Значение хроматина. Хроматин. Классификация хроматина (гетерохроматин и эухроматин). Метафазная хромосома. Морфология хромосом

Почти вся ДНК клетки заключена в ядре. ДНК - это длинный линейный полимер, содержащий много миллионов нуклеотидов. Четыре типа нуклеотидов ДНК, различаются азотистыми основаниями . Нуклеотиды располагаются в последовательности, которая преставляет собой кодовую форму записи наследственной информации.
Для реализации этой информации она переписывается, или транскрибируется в более короткие цепи и-РНК. Символами генетического кода в и-РНК служат тройки нуклеотидов - кодоны . Каждый кодон обозначает одну из аминокислот. Каждой молекуле ДНК соответствует отдельная хромосома, а вся генетическая информация, хранящаяся в хромосомах организма, называется геном .
Геном высших организмов содержит избыточное количество ДНК, это не связано со сложностью организма. Известно, что геном человека содержит ДНК в 700 раз больше, чем бактерия кишечная палочка. В то же время геном некоторых земноводных и растений в 30 раз больше, чем геном человека. У позвоночных более чем 90% ДНК не имеет существенного значения. Информация, хранящаяся в ДНК, организуется, считывается и реплицируется разнообразными белками.
Основными структурными белками ядра являются белки-гистоны , характерные только для эукариотических клеток. Гистоны - небольшие сильноосновные белки. Это свойство связано с тем, что они обогащены основными аминокислотами - лизином и аргинином. Гистоны характеризует также отсутствие триптофана. Они относятся к наиболее консервативным из всех известных белков, например, Н4 у коровы и гороха отличает всего два аминокислотных остатка. Комплекс белков с ДНК в клеточных ядрах эукариот обозначается как хроматин.
При наблюдении клеток с помощью светового микроскопа хроматин выявляется в ядрах как зоны плотного вещества, хорошо окрашивающиеся основными красителями. Углубленное изучение структуры хроматина началось в 1974 г., когда супругами Адой и Дональдом Олинс была описана его основная структурная единица, она была названа нуклеосомой.
Нуклеосомы позволяют более компактно уложить длинную цепь молекулы ДНК. Так, в каждой хромосоме человека длина нити ДНК в тысячи раз превышает размер ядра. На электронных фотографиях нуклеосома имеет вид дисковидной частицы, имеющей диаметр около 11 нм. Ее сердцевиной является комплекс из восьми молекул гистонов, в котором четыре гистона Н2А, Н2В, Н3 и Н4 представлены двумя молекулами каждый. Эти гистоны образуют внутреннюю часть нуклеосомы - гистоновый кор. На гистоновый кор накручена молекула ДНК, содержащая 146 пар нуклеотидов. Она образует два неполных витка вокруг гистонового кора нуклеосомы, на один виток приходится 83 нуклеотидных пары. Каждая нуклеосома отделена от следующей линкерной последовательностью ДНК, длина которой может составлять до 80 нуклеотидов. Такая структура напоминает бусы на нитке.
Расчет показывает, что ДНК человека, имеющая 6х10 9 нуклеотидных пар, должна содержать 3х10 7 нуклеосом. В живых клетках хроматин редко имеет такой вид. Нуклеосомы связаны друг с другом в еще более компактные структуры. Большая часть хроматина имеет вид фибрилл диаметром 30 нм. Такая упаковка осуществляется с помощью еще одного гистона Н1. На каждую нуклеосому приходится одна молекула Н1, которая стягивает линкерный участок в тех точках, где ДНК входит на гистоновый кор и выходит с него.
Упаковка ДНК значительно уменьшает ее длину. Тем не менее средняя длина хроматиновой нити одной хромосомы на этой стадии должна превышать размеры ядра в 100 раз.
Структура хроматина более высокого порядка представляет собой серию петель, каждая из них содержит примерно от 20 до 100 тысяч пар нуклеотидов. В основании петли располагается сайт-специфический ДНК-связывающий белок. Такие белки узнают определенные нуклеотидные последовательности (сайты) двух отстоящих участков хроматиновой нити и сближают их.

ХРОМАТИН - материальный субстрат хромосом, представляющий собой многокомпонентную систему молекул, находящихся в определенных пространственных, химических и физических взаимоотношениях.

Основным структурным и химическим компонентом хроматина служит комплекс дезоксирибонуклеиновой кислоты (см.) с гистонами (см.) и негистоновыми белками (см. Нуклеопротеиды), иногда - с протаминами (см.). Другие компоненты хроматина - РНК (см. Рибонуклеиновые кислоты), липиды (см.), углеводы (см.), неорганические вещества прямо или косвенно связаны с белками (см.). Количественные соотношения компонентов хроматина существенно зависят от типа клеток; их относительное содержание чаще всего соответствует следующим величинам: ДНК 30-45%, гистоны 30-50%, негистоновые белки 2-35%, РНК и другие компоненты 1 -10%.

Термин «хроматин» был введен в 1880 году немецким ученым В. Флеммингом для обозначения окрашивающихся структур фиксированных ядер клеток (за исключением ядрышек). Преобладающая часть таких структур окрашивается основными красителями (базохроматин), а некоторые - кислотными (оксихроматин). Выделяемые в ядре хроматиновые структуры имеют вид глыбок или сети фибрилл, различающихся в одной клетке и в клетках разных объектов по степени дисперсности. Наиболее интенсивно окрашивающиеся глыбки - хромоцентры (кариосомы) иногда называли ложными ядрышками. Хромо центры имеют, по-видимому, повышенную адгезивную способность, поскольку они легко входят в контакт с ядерной оболочкой, а также агрегируют друг с другом.

Структура хроматина в ядрах интерфазных клеток, то есть клеток, находящихся в периоде между следующими друг за другом митозами (см.), зависит от стадии развития организма (см. Онтогенез , Эмбриональное развитие). У ряда исследованных объектов в первых 2-4-х бластомерах хроматиновые структуры не выявляются, на стадии 8-10 бластомеров в ядре выявляются мелкие хроматиновые глыбки, приобретающие в неделящихся дифференцированных клетках высокоспецифичный характер для каждого типа клеток (см. Деление клетки). В процессе старения этих клеток наблюдают усиление конденсации хроматина.

