать штрих. Например запись g" означает, что мы будем находить производную функции g.
Таблица производных
Для того чтобы дать ответ на вопрос как найти производную, необходимо привести таблицу производных основных функций. Для вычисления производных элементарных функций не обязательно производить сложные вычисления. Достаточно просто посмотреть ее значение в таблице производных.
- (sin x)"=cos x
- (cos x)"= –sin x
- (x n)"=n x n-1
- (e x)"=e x
- (ln x)"=1/x
- (a x)"=a x ln a
- (log a x)"=1/x ln a
- (tg x)"=1/cos 2 x
- (ctg x)"= – 1/sin 2 x
- (arcsin x)"= 1/√(1-x 2)
- (arccos x)"= - 1/√(1-x 2)
- (arctg x)"= 1/(1+x 2)
- (arcctg x)"= - 1/(1+x 2)
Пример 1. Найдите производную функции y=500.
Мы видим, что это константа. По таблице производных известно, что производная константы, равна нулю (формула 1).
Пример 2. Найдите производную функции y=x 100 .
Это степенная функция в показателе которой 100 и чтобы найти ее производную нужно умножить функцию на показатель и понизить на 1 (формула 3).
(x 100)"=100 x 99
Пример 3. Найдите производную функции y=5 x
Это показательная функция, вычислим ее производную по формуле 4.
Пример 4. Найдите производную функции y= log 4 x
Производную логарифма найдем по формуле 7.
(log 4 x)"=1/x ln 4
Правила дифференцирования
Давайте теперь разберемся, как находить производную функции, если ее нет в таблице. Большинство исследуемых функций, не являются элементарными, а представляют собой комбинации элементарных функций с помощью простейших операций (сложение, вычитание, умножение, деление, а также умножение на число). Для нахождения их производных необходимо знать правила дифференцирования. Далее буквами f и g обозначены функции, а С - константа.
1. Постоянный коэффициент можно выносить за знак производной
Пример 5. Найдите производную функции y= 6*x 8
Выносим постоянный коэффициент 6 и дифференцируем только x 4 . Это степенная функция, производную которой находим по формуле 3 таблицы производных.
(6*x 8)" = 6*(x 8)"=6*8*x 7 =48* x 7
2. Производная суммы равна сумме производных
(f + g)"=f" + g"
Пример 6. Найдите производную функции y= x 100 +sin x
Функция представляет собой сумму двух функций, производные которых мы можем найти по таблице. Так как (x 100)"=100 x 99 и (sin x)"=cos x. Производная суммы будет равна сумме данных производных:
(x 100 +sin x)"= 100 x 99 +cos x
3. Производная разности равна разности производных
(f – g)"=f" – g"
Пример 7. Найдите производную функции y= x 100 – cos x
Эта функция представляет собой разность двух функции, производные которых мы также можем найти по таблице. Тогда производная разности равна разности производных и не забудем поменять знак, так как (cos x)"= – sin x.
(x 100 – cos x)"= 100 x 99 + sin x
Пример 8. Найдите производную функции y=e x +tg x– x 2 .
В этой функции есть и сумма и разность, найдем производные от каждого слагаемого:
(e x)"=e x , (tg x)"=1/cos 2 x, (x 2)"=2 x. Тогда производная исходной функции равна:
(e x +tg x– x 2)"= e x +1/cos 2 x –2 x
4. Производная произведения
(f * g)"=f" * g + f * g"
Пример 9. Найдите производную функции y= cos x *e x
Для этого сначала найдем производного каждого множителя (cos x)"=–sin x и (e x)"=e x . Теперь подставим все в формулу произведения. Производную первой функции умножим на вторую и прибавим произведение первой функции на производную второй.
(cos x* e x)"= e x cos x – e x *sin x
5. Производная частного
(f / g)"= f" * g – f * g"/ g 2
Пример 10. Найдите производную функции y= x 50 /sin x
Чтобы найти производную частного, сначала найдем производную числителя и знаменателя отдельно: (x 50)"=50 x 49 и (sin x)"= cos x. Подставив в формулу производной частного получим:
(x 50 /sin x)"= 50x 49 *sin x – x 50 *cos x/sin 2 x
Производная сложной функции
Сложная функция - это функция, представленная композицией нескольких функций. Для нахождения производной сложной функции также существует правило:
(u (v))"=u"(v)*v"
Давайте разберемся как находить производную такой функции. Пусть y= u(v(x)) - сложная функция. Функцию u назовем внешней, а v - внутренней.