Изоэлектрическая точка (см.) хроматина зависит от количества белков, входящих в комплекс с ДНК, и находится в интервале значений pH 3,0-5,0. Патологические изменения хроматина как морфологические структуры сопровождаются изменениями pH, при которых находится изоэлектрическая точка. Это отмечают, например, при воздействиях ионизирующего излучения, старении и др. При различных патологических состояниях может меняться и степень дисперсности хроматина. Так, опухолевые клетки характеризуются наличием большого числа хромоцентров, имеющих иногда достаточно крупные размеры; при болезни Дауна (см. Дауна болезнь) хроматин по сравнению с нормой более конденсирован, изменены константы его связывания с красителями; при синдроме Блума (см. Пойкилодермия) хроматин имеет пылевидную или сегментированную структуру. При некоторых видах патологии отмечено усиление конденсации хроматина и концентрация его крупных глыбок на внутренней поверхности ядерной оболочки (гиперхроматоз).

Структуры хроматина и половой хроматин (см.) наблюдают с помощью световой микроскопии. Форма и размер этих структур зависят от способа фиксации клеток. Это свидетельствует о том, что выявляемая после фиксации морфология хроматина отражает не его истинную структуру в живой клетке, а лишь возможность разных способов его организации. В ядрах живых клеток, как правило, компоненты, соответствующие хроматиновым структурам, не выявляются. Однако незначительные повреждения (раздражения) в ряде случаев приводят к обратимому появлению таких структур в прежде гомогенном ядре (напр., при воздействии наркотических анальгетиков и др.). Известен и противоположный эффект - обратимая «гомогенизация» структур, выявляемая в норме в ядрах живых клеток. Естественно, что оптическая гомогенность ядра не тождественна структурной гомогенности хроматина на уровнях более низких, чем позволяет видеть разрешающая способность световой микроскопии. Поэтому сейчас термин «хроматин» утрачивает свое морфологическое содержание, его чаще относят к химическому субстрату хромосом (см.) - сложному комплексу биополимеров. Организующие этот комплекс в единую систему в основном слабые (нековалентные) взаимодействия, равно как и конформация (см.) образующих его молекул, существенным образом зависят от хим. состава, количественного соотношения взаимодействующих компонентов и внешних факторов. Это определяет возможность различных способов организации комплекса в целом и (или) благодаря структурной динамике организации его отдельных структурных компонентов. Полагают, что набор таких способов организации (состояний) ограничен, а переходы между ними имеют характер фазовых переходов. Реализация состояния хроматина, по тем или иным причинам не соответствующего состоянию данной клетки в норме, является признаком патологии.

Установлено существование, по крайней мере, двух классов хроматина: 1) эухроматина, который деконденсируется во время интерфазы и конденсируется в митозе; 2) гетерохроматина, который остается компактным не только в митозе, но и в интерфазе, где его микроскопически идентифицируют в виде хромоцентров. Эухроматин является основной информационной частью генома, в которой преимущественно локализованы структурные гены с соответствующими регуляторными областями. Для гетерохроматина характерна поздняя репликация (см.) ДНК, входящей в его состав. В отличие от эухроматина гетерохроматин в структурном отношении более лабилен: иногда наблюдают его деконденсацию при голодании, действии низких температур и др. Установлено, что при воздействии ряда мутагенных факторов (см. Мутагены) химической и физической природы структурные повреждения чаще локализуются в гетерохроматиновых областях хромосом. Различают два типа гетерохроматина. Первым из них является структурный, постоянно конденсированный хроматин. Как правило, в нем не содержится генов (см. Ген), его ДНК представлена в основном короткими повторяющимися нуклеотидными последовательностями (у некоторых организмов - сателлитной ДНК). При пространственном сближении в результате хромосомных перестроек участков структурного гетерохроматина и эухроматина в ряде случаев ингибируется фенотипическое проявление генов (так называемый эффект положения гена). Активация генов, локализованных в эухроматине, при пространственном разобщении последнего с гетерохроматином может быть, согласно некоторым представлениям, одной из причин активации онкогенов, локализованных в ДНК хромосомы. В целом роль структурного гетерохроматина недостаточно ясна. Полагают, что он существен для процессов конъюгации хромосом (см.), взаимного расположения хромосом в ядре, прикрепления участков хромосом к ядерной оболочке, укладки хроматиновых фибрилл, защиты жизненно важных элементов хромосом, сближения ядрышкообразующих хромосом, эволюции кариотипа и др. Таким образом, предполагаемая роль структурного гетерохроматина заключается в регуляции пространственной организации и соответственно - функциональной активности хромосом.

У человека структурный гетеро-хроматин локализован в центромерных участках всех хромосом, в районах вторичных перетяжек хромосом 1, 9, 16-й пар, коротких плечах акроцентрических хромосом, в дистальной части длинного плеча Y -хромосомы и обрамляет блоки генов рибосомной РНК (ядрышкообразующие районы). На долю структурного гетерохроматина у человека приходится 10-15% всего хроматина. У разных лиц количество структурного гетерохроматина варьирует даже в пределах гомологичных хромосом. Обнаружено, что полиморфные варианты структурного гетерохроматина (см. Полиморфизм в генетике) у людей могут коррелировать с некоторыми наследственными заболеваниями, а возможно определять их или указывать на предрасположенность к ним.

Вторым типом гетерохроматина принято считать факультативный гетерохроматин, или инактивированный эухроматин. Этот тип хроматина сходен с гетерохроматином только в морфол. отношении: микроскопически он выявляется в интерфазном ядре в виде интенсивно красящихся глыбок разного размера. Основываясь на молекулярной организации и функциях, его правильнее считать одним из типов эухроматина. Он содержит структурные гены, фенотипически инактивированные путем конденсации (гетерохроматини-зации) эухроматина. Одним из типичных примеров факультативного гетерохроматина являются тельца Барра (X-хроматин).

Таким образом, функционирование хроматина как системы, в которой происходит начальный этап реализации наследственной информации, в значительной степени определяется пространственным распределением ее взаимозависимых конденсированных и де-конденсированных зон (согласно представлениям о физических процессах, лежащих в основе самоорганизации пространственной структуры хроматина,- микрофазовое расслоение системы). Распределение конденсированных и деконденсированных зон является отражением состояния системы в целом, что не исключает, однако, относительной автономности этих участков в ряде процессов. Известны случаи, когда путем конденсации хроматина осуществляется инактивация целых хромосом (например, одной из X-хромосом у женщин) или почти всего генома (напр., в эритроцитах птиц). В большинстве типов клеток доля активного хроматина составляет 2- 15%. По данным молекулярно-биол. анализа, в ряде случаев инактивация связана с появлением определенных подфракций гистона Н1 или замещением последнего другими гистонами, в частности гистоном Н5 (см. Нуклеопротеиды). В сперматозоидах некоторых животных репрессия генома реализуется на фоне замещения гистонов протаминами или подобными им белками.

Существенную роль в организации транскрипции (см.), в том числе через дифференциальную деконденсацию хроматина, отводят негистоновым белкам хроматина (НГБ). В их число входят также ферментные комплексы, ответственные за репарацию (см. Репарация генетических повреждений), репликацию, транскрипцию и модификацию нуклеиновых кислот (см.) и за некоторые ферментативные превращения ряда хромосомных белков. В ядрах клеток, в которых не происходит активной транскрипции, количество негистоновых белков хроматина существенно уменьшено. Например, зрелые гаметы в значительной степени освобождены от таких белков. Полагают, что в организации или поддержании транскрипции принимают участие негистоновые белки хроматина, прочно связанные с ДНК, среди которых, по-видимому, находится компонент, специфически связывающий комплекс гормон - рецептор, а также тесно связанные с нуклеосомами белки HMG14 и HMG17. Последние способны ингибировать деацетилирование гистонов, а этот процесс наряду с недометилированием ДНК представляет собой модификации, характерные для компонентов активных участков хроматина.

Важным для структурных переходов хроматина является способность белка хроматина А24 к расщеплению на гистон Н2а и полипептид убиквитин. Общей характеристикой участков транскрипционно активного хроматина из разных источников является повышенная чувствительность их ДНК к воздействию ряда нуклеаз (см.). При активации транскрипции такая чувствительность распространяется на участок молекулы ДНК в составе хроматина по протяженности примерно на два порядка больше, чем занимает ген. Все изложенное выше свидетельствует о значении в организации транскрипции более высоких уровней упаковки хроматина, чем его элементарная фибрилла, видимая в электронный микроскоп. Последняя при участии гистона Н1, расположенного наряду с негистоновыми белками хроматина HMG1 и HMG2 в основном на межнуклеосомной ДНК, представляет волокно диаметром около 10 нм. При этом монотонность нуклеосомной организации дезоксирибонуклеопротеидного (ДНП) волокна может нарушаться благодаря структурной динамике нуклеосом (см. Клетка), модификации гистонов при их фосфорилировании, ацетилировании, метилировании и рибозилировании.

Существенную роль отводят меж-молекулярным контактам, способным регулировать конденсацию ДНК на уровне нуклеосом. Нек-рые структурные переходы нуклеосом происходят при изменении ионной силы среды. В ядре клетки количество низкомолекулярных противоионов (ионов К+, Na+ и др.) по порядку величины равно числу фиксированных на макромолекулах (например, фосфатные группы ДНК) зарядов. Поэтому небольшие колебания в абсолютном количестве низкомолекулярных противоионов в ядре (например, при увеличении или уменьшении объема последнего) должны вызвать структурные переходы нуклеосом. Наконец, гистон Н1 может замещаться другими гистонами или их комплексами, имеющими большее сродство к ДНК, с соответствующей реорганизацией структуры фибриллы. Таким образом, возможность различных способов упаковки хроматина заложена уже на уровне различных полиморфных структурных вариантов элементарной фибриллы хроматина. Стабильность следующего уровня организации хроматина - неравномерных по диаметру (20-30 нм) фибрилл - обеспечивается, по-видимому, и гистоном Н1. Дальнейшая упаковка хроматиновых фибрилл реализуется, как полагают, путем самоорганизации системы с образованием конденсированных (глобулярных) зон и петель или независимых суперспирализованных областей (доменов). Домены характеризуются участком двойной спирали ДНК, специальным образом расположенным в пространстве, концы этой двойной спирали фиксированы, что ограничивает или исключает возможность ее вращения. Длина петли ДНК по контуру для разных объектов соответствует мол. весу (массе) ДНК порядка 10 000000- 100 000000. Изменение степени суперспирализации ДНК является еще одним важным фактором регуляции процессов экспрессии генов (см. Экспрессивность гена) через модификацию надмолекулярных систем хроматина. Суперспирализация ДНК изменяется также при действии ионизирующего излучения, некоторых химических соединений, активации нуклеаз и др. Указанные факторы вызывают однонитевые разрывы в молекулах ДНК, что приводит к релаксации в отдельных петлях ее исходной суперспиральной структуры. Этот процесс может вызывать перераспределение белков хроматина, поскольку ряд белков имеет различные константы связывания с линейной, кольцевой и суперспиральной ДНК.

Воздействие агентов, вызывающих диссоциацию белков, в частности гистонов хроматина (некоторые химимечсие мутагены, ионизирующие излучение, высокие концентрации солей, ионов водорода и др.), также приводит к изменению степени суперспиральности, поскольку сам процесс образования нуклеосом связан с реорганизацией суперспирали ДНК.