Например:
y=sin (x 3) - сложная функция.
Тогда y=sin(t) - внешняя функция
t=x 3 - внутренняя.
Давайте попробуем вычислить производную этой функции. По формуле необходимо перемножить производные внутренней и внешней функции.
(sin t)"=cos (t) - производная внешней функции (где t=x 3)
(x 3)"=3x 2 - производная внутренней функции
Тогда (sin (x 3))"= cos (x 3)* 3x 2 - производная сложной функции.
Приводятся примеры вычисления производных с применением формулы производной сложной функции.
Здесь мы приводим примеры вычисления производных от следующих функций:
;
;
;
;
.
Если функцию можно представить как сложную функцию в следующем виде:
,
то ее производная определяется по формуле:
.
В приводимых ниже примерах, мы будем записывать эту формулу в следующем виде:
.
где .
Здесь нижние индексы или ,
расположенные под знаком производной, обозначают переменные, по которой выполняется дифференцирование.
Обычно, в таблицах производных , приводятся производные функций от переменной x . Однако x - это формальный параметр. Переменную x можно заменить любой другой переменной. Поэтому, при дифференцировании функции от переменной , мы просто меняем, в таблице производных, переменную x на переменную u .
Простые примеры
Пример 1
Найти производную сложной функции
.
Решение
Запишем заданную функцию в эквивалентном виде:
.
В таблице производных находим:
;
.
По формуле производной сложной функции имеем:
.
Здесь .
Ответ
Пример 2
Найти производную
.
Решение
Выносим постоянную 5 за знак производной и из таблицы производных находим:
.
.
Здесь .
Ответ
Пример 3
Найдите производную
.
Решение
Выносим постоянную -1
за знак производной и из таблицы производных находим:
;
Из таблицы производных находим:
.
Применяем формулу производной сложной функции:
.
Здесь .
Ответ
Более сложные примеры
В более сложных примерах мы применяем правило дифференцирования сложной функции несколько раз. При этом мы вычисляем производную с конца. То есть разбиваем функцию на составные части и находим производные самых простых частей, используя таблицу производных . Также мы применяем правила дифференцирования суммы , произведения и дроби . Затем делаем подстановки и применяем формулу производной сложной функции.
Пример 4
Найдите производную
.
Решение
Выделим самую простую часть формулы и найдем ее производную. .
.
Здесь мы использовали обозначение
.
Находим производную следующей части исходной функции, применяя полученные результаты. Применяем правило дифференцирования суммы:
.
Еще раз применяем правило дифференцирования сложной функции.
.
Здесь .
Ответ
Пример 5
Найдите производную функции
.
Решение
Выделим самую простую часть формулы и из таблицы производных найдем ее производную. .
Применяем правило дифференцирования сложной функции.
.
Здесь
.
Как найти производную, как взять производную? На данном уроке мы научимся находить производные функций. Но перед изучением данной страницы я настоятельно рекомендую ознакомиться с методическим материалом Горячие формулы школьного курса математики . Справочное пособие можно открыть или закачать на странице Математические формулы и таблицы . Также оттуда нам потребуется Таблица производных , ее лучше распечатать, к ней часто придется обращаться, причем, не только сейчас, но и в оффлайне.
Есть? Приступим. У меня для Вас есть две новости: хорошая и очень хорошая. Хорошая новость состоит в следующем: чтобы научиться находить производные, совсем не обязательно знать и понимать, что такое производная . Более того, определение производной функции, математический, физический, геометрический смысл производной целесообразнее переварить позже, поскольку качественная проработка теории, по моему мнению, требует изучения ряда других тем, а также некоторого практического опыта.
И сейчас наша задача освоить эти самые производные технически. Очень хорошая новость состоит в том, что научиться брать производные не так сложно, существует довольно чёткий алгоритм решения (и объяснения) этого задания, интегралы или пределы , например, освоить труднее.