Полагают, что динамические возможности структуры хроматина нельзя рассматривать только как один из факторов, регулирующих транскрипцию. Действие всех остальных факторов регуляции, как внутри-, так и внеклеточных, реализуется через создание структуры хроматина, специфичной для каждого типа клеток, различающихся по характеру синтеза РНК. В этой связи все воздействия, изменяющие нормальные взаимоотношения между компонентами хроматина и тем самым - его структуру, должны приводить к патологическому функционированию этой системы. Существенное значение имеют изменения структуры хроматина, предрасполагающие к последующему генетическому неблагополучию. Так, полагают, что важное значение может иметь реализация состояний хроматина, при которых снижена вероятность узнавания ферментами репарации повреждений ДНК - явления, которое, по-видимому, служит одной из ведущих причин феномена нестабильности хромосом и характерной для них группы наследственных болезней (см. Хромосомные болезни). Отмечена связь некоторых изменений структуры хроматина с увеличением частоты конъюгации негомологичных хромосом - одной из возможных причин анеуплоидий (см. Мутация). При действии генетически опасных агентов на клетки и организмы кроме генетических повреждений самой ДНК (генные мутации) и указанных выше перестроек структуры хроматина как системы возникают многочисленные нарушения во взаимодействиях между компонентами хроматина: частичная диссоциация белков хроматина, образование межмолекулярных «сшивок» между ДНК и белками, распад фибриллы хроматина на нуклеосомы и др., что в свою очередь усиливает патологический эффект такого агента.

Библиогр.: Андрееве. Г. и Спитковский Д. М. Биофизические модели самоорганизации пространственной структуры хроматина, Докл. АН СССР, т. 269, № 6, с. 1500, 1983; Г е о р г и е в Г. П. и БакаевВ. В. Три уровня структурной организации хромосом эукариот, Молек. биол., т. 12, № 6, с. 1205, 1978, библиогр.; H е й ф а х А. А. и Т и м о ф e е в а М. Я. Проблемы регуляции в молекулярной биологии развития, М., 1978; Прокофье-ва-Бе льговская А. А. Значение негистоновых белков в преобразованиях и генетическом функционировании хромосом, Молек. биол., т. 16, Na 4, с. 771, 1982; Теоретические проблемы медицинской генетики, под ред. А. Ф. Захарова, с. 52, М., 1979; Chromatin structure and function, ed. by C. A. Nicolini, N. Y. -L., 1979.

Д. М. Спитковский, H. А. Ляпунова.

В ядре ДНК всегда находится в комплексе с белками и упакована в той или иной степени в нуклеопротеиновые структуры.

В хромосомах ДНК (около 40% от всего хроматина) находится в комплексе с основными и кислыми белками, что обеспечивает многоступенчатую компактизацию молекулы ДНК. Первые уровни компактизации осуществляются при взаимодействии ДНК с основными белками - гистонами. Гистоны имеют повышенное содержание основных аминокислот - лизина и аргинина. Пять типов гистонов отличаются друг от друга относительным содержанием этих двух аминокислот. Гистоны Н3 и Н4 очень консервативны. Секвенирование гена гистона Н4 показало, что у теленка и гороха этот белок отличается всего двумя аминокислотами. Наиболее изменчивы гистоны Н2А и Н2В. Комплекс между ДНК и гистонами формирует нуклеосомную структуру хроматина. Пары молекул гистонов Н2А, Н2В, Н3 и Н4 формируют гистоновый октамер клиновидной формы (рис. 1). Узкая часть образована тетрамером Н3-Н4, а широкая состоит из Н2А-Н2В. N-концевые части гистонов свободно расходятся в стороны. Участок ДНК в 146 пн связывается с октамером, делая 1,75 оборота вокруг него. Комплекс данного участка ДНК с гистоновым октамером называют нуклеосомой . Участок ДНК между соседними нуклеосомами называют линкерным (около 60 пн). Более 90% ДНК в клетке присутствует в виде нуклеосом, при этом длина нити ДНК уменьшается в 7 раз, а толщина сформированной нуклеопротеиновой нити составляет 10 нм.

Гистоны контактируют с фосфодиэфирным остовом молекулы ДНК. Существуют и гидрофобные взаимодействия с остатками рибозы. Азотистые основания во взаимодействии с гистонами не участвуют. Поэтому связывание ДНК с нуклеосомной глобулой не является специфичным в отношении нуклеотидной последовательности.

Рисунок 1. Строение нуклеосом

Гистон Н1 взаимодействует с обоими концами ДНК, входящей в состав нуклеосомы, в районе тетрамера Н3-Н4, т.е. Н1 как бы обозначает границы линкерной ДНК. В молекуле гистона Н1 можно выделить глобулярную сердцевину, N-конец и С-конец. Взаимодействие между N- и С-концами соседних молекул гистона Н1 обеспечивает сближение нуклеосом. При этом нуклеосомная нить сворачивается в спираль или образует зигзагообразную нить толщиной 30 нм, состоящую из сближенных нуклеосом - нуклеомеров. Каждая нуклеомера состоит из 8-10 нуклеосом.

Рисунок 2. Взаимодействие гистонов в составе нуклеосом

Исследования последних лет подтверждают зигзагообразную модель организации 30 нм фибриллы. В стабилизации этой фибриллы большую роль играют взаимодействия N-концевых доменов гистонов соседних нуклеосом. Архитектура фибриллы может существенно меняться при модификации N-концевых доменов гистонов, что может стимулировать либо дальнейшую конденсацию, либо деконденсацию фибриллы. Есть данные о том, что ацетилирование гистонов способствует разворачиванию компактной 30 нм хроматиновой фибриллы до нуклеосомной нити.

Рисунок 3. Уровни компактизации хроматина

У ксенопуса выделены белки, контролирующие взаимодействие ДНК с гистоновыми белками. Например, белок нуклеоплазмин - состоит из 5 идентичных субъединиц, контролирует образование нуклеосом. Этот белок кислый, он не связывается со свободной ДНК, связывается только с гистонами.