Советую следующий порядок изучения темы : во-первых, эта статья. Затем нужно прочитать важнейший урок Производная сложной функции . Эти два базовых занятия позволят поднять Ваши навыки с полного нуля. Далее можно будет ознакомиться с более сложными производными в статье Сложные производные. Логарифмическая производная . Если планка окажется слишком высока, то сначала прочитайте вещь Простейшие типовые задачи с производной . Помимо нового материала, на уроке рассмотрены другие, более простые типы производных, и есть прекрасная возможность улучшить свою технику дифференцирования. Кроме того, в контрольных работах почти всегда встречаются задания на нахождение производных функций, которые заданы неявно или параметрически. Такой урок тоже есть: Производные неявных и параметрически заданных функций .
Я попытаюсь в доступной форме, шаг за шагом, научить Вас находить производные функций. Вся информация изложена подробно, простыми словами.
Собственно, сразу рассмотрим пример:
Пример 1
Найти производную функции
Решение:
Это простейший пример, пожалуйста, найдите его в таблице производных элементарных функций. Теперь посмотрим на решение и проанализируем, что же произошло? А произошла следующая вещь: у нас была функция , которая в результате решения превратилась в функцию .
Говоря совсем просто, для того чтобы найти производную функции, нужно по определенным правилам превратить её в другую функцию . Посмотрите еще раз на таблицу производных – там функции превращаются в другие функции. Единственным исключением является экспоненциальная функция , которая превращается сама в себя. Операция нахождения производной называется дифференцированием .
Обозначения : Производную обозначают или .
ВНИМАНИЕ, ВАЖНО! Забыть поставить штрих (там, где надо), либо нарисовать лишний штрих (там, где не надо) – ГРУБАЯ ОШИБКА! Функция и её производная – это две разные функции!
Вернемся к нашей таблице производных. Из данной таблицы желательно запомнить наизусть : правила дифференцирования и производные некоторых элементарных функций, особенно:
производную константы:
, где – постоянное число;
производную степенной функции:
, в частности: , , .
Зачем запоминать? Данные знания являются элементарными знаниями о производных. И если Вы не сможете ответить преподавателю на вопрос «Чему равна производная числа?», то учеба в ВУЗе может для Вас закончиться (лично знаком с двумя реальными случаями из жизни). Кроме того, это наиболее распространенные формулы, которыми приходится пользоваться практически каждый раз, когда мы сталкиваемся с производными.
В реальности простые табличные примеры – редкость, обычно при нахождении производных сначала используются правила дифференцирования, а затем – таблица производных элементарных функций.
В этой связи переходим к рассмотрению правил дифференцирования :
1) Постоянное число можно (и нужно) вынести за знак производной
Где – постоянное число (константа)
Пример 2
Найти производную функции
Смотрим в таблицу производных. Производная косинуса там есть, но у нас .
Самое время использовать правило, выносим постоянный множитель за знак производной:
А теперь превращаем наш косинус по таблице:
Ну и результат желательно немного «причесать» – ставим минус на первое место, заодно избавляясь от скобок:
2) Производная суммы равна сумме производных
Пример 3
Найти производную функции
Решаем. Как Вы, наверное, уже заметили, первое действие, которое всегда выполняется при нахождении производной, состоит в том, что мы заключаем в скобки всё выражение и ставим штрих справа вверху:
Применяем второе правило:
Обратите внимание, что для дифференцирования все корни, степени нужно представить в виде , а если они находятся в знаменателе, то переместить их вверх. Как это сделать – рассмотрено в моих методических материалах.
Теперь вспоминаем о первом правиле дифференцирования – постоянные множители (числа) выносим за знак производной:
Обычно в ходе решения эти два правила применяют одновременно (чтобы не переписывать лишний раз длинное выражение).
Все функции, находящиеся под штрихами, являются элементарными табличными функциями, с помощью таблицы осуществляем превращение:
Можно всё оставить в таком виде, так как штрихов больше нет, и производная найдена. Тем не менее, подобные выражения обычно упрощают:
Все степени вида желательно снова представить в виде корней, степени с отрицательными показателями – сбросить в знаменатель. Хотя этого можно и не делать, ошибкой не будет.
Пример 4
Найти производную функции
Попробуйте решить данный пример самостоятельно (ответ в конце урока). Желающие также могут воспользоваться интенсивным курсом в pdf-формате, который особенно актуален, если у вас в распоряжении совсем мало времени.
3) Производная произведения функций
Вроде бы по аналогии напрашивается формула …., но неожиданность состоит в том, что:
Эта необычное правило (как, собственно, и другие) следует из определения производной . Но с теорией мы пока повременим – сейчас важнее научиться решать:
Пример 5
Найти производную функции
Здесь у нас произведение двух функций, зависящих от .
Сначала применяем наше странное правило, а затем превращаем функции по таблице производных:
Сложно? Вовсе нет, вполне доступно даже для чайника.
Пример 6
Найти производную функции
В данной функции содержится сумма и произведение двух функций – квадратного трехчлена и логарифма . Со школы мы помним, что умножение и деление имеют приоритет перед сложением и вычитанием.
Здесь всё так же. СНАЧАЛА мы используем правило дифференцирования произведения:
Теперь для скобки используем два первых правила:
В результате применения правил дифференцирования под штрихами у нас остались только элементарные функции, по таблице производных превращаем их в другие функции:
Готово.
При определенном опыте нахождения производных, простые производные вроде не обязательно расписывать так подробно. Вообще, они обычно решаются устно, и сразу записывается, что .
Пример 7
Найти производную функции
Это пример для самостоятельного решения (ответ в конце урока)
4) Производная частного функций
В потолке открылся люк, не пугайся, это глюк.
А вот это вот суровая действительность:
Пример 8
Найти производную функции
Чего здесь только нет – сумма, разность, произведение, дробь…. С чего бы начать?! Есть сомнения, нет сомнений, но, В ЛЮБОМ СЛУЧАЕ для начала рисуем скобочки и справа вверху ставим штрих:
Теперь смотрим на выражение в скобках, как бы его упростить? В данном случае замечаем множитель, который согласно первому правилу целесообразно вынести за знак производной.
Начальный уровень
Производная функции. Исчерпывающее руководство (2019)
Представим себе прямую дорогу, проходящую по холмистой местности. То есть она идет то вверх, то вниз, но вправо или влево не поворачивает. Если ось направить вдоль дороги горизонтально, а - вертикально, то линия дороги будет очень похожа на график какой-то непрерывной функции:
Ось - это некий уровень нулевой высоты, в жизни мы используем в качестве него уровень моря.
Двигаясь вперед по такой дороге, мы также движемся вверх или вниз. Также можем сказать: при изменении аргумента (продвижение вдоль оси абсцисс) изменяется значение функции (движение вдоль оси ординат). А теперь давай подумаем, как определить «крутизну» нашей дороги? Что это может быть за величина? Очень просто: на сколько изменится высота при продвижении вперед на определенное расстояние. Ведь на разных участках дороги, продвигаясь вперед (вдоль оси абсцисс) на один километр, мы поднимемся или опустимся на разное количество метров относительно уровня моря (вдоль оси ординат).
Продвижение вперед обозначим (читается «дельта икс»).
Греческую букву (дельта) в математике обычно используют как приставку, означающую «изменение». То есть - это изменение величины, - изменение; тогда что такое? Правильно, изменение величины.
Важно: выражение - это единое целое, одна переменная. Никогда нельзя отрывать «дельту» от «икса» или любой другой буквы! То есть, например, .
Итак, мы продвинулись вперед, по горизонтали, на. Если линию дороги мы сравниваем с графиком функции, то как мы обозначим подъем? Конечно, . То есть, при продвижении вперед на мы поднимаемся выше на.
Величину посчитать легко: если в начале мы находились на высоте, а после перемещения оказались на высоте, то. Если конечная точка оказалась ниже начальной, будет отрицательной - это означает, что мы не поднимаемся, а спускаемся.
Вернемся к «крутизне»: это величина, которая показывает, насколько сильно (круто) увеличивается высота при перемещении вперед на единицу расстояния:
Предположим, что на каком-то участке пути при продвижении на км дорога поднимается вверх на км. Тогда крутизна в этом месте равна. А если дорога при продвижении на м опустилась на км? Тогда крутизна равна.
А теперь рассмотрим вершину какого-нибудь холма. Если взять начало участка за полкилометра до вершины, а конец - через полкилометра после него, видно, что высота практически одинаковая.