Экспрессия генов основных гистонов происходит только в S -фазу чтобы обеспечить упаковку вновь синтезированной ДНК. Но ограничение синтеза гистонов может грозить нарушением целостности хромосом, например, при репарации поврежденной ДНК. Поэтому многие организмы имеют альтернативные копии гистоновых генов, которые кодируют варианты гистонов и экспрессируются конститутивно на низком уровне в течение всего клеточного цикла.

Описаны вариантные формы гистонов (табл. 2), которые кодируются отдельными генами. Включение в нуклеосомную частицу вариантных форм гистонов может существенно изменять структуру гистонового октамера. Существует четкая корреляция между присутствием в нуклеосомах вариантных форм гистонов и осуществлением тех или иных функциональных процессов. Например, ряд вариантных форм гистона Н3 (CENP-A) участвует в формировании центромер. Некоторые варианты обмениваются с уже существующими гистонами в ходе развития и дифференцировки - их называют замещающими гистонами. Такое замещение часто приводит к тому, что варианты становятся доминируюшщими в дифференцированной клетке. Предположение - варианты гистонов выполняют спец. функции в клетках.

Имеется много вариантов гистона Н1, например, Н10, Н5, варианты, специфичные для сперматозоидов (SpH1) и яичек (H1t). Наибольшее число вариантов описано для гистона Н2А. Варианты гистона Н2А отличаются по размеру и последовательности хвоста, а также по характеру распределения в геноме. Например, H2A-Bbd локализуется в активной Х-хромосоме и аутосомах, а Macro Н2А находится в основном в Xi. У гистона Н3 есть два основных варианта - Н3ю3 и центромерный Н3 (СеnH3), а также тканеспецифичный вариант Н3.4 (яички млекопитающих). Гистон СеnH3 способствует образованию белковой структуры кинетохоров. Гистон Н3.3 служит меткой активного хроматина, азмещение Н3 на Н3.3 это динамичный механизм быстрой активации хроматина. Вариантов гистона Н4 пока не известно.

Таблица 2

Основные варианты гистонов и их действие на хроматин

Основной гистон

Действие на хроматин

Конденсация хроматина

Конденсация хроматина

Конденсация хроматина

Открытая структура хроматина

Конденсация хроматина

Открытая структура хроматина

Конденсация хроматина

Открытая/закрытая структура хроматина

Конденсация хроматина

Открытая структура хроматина

Дальнейшая упаковка хроматина достигается за счет взаимодействия ДНК с негистоновыми белками. Они разнообразны - более 500, составляют до 2/3 всех белков хроматина. Многие из этих белков участвуют в репликации, репарации ДНК, транскрипции. Часть из них выполняет структурную функцию - образуют ядерную мембрану, поровые комплексы. Часть белков формирует белковый каркас хромосом. На белках ядерной мембраны в интерфазу закреплены расположенные розетками петли 30-нм фибриллы. Это третий уровень компактизации хроматина - хромомерный. Средний размер розеток достигает 120-150 нм. Каждый хромомер состоит из нескольких, содержащих нуклеомеры петель, которые связаны в одном центре. Хромомеры связаны друг с другом участками нуклеосомного хроматина. Размер отдельной петли совпадает с размером среднего репликона и может соответствовать одному или нескольким генам (50-100 тпн). На хромосому в среднем приходится более 2000 таких петельных доменов ДНК. Петельно-доменная структура хроматина организует функциональные единицы хромосом - репликоны и транскрибируемые гены. Наряду с участками начала репликации в области прикрепления ДНК к ядерному матриксу часто локализуются и другие регуляторные элементы - энхансеры, сайленсеры, промоторы и т.д. Помещение того или иного промотора, гена или генного домена на ядерный матрикс способствует его активации. Далее - хромонемный уровень компактизации - нитчатая структура толщиной 0,1-0,2 мкм. Полагают, что отрезок примерно с 18-20 петлевыми доменами образует вокруг осевого элемента хромосомы один виток.

Компактизация метафазных хромосом оценивается как 10000-кратная. К стадии зиготены мейоза наружная поверхность хроматиновой нити содержит всего около 1% ДНК. Механизм не известен. Доказано, что укладка ДНК в митотическую хромосому осуществляется комплексом белков, называемым 13S-конденсином . Комплекс обладает АТФ-азной активностью, способен связываться с ДНК и, вероятно, наматывает ее на себя. 13S-конденсин лягушки состоит из двух структурных субъединиц - ассоциированных с хромосомами белков ХСАР-С и ХСАР-Е и трех регуляторных субъединиц. Вне комплекса ни одна из субъединиц не индуцирует конденсацию хромосом. Мутации в генах, кодирующих белки конденсинового комплекса, нарушают конденсацию и сегрегацию хромосом, блокируют клетки в митозе. В процессе упаковки хромосом конденсин локализуется в районах, где гистон Н3 фосфорилирован. По мере фосфорилирования гистона Н3 ДНК становится более доступной для связывания с конденсином. Конденсация хромосом и фосфорилирование гистона Н3 начинается с центромерных областей и распространяется к теломерным.

К стадии зиготены мейоза на наружней поверхности хроматиновой нити остается всего около 1% ДНК.

Степень деконденсации хроматина в интерфазном ядре отражает его функциональную нагрузку. Чем более диффузен хроматин, тем он активнее. В составе хромосом выделяют участки гетерохроматина и эухроматина . Эухроматин в интерфазе находится в деспирализованном состоянии, в нем находятся структурные активные гены. В эухроматиновых участках, помимо элементарных дезоксирибонуклеопротеидных нитей, имеются рибонуклеопротеидные частицы диаметром 200-500 анстрем, называемые РНП-гранулами. Эти частицы представляют собой форму упаковки молекул РНК, синтезированных на ДНК и соединённых с белком, и служат для завершения образования информационной РНК и переноса её в цитоплазму

Термин «гетерохроматин» был предложен Хейцом в 1928 году. Гетерохроматин расположен в районе центромеры, теломер и внутри плеч хромосом - интеркалярный гетерохроматин . Гетерохроматиновые участки значительно дольше представлены в клеточном цикле в виде плотно спирализованных фрагментов. Они деспирализуются значительно позже, чем эухроматин или совсем не деспирализуются, сохраняясь в интерфазном ядре в виде плотно окрашенных глыбок - хромоцентров . Гетерохроматиновые районы хромосом могут ассоциироваться друг с другом - эктопическая конъюгация. В результате здесь возможна повышенная частота хромосомных перестроек. Еще одной особенностью гетерохроматина является варьирование его количества в геноме.