То есть, по нашей логике выходит, что крутизна здесь почти равна нулю, что явно не соответствует действительности. Просто на расстоянии в км может очень многое поменяться. Нужно рассматривать более маленькие участки для более адекватной и точной оценки крутизны. Например, если измерять изменение высоты при перемещении на один метр, результат будет намного точнее. Но и этой точности нам может быть недостаточно - ведь если посреди дороги стоит столб, мы его можем просто проскочить. Какое расстояние тогда выберем? Сантиметр? Миллиметр? Чем меньше, тем лучше!
В реальной жизни измерять расстояние с точностью до милиметра - более чем достаточно. Но математики всегда стремятся к совершенству. Поэтому было придумано понятие бесконечно малого , то есть величина по модулю меньше любого числа, которое только можем назвать. Например, ты скажешь: одна триллионная! Куда уж меньше? А ты подели это число на - и будет еще меньше. И так далее. Если хотим написать, что величина бесконечно мала, пишем так: (читаем «икс стремится к нулю»). Очень важно понимать, что это число не равно нулю! Но очень близко к нему. Это значит, что на него можно делить.
Понятие, противоположное бесконечно малому - бесконечно большое (). Ты уже наверняка сnалкивался с ним, когда занимался неравенствами: это число по модулю больше любого числа, которое только можешь придумать. Если ты придумал самое большое из возможных чисел, просто умножь его на два, и получится еще больше. А бесконечность еще больше того, что получится. Фактически бесконечно большое и бесконечно малое обратны друг другу, то есть при, и наоборот: при.
Теперь вернемся к нашей дороге. Идеально посчитанная крутизна - это куртизна, вычисленная для бесконечно малого отрезка пути, то есть:
Замечу, что при бесконечно малом перемещении изменение высоты тоже будет бесконечно мало. Но напомню, бесконечно малое - не значит равное нулю. Если поделить друг на друга бесконечно малые числа, может получиться вполне обычное число, например, . То есть одна малая величина может быть ровно в раза больше другой.
К чему все это? Дорога, крутизна… Мы ведь не в автопробег отправляемся, а математику учим. А в математике все точно так же, только называется по-другому.
Понятие производной
Производная функции это отношение приращения функции к приращению аргумента при бесконечно малом приращение аргумента.
Приращением в математике называют изменение. То, насколько изменился аргумент () при продвижении вдоль оси, называется приращением аргумента и обозначается То, насколько изменилась функция (высота) при продвижении вперед вдоль оси на расстояние, называется приращением функции и обозначается.
Итак, производная функции - это отношение к при. Обозначаем производную той же буквой, что и функцию, только со штрихом сверху справа: или просто. Итак, запишем формулу производной, используя эти обозначения:
Как и в аналогии с доро́гой здесь при возрастании функции производная положительна, а при убывании - отрицательна.
А бывает ли производная равна нулю? Конечно. Например, если мы едем по ровной горизонтальной дороге, крутизна равна нулю. И правда, высота ведь не совсем меняется. Так и с производной: производная постоянной функции (константы) равна нулю:
так как приращение такой функции равно нулю при любом.
Давай вспомним пример с вершиной холма. Там получалось, что можно так расположить концы отрезка по разные стороны от вершины, что высота на концах оказывается одинаковой, то есть отрезок располагается параллельно оси:
Но большие отрезки - признак неточного измерения. Будем поднимать наш отрезок вверх параллельно самому себе, тогда его длина будет уменьшаться.
В конце концов, когда мы будем бесконечно близко к вершине, длина отрезка станет бесконечно малой. Но при этом он остался параллелен оси, то есть разность высот на его концах равна нулю (не стремится, а именно равна). Значит, производная
Понять это можно так: когда мы стоим на самой вершине, меленькое смещение влево или вправо изменяет нашу высоту ничтожно мало.
Есть и чисто алгебраическое объяснение: левее вершины функция возрастает, а правее - убывает. Как мы уже выяснили ранее, при возрастании функции производная положительна, а при убывании - отрицательна. Но меняется она плавно, без скачков (т.к. дорога нигде не меняет наклон резко). Поэтому между отрицательными и положительными значениями обязательно должен быть. Он и будет там, где функция ни возрастает, ни убывает - в точке вершины.
То же самое справедливо и для впадины (область, где функция слева убывает, а справа - возрастает):
Немного подробнее о приращениях.
Итак, мы меняем аргумент на величину. Меняем от какого значения? Каким он (аргумент) теперь стал? Можем выбрать любую точку, и сейчас будем от нее плясать.
Рассмотрим точку с координатой. Значение функции в ней равно. Затем делаем то самое приращение: увеличиваем координату на. Чему теперь равен аргумент? Очень легко: . А чему теперь равно значение функции? Куда аргумент, туда и функция: . А что с приращением функции? Ничего нового: это по-прежнему величина, на которую изменилась функция:
Потренируйся находить приращения:
- Найди приращение функции в точке при приращении аргумента, равном.
- То же самое для функции в точке.
Решения:
В разных точках при одном и том же приращении аргумента приращение функции будет разным. Значит, и производная в каждой точке своя (это мы обсуждали в самом начале - крутизна дороги в разных точках разная). Поэтому когда пишем производную, надо указывать, в какой точке:
Степенная функция.
Степенной называют функцию, где аргумент в какой-то степени (логично, да?).
Причем - в любой степени: .
Простейший случай - это когда показатель степени:
Найдем ее производную в точке. Вспоминаем определение производной:
Итак, аргумент меняется с до. Каково приращение функции?
Приращение - это. Но функция в любой точке равна своему аргументу. Поэтому:
Производная равна:
Производная от равна:
b) Теперь рассмотрим квадратичную функцию (): .
А теперь вспомним, что. Это значит, что значением приращения можно пренебречь, так как оно бесконечно мало, и поэтому незначительно на фоне другого слагаемого:
Итак, у нас родилось очередное правило:
c) Продолжаем логический ряд: .
Это выражение можно упростить по-разному: раскрыть первую скобку по формуле сокращенного умножения куб суммы, или же разложить все выражение на множители по формуле разности кубов. Попробуй сделать это сам любым из предложенных способов.
Итак, у меня получилось следующее:
И снова вспомним, что. Это значит, что можно пренебречь всеми слагаемыми, содержащими:
Получаем: .
d) Аналогичные правила можно получить и для больших степеней:
e) Оказывается, это правило можно обобщить для степенной функции с произвольным показателем, даже не целым:
(2) |
Можно сформулировать правило словами: «степень выносится вперед как коэффициент, а потом уменьшается на ».
Докажем это правило позже (почти в самом конце). А сейчас рассмотрим несколько примеров. Найди производную функций:
- (двумя способами: по формуле и используя определение производной - посчитав приращение функции);
- . Не поверишь, но это степенная функция. Если у тебя возникли вопросы типа «Как это? А где же степень?», вспоминай тему « »!
Да-да, корень - это тоже степень, только дробная: .
Значит, наш квадратный корень - это всего лишь степень с показателем:
.
Производную ищем по недавно выученной формуле:Если в этом месте снова стало непонятно, повторяй тему « »!!! (про степень с отрицательным показателем)
- . Теперь показатель степени:
А теперь через определение (не забыл еще?):
;
.
Теперь, как обычно, пренебрегаем слагаемым, содержащим:
. - . Комбинация предыдущих случаев: .
Тригонометрические функции.
Здесь будем использовать один факт из высшей математики:
При выражение.
Доказательство ты узнаешь на первом курсе института (а чтобы там оказаться, надо хорошо сдать ЕГЭ). Сейчас только покажу это графически:
Видим, что при функция не существует - точка на графике выколота. Но чем ближе к значению, тем ближе функция к. Это и есть то самое «стремится».
Дополнительно можешь проверить это правило с помощью калькулятора. Да-да, не стесняйся, бери калькулятор, мы ведь не на ЕГЭ еще.
Итак, пробуем: ;
Не забудь перевести калькулятор в режим «Радианы»!
и т.д. Видим, что чем меньше, тем ближе значение отношения к.
a) Рассмотрим функцию. Как обычно, найдем ее приращение:
Превратим разность синусов в произведение. Для этого используем формулу (вспоминаем тему « »): .
Теперь производная:
Сделаем замену: . Тогда при бесконечно малом также бесконечно мало: . Выражение для принимает вид:
А теперь вспоминаем, что при выражение. А также, что если бесконечно малой величиной можно пренебречь в сумме (то есть при).
Итак, получаем следующее правило: производная синуса равна косинусу :
Это базовые («табличные») производные. Вот они одним списком:
Позже мы к ним добавим еще несколько, но эти - самые важные, так как используются чаще всего.