Гетерохроматиновые участки ДНК содержат долгоживущие разрывы, тогда как в эухроматине разрывы возникают редко и быстро репарируются. Ядра лимфоцитов периферической крови почти полностью состоят из гетерохроматина и неактивны в транскрипции. В них обнаружено около 3000 разрывов на диплоидный геном мыши. Установлено, что после активации лимфоцитов разрывы репарируются. Очень плотно упакованная ДНК сперматозоидов содержит 107 разрывов на геном. Таким образом, наличие разрывов ДНК позволяет плотную упаковку, но несовместимо с транскрипцией.

Стабильно выявляемые гетерохроматиновые районы называют конститутивным гетерохроматином. Эти районы, как правило, генетически не активны. Пример - сателлитная ДНК прицентромерного гетерохроматина. Конститутивный гетерохроматин располагается в одних и тех же положениях на обеих хромосомах из пары гомологов. Гены в гетерохроматине все-таки есть, но их гораздо меньше, чем в эухроматине. Пример - гены рРНК.

Факультативный гетерохроматин формируется при конденсации хроматина на определенных стадиях жизненного цикла и обычно присутствует лишь в одной хромосоме из пары гомологов. Яркий пример - мучнистый червец. У самок этого вида нет факультативного гетерохроматина. У самцов весь отцовский гаплоидный набор хромосом целиком становится гетерохроматиновым. В итоге самец имеет эухроматиновые хромосомы, полученные от матери, и гетерохроматиновые, полученные от отца. В ходе мейоза у самцов гетерохроматиновые хромосомы деспирализуются, в спермии попадает уже эухроматиновый материал. Если потомок окажется самцом, то эти хромосомы конденсируются. Таким образом, у самцов экспрессируются только материнские гены.

У млекопитающих факультативный хроматин проявляется при инактивации Х-хромосомы. В 1949 г Барр и Бертрам обнаружили в ядрах нейронов кошки интенсивно окрашенные тельца, названные тельцами Барра . Они представляют собой неактивную Х-хромосому. Различают три возможных расположения полового хроматина в ядре: тесное соприкосновение его с ядрышком; свободное расположение в кариоплазме и контакт с ядерной ембраной.

Таким образом, у самок млекопитающих транскрипционно активна только одна Х-хромосома - это феномен компенсации дозы гена . Факультативный гетерохроматин обогащен повторами типа LINE, которые способствуют конденсации хроматина.

В ходе раннего развития самок млекопитающих обе Х-хромосомы активны. На предимплантационных стадиях развития эмбриона происходит инактивация Х-хромосомы, унаследованной от отца. Во время имплантации зародыша происходит реактивация и последующая инактивация случайно либо отцовской, либо материнской Х-хромосомы. Иногда наблюдается предпочтительная инактивация отцовской Х-хромосомы (у сумчатых). Процесс инактивации контролируется сложным локусом Х-хромосомы - центром инактивации Xiс. Данный локус содержит ген Xist (Х inactive specific transcript). Продуктом этого гена является некодирующая ядерная РНК размером 16 тн.

Ген Xist имеет 3 промотора - Р0, Р1 и Р2. Если транскрипция идет с прототоров Р1 или Р2 - образуется стабильный продукт размером 15 т.п.н., если с промотора Р0 - возникает нестабильный продукт. Переключение транскрипции с Ро на Р1/Р2 коррелирует с началом инактивации Х-хромосомы. В функционально активной Х-хромосоме ген Xist инактивирован за счет метилирования ЦГ-динуклеотидов в промоторе гена.

РНК гена Xist не способна переходить с одной Х-хромосомы на другую. РНК Xist присоединяет различные белки, образуя комплексы, которые распределяются вдоль всей Х-хромосомы, запуская ее инактивацию. Они, несомненно, принимают участие в установлении неактивного состояния, так как Х-хромосома, у которой отсутствует район гена Xist, никогда не инактивируется. Если же ген Xist искусственно перенести на аутосому, то она инактивируется.

В период инициации инактивации продукт гена Xist становится стабильным и распространяется вдоль по всей длине Х-хромосомы. Это подавляет транскрипцию генов и приводит к модификации гистонов. После отделения линии герминальных клеток в соматических клетках происходит гиперметилирование инактивируемой хромосомы; неактивное состояние становится необратимым и наследуется в ряду клеточных поколений. В линии герминальных клеток самок ДНК инактивированной Х-хромосомы остается неметилированной и впоследствии хромосома реактивируется незадолго до вхождения клеток в мейоз. В зрелых ооцитах обе Х-хромосомы активны.

Выбор того, какая Х-хромосома инактивируется, случаен, но это может регулироваться аллелями Xce (X-linced X controlling element). На линиях мышей было обнаружено три аллеля Хсе - «слабый» Xcea, «промежуточный» Xceb и «сильный» Xcec. В гетерозиготах наиболее часто инактивируются те Х-хромосомы, которые несут более слабый аллель. У гомозигот выбор происходит случайно. Xce локус расположен вблизи Xic. Предполагается, что Xce связывают транс-факторы, регулирующие работу генов в Xic, предопределяя выбор между Х-хромосомами.

Ряд генов неактивной Х-хромосомы ускользает от инактивации. Например, избегает инактивации район спаривания с Y-хромосомой. В данном локусе находятся гены, присутствующие и на Х- и на Y-хромосомах: то есть и у XY-самцов таких генов по паре, и у XX-самок их столько же -- этим генам не нужна компенсация дозы.