Потренируйся:
- Найди производную функции в точке;
- Найди производную функции.
Решения:
- Сперва найдем производную в общем виде, а затем подставим вместо его значение:
;
. - Тут у нас что-то похожее на степенную функцию. Попробуем привести ее к
нормальному виду:
.
Отлично, теперь можно использовать формулу:
.
. - . Ээээээ….. Что это????
Ладно, ты прав, такие производные находить мы еще не умеем. Здесь у нас комбинация нескольких типов функций. Чтобы работать с ними, нужно выучить еще несколько правил:
Экспонента и натуральный логарифм.
Есть в математике такая функция, производная которой при любом равна значению самой функции при этом же. Называется она «экспонента», и является показательной функцией
Основание этой функции - константа - это бесконечная десятичная дробь, то есть число иррациональное (такое как). Его называют «число Эйлера», поэтому и обозначают буквой.
Итак, правило:
Запомнить очень легко.
Ну и не будем далеко ходить, сразу же рассмотрим обратную функцию. Какая функция является обратной для показательной функции? Логарифм:
В нашем случае основанием служит число:
Такой логарифм (то есть логарифм с основанием) называется «натуральным», и для него используем особое обозначение: вместо пишем.
Чему равен? Конечно же, .
Производная от натурального логарифма тоже очень простая:
Примеры:
- Найди производную функции.
- Чему равна производная функции?
Ответы: Экспонента и натуральный логарифм - функции уникально простые с точки зрения производной. Показательные и логарифмические функции с любым другим основанием будут иметь другую производную, которую мы с тобой разберем позже, после того как пройдем правила дифференцирования.
Правила дифференцирования
Правила чего? Опять новый термин, опять?!...
Дифференцирование - это процесс нахождения производной.
Только и всего. А как еще назвать этот процесс одним словом? Не производнование же... Дифференциалом математики называют то самое приращение функции при. Происходит этот термин от латинского differentia — разность. Вот.
При выводе всех этих правил будем использовать две функции, например, и. Нам понадобятся также формулы их приращений:
Всего имеется 5 правил.
Константа выносится за знак производной.
Если - какое-то постоянное число (константа), тогда.
Очевидно, это правило работает и для разности: .
Докажем. Пусть, или проще.
Примеры.
Найдите производные функций:
- в точке;
- в точке;
- в точке;
- в точке.
Решения:
- (производная одинакова во всех точках, так как это линейная функция, помнишь?);
Производная произведения
Здесь все аналогично: введем новую функцию и найдем ее приращение:
Производная:
Примеры:
- Найдите производные функций и;
- Найдите производную функции в точке.
Решения:
Производная показательной функции
Теперь твоих знаний достаточно, чтобы научиться находить производную любой показательной функции, а не только экспоненты (не забыл еще, что это такое?).
Итак, где - это какое-то число.
Мы уже знаем производную функции, поэтому давай попробуем привести нашу функцию к новому основанию:
Для этого воспользуемся простым правилом: . Тогда:
Ну вот, получилось. Теперь попробуй найти производную, и не забудь, что эта функция - сложная.
Получилось?
Вот, проверь себя:
Формула получилась очень похожая на производную экспоненты: как было, так и осталось, появился только множитель, который является просто числом, но не переменной.
Примеры:
Найди производные функций:
Ответы:
Это просто число, которое невозможно посчитать без калькулятора, то есть никак не записать в более простом виде. Поэтому в ответе его в таком виде и оставляем.
Производная логарифмической функции
Здесь аналогично: ты уже знаешь производную от натурального логарифма:
Поэтому, чтобы найти произвольную от логарифма с другим основанием, например, :
Нужно привести этот логарифм к основанию. А как поменять основание логарифма? Надеюсь, ты помнишь эту формулу:
Только теперь вместо будем писать:
В знаменателе получилась просто константа (постоянное число, без переменной). Производная получается очень просто:
Производные показательной и логарифмической функций почти не встречаются в ЕГЭ, но не будет лишним знать их.
Производная сложной функции.
Что такое «сложная функция»? Нет, это не логарифм, и не арктангенс. Данные функции может быть сложны для понимания (хотя, если логарифм тебе кажется сложным, прочти тему «Логарифмы» и все пройдет), но с точки зрения математики слово «сложная» не означает «трудная».
Представь себе маленький конвейер: сидят два человека и проделывают какие-то действия с какими-то предметами. Например, первый заворачивает шоколадку в обертку, а второй обвязывает ее ленточкой. Получается такой составной объект: шоколадка, обернутая и обвязанная ленточкой. Чтобы съесть шоколадку, тебе нужно проделать обратные действия в обратном порядке.
Давай создадим подобный математический конвейер: сперва будем находить косинус числа, а затем полученное число возводить в квадрат. Итак, нам дают число (шоколадка), я нахожу его косинус (обертка), а ты затем возводишь то, что у меня получилось, в квадрат (обвязываешь ленточкой). Что получилось? Функция. Это и есть пример сложной функции: когда для нахождения ее значения мы проделываем первое действие непосредственно с переменной, а потом еще второе действие с тем, что получилось в результате первого.
Мы вполне можем проделывать те же действия и в обратном порядке: сначала ты возводишь в квадрат, а я затем ищу косинус полученного числа: . Несложно догадаться, что результат будет почти всегда разный. Важная особенность сложных функций: при изменении порядка действий функция меняется.
Другими словами, сложная функция - это функция, аргументом которой является другая функция : .
Для первого примера, .
Второй пример: (то же самое). .
Действие, которое делаем последним будем называть «внешней» функцией , а действие, совершаемое первым - соответственно «внутренней» функцией (это неформальные названия, я их употребляю только для того, чтобы объяснить материал простым языком).
Попробуй определить сам, какая функция является внешней, а какая внутренней:
Ответы: Разделение внутренней и внешней функций очень похоже на замену переменных: например, в функции
- Первым будем выполнять какое действие? Сперва посчитаем синус, а только потом возведем в куб. Значит, внутренняя функция, а внешняя.
А исходная функция является их композицией: . - Внутренняя: ; внешняя: .
Проверка: . - Внутренняя: ; внешняя: .
Проверка: . - Внутренняя: ; внешняя: .
Проверка: . - Внутренняя: ; внешняя: .
Проверка: .
производим замену переменных и получаем функцию.
Ну что ж, теперь будем извлекать нашу шоколадку - искать производную. Порядок действий всегда обратный: сначала ищем производную внешней функции, затем умножаем результат на производную внутренней функции. Применительно к исходному примеру это выглядит так:
Другой пример:
Итак, сформулируем, наконец, официальное правило:
Алгоритм нахождения производной сложной функции:
Вроде бы все просто, да?
Проверим на примерах:
Решения:
1) Внутренняя: ;
Внешняя: ;
2) Внутренняя: ;
(только не вздумай теперь сократить на! Из под косинуса ничего не выносится, помнишь?)
3) Внутренняя: ;
Внешняя: ;
Сразу видно, что здесь трехуровневая сложная функция: ведь - это уже сама по себе сложная функция, а из нее еще извлекаем корень, то есть выполняем третье действие (шоколадку в обертке и с ленточкой кладем в портфель). Но пугаться нет причин: все-равно «распаковывать» эту функцию будем в том же порядке, что и обычно: с конца.
То есть сперва продифференцируем корень, затем косинус, и только потом выражение в скобках. А потом все это перемножим.
В таких случаях удобно пронумеровать действия. То есть, представим, что нам известен. В каком порядке будем совершать действия, чтобы вычислить значение этого выражения? Разберем на примере:
Чем позже совершается действие, тем более «внешней» будет соответствующая функция. Последовательность действий - как и раньше:
Здесь вложенность вообще 4-уровневая. Давай определим порядок действий.
1. Подкоренное выражение. .
2. Корень. .
3. Синус. .
4. Квадрат. .
5. Собираем все в кучу:
ПРОИЗВОДНАЯ. КОРОТКО О ГЛАВНОМ
Производная функции - отношение приращения функции к приращению аргумента при бесконечно малом приращении аргумента:
Базовые производные:
Правила дифференцирования:
Константа выносится за знак производной:
Производная суммы:
Производная произведения:
Производная частного:
Производная сложной функции:
Алгоритм нахождения производной от сложной функции:
- Определяем «внутреннюю» функцию, находим ее производную.
- Определяем «внешнюю» функцию, находим ее производную.
- Умножаем результаты первого и второго пунктов.