Образование факультативного гетерохроматина - механизм регуляции активности генов. Пример - мозаичное проявление признаков, контролируемых сцепленными с полом генами у самок млекопитающих - кошки с черепаховой окраской (пятна черной и желтой шерсти); женщины, гетерозиготные по сцепленной с полом мутации эктодермальной дисплазии (на некоторых участках челюсти нет зубов; на теле чередуются участки кожи с наличием и отсутствием потовых желез).

Эпигенетика занимается изучением механизмов наследственности, которые модифицируют работу генов без изменения их структуры. Причем эти модификации сохраняются при митотическом делении клеток. Наиболее часто эпигенетические механизмы обеспечивают долговременную репрессию значительной части генома в специализированных клетках многоклеточного организма. Эпигенетические механизмы обеспечивают и импринтинг - инактивацию ряда генов в одной из родительских хромосом. Наиболее изученным механизмом является метилирование ДНК . В последние годы показана роль модификации гистонов , их ацетилирования (лизина) и метилирования (лизина и аргинина), а также включения в нуклеосомы неканонических форм гистонов. Модифицируются в основном свободные N-концы гистонов. Добавление ацетильных групп нейтрализует положительный заряд молекулы гистона, это изменяет конформацию нуклеосомы и изменяет доступность ДНК для различных белков. Другой вариант - с модифицированными остатками аминокислот гистонов могут специфически связываться определенные белки, запуская цепочку реакций. Метилирование лизина и аргинина участвует в образовании гетерохроматина, репарации и регуляции транскрипции. Причем разное число метильных групп у одного остатка выполняет разные биологические функции. Метилирование осуществляется ферментами гистон-метилтрансферазами , а удаление метильных групп обеспечивают гистон-деметилазы . В отличие от метилирования ацетильная группа на остатке лизина может быть только одна. Ее присоединение осуществляют гистон-ацетилтрансферазы , а удаление - гистон-деацетилазы. Эухроматиновые домены характеризуются гиперацетилированной формой гистонов; в гетерохроматине гистоны гипоацетилированы.

Ацетилирование гистонов ослабляет межнуклеосомное взаимодействие, а также взаимодействие хвостов нуклеосомы с линкерной ДНК. Доступность ДНК при этом увеличивается, то есть ацетилирование гистонов связано с активацией транскрипции.

Активный промотор гена должен быть свободен от нуклеосом. Важную роль в этом играет ацетилирование гистонов, в том числе гистона H2A.Z в промоторной области. Гистон H2A.Z присутствует как в активных, так и в неактивных промоторах и именно его ацетилирование существенно для активации промотора.

Метилирование гистонов не изменяет суммарный заряд нуклеосомы. Но ковалентно модифицированные гистоны служат «метками» для связывания белковых факторов, которые стимулируют определенные события. Наиболее распространенный вариант метилирования гистонов - это метилирование лизина.

Образование прицентромерного гетерохроматина является результатом модификации гистонов и прежде всего метилированием лизина в молекуле гистонов Н3 и Н4. Метилированные остаток лизина узнают различные белки, которые запускают процессы, связанные с «молчанием». Например, у инфузории с метилированным лизином связываются белки Pddq, Pdd3 , что вызывает диминуцию хроматина. У млекопитающих и дрозофилы модифицированный гистон Н3 может взаимодействовать с белком НР1 (Heterochromatin protein 1 ), который в свою очередь может привлекать множество других белков. Полагают, что связь НР1 с модифицированным гистоном Н3 необходима для стабилизации репрессированного состояния гетерохроматина.

Инактивация Х-хромосомы млекопитающих сопровождается гипоацетилированием гистонов Н2А, Н3 и Н4 и метилированием гистона Н3.

Другим вариантом модификации гистонов является их фосфорилирование - дефосфорилирование, что обеспечивает декомпактизацию хроматина при активации транскрипции и конденсацию хромосом во время деления клетки или апоптоза. Баланс фосфатных групп поддерживают киназы и фосфотазы.

Образец модификаций молекул гистонов называют «гистоновым кодом» . Гипотеза «гистонового кода» предполагает, что эти модификации являются предпосылкой для последующего изменения структуры хроматина и стабильно поддерживают характер экспрессии генов в ходе клеточных делений. Посттрансляционные модификации гистонов (ацетилирование, метилирование, фосфорилирование и др.) создают специфические сайты связывания для регуляторных белков хроматина.

Формирование гетерохроматина строго детерминировано и происходит на определенной стадии эмбрионального развития, когда начинается транскрипция на хромосомах развивающегося эмбриона. Формирование гетерохроматиновых доменов надежно защищает организм от экспрессии генетического материала, которая не нужна в соматических клетках.

Помимо образования гетерохроматина другим механизмом «выключения» некодирующих последовательностей является диминуция хроматина. Это программируемая элиминация части генетического материала из генома презумптивных соматических клеток.

У циклопов в 3-7 делениях дробления элиминируется от 10 до 94% генома germ line. Цитологическая картина диминуции хроматина видоспецифична. Доля элиминируемой ДНК не зависит от исходного размера генома. Например, 2 вида циклопов Cyclops kolensis, Cyclops insignis обитают в одинаковых условиях, количество ДНК в диплоидных клетках примерно одинаково - 4,6 пг и 4,3 пг. У C. kolensis после диминуции остается лишь 6% генома. Однако при этом количество хромосом не изменяется (22), хотя размеры их становятся существенно меньше. У C. insignis диминуции хроматина не происходит.

У циклопов перед диминуцией хроматина происходит удлинение интерфазы в 8-9 раз. В конце этой интерфазы появляются плотные гранулы хроматина (до 600). Далее они сливаются, вокруг них формируется плотная однослойная без пор мембрана, непрницаемая для факторов декомпактизации. Внутри этих гранул происходит лизис ДНК.

Генетический аппарат ресничных инфузорий отличается ядерным диморфизмом. Он проявляется в наличии в клетке двух типов ядер: микронуклеуса (Ми) и макронуклеуса (Ма). Ми служит генеративным ядром, используемым для передачи наследственной информации в ряду поколений. В вегетативно растущих клетках гены Ми не транскрибируются. Зато активно транскрибируются гены Ма, выполняющего роль рабочего ядра и контролирующего процессы жизнедеятельности.

При конъюгации у инфузорий две клетки прикладываются друг к другу и плавают вместе 10-12 часов, а затем расходятся. За время конъюгации их Ма начали разрушаться, а Ми поделились путем мейоза на четыре гаплоидных ядра каждое. Ход последующих событий варьирует в деталях у разных видов инфузорий, но принципиальная схема общая: клетки партнеров обмениваются гаплоидными ядрами, по одному от каждой клетки, затем каждое сливается с местным (стационарным) гаплоидным ядром, то есть происходит оплодотворение. К этому моменту все лишние ядра дегенерируют, и в каждой клетке остается по одному диплоидному ядру - продукту оплодотворения. После расхождения партнеров ядро делится митотически на два. Одно из дочерних ядер останется Ми, другое превратится в Ма. Развитие Ма занимает несколько дней и сопровождается полной реорганизацией генома Ми-предшественника.

ДНК хромосом Ми имеет большие размеры, характерные для эукариотических хромосом. Гены в них собраны в группы с длинными промежутками между ними, заполненными разнообразными уникальными и повторяющимися последовательностями ДНК. Важная особенность генов Ми заключается в том, что все они прерваны особыми элементами, называемым IES (internal eliminated sequences). Кодирующие участки генов, разделенные IES, называют MDS (macronuclear destined sequences). Каждая IES уникальна. Размеры изученных IES варьируют от 14 до 548 п.н.

Вся ДНК в Ма представлена короткими молекулами с размерами от нескольких сот п.н. до 15 т.п.н., не содержащими никаких IES. Каждая молекула содержит одну единицу транскрипции и соответствует одному гену. Она окаймлена теломерами в виде повторов нуклеотидов, например повторов 5"-С4А4 у Oxytricha, то есть каждый ген в Ма является отдельной хромосомой. Каждый ген-хромосома представлен множеством (до тысячи, у некоторых генов до десятков тысяч) копий.

Рисунок 4. Дифференцировка Ма у брюхоресничных инфузорий: а - общая схема дифференцировки ядер из оплодотворенного ядра; б - схема превращения микроядерного гена в ген Ма

Перестройка генетического материала происходит при развитии Ма из Ми. Она начинается сразу после конъюгации с множественных раундов репликации хромосом в исходном Ми без его деления. Это приводит к образованию политенных хромосом. Политенизация хромосом увеличивает их размеры.

Во время политенизации происходит важное для реорганизации генома Ми удаление всех IES. Оно осуществляется путем множественных событий рекомбинации по прямым повторам ДНК, имеющимся на концах каждого IES. У E. crassus IES несут концевые повторы от 2 до 4 п.н. и всегда содержат димер 5"-TA, у O. nova - от 2 до 19 п.н. и не содержат 5"-TA. Поскольку IES прерывают кодирующие участки генов (MDS), состыковка последних при вырезании IES (в виде колец) происходит с точностью до нуклеотида по той же схеме, что и аналогичная рекомбинация у бактерий. Помимо коротких IES ДНК Ми E. crassus содержит два родственных элемента размером около 5,3 т.п.н., называемых TEC1 и TEC2. Эти элементы принадлежат к подвижным генетическим элементам. TEC-элементы представлены в Ми примерно 30 тыс. копиями и все вырезаются в виде колец.

После политенизации и удаления IES и подвижных элементов происходит разрезание политенных хромосом на фрагменты, соответствующие отдельным генам. Механизм фрагментации хромосом пока невыяснен. У равноресничных инфузорий, к которым принадлежит всем известная инфузория-туфелька, обнаружены особые участки, в которых происходят разрывы хромосом. Их называют CBS (chromosome breakage sequences). У брюхоресничных такие участки не обнаружены.

Фрагментация хромосом сопровождается массовым удалением и распадом всех других последовательностей ДНК, расположенных в межгенных промежутках. Окончательно исчезают остатки ядер и вырезанные раньше кольцевые ДНК.

Оставшиеся сегменты воссоединяются. При этом возможно изменение порядка расположения экзонов структурных генов. Например, в микронуклеусе неработающий ген состоит из экзонов 3 4 6 5 7 9 2 1 8. В макронуклеусе порядок экзонов меняется на 1 2 3 4 5 6 7 8 9, в результате возможна нормальная транскрипция гена.

В целом удаленная часть генома составляет 90-95%. На концах вырезанных генов (а они уже представлены многими копиями в результате политенизации) синтезируются теломеры (это делает фермент теломераза), после чего они дополнительно умножаются примерно до тысячи копий путем 4-6 раундов репликации. На этом дифференцировка Ма завершается, и инфузория возвращается к обычной жизни.

Диминуция хроматина у аскарид . Диминуция заключается в фрагментации хромосом и элиминации значительной части хроматина в предшественницах соматических клеток в ходе первых делений оплодотворенной яйцеклетки. Результатом этого процесса являются разная структура хромосом и разное содержание ДНК в соматических и генеративных клетках. Цитологическую картину диминуции хроматина можно рассмотреть на примере лошадиной аскариды Parascaris univalens , у которой в диплоидном ядре оплодотворенной яйцеклетки находятся всего две крупные гомологичные хромосомы (рис. 4). Первое деление дробления происходит путем обычного митоза, где хроматиды нормально распределяются по двум дочерним клеткам, обозначенным как Г1 и С1. При втором делении дробления (рис. 4, а) такой же нормальный митоз повторяется в клетке Г1, расположенной на брюшной стороне будущего зародыша. Он приводит к клеткам Г2 и С2. Другая судьба у клетки С1, в которой центральная часть хроматид распадается на большое число фрагментов. Разрывы, приводящие к образованию фрагментов, происходят в определенных участках, имеющих соответствующее название - CBR (cromosomal breakage regions). С помощью теломеразы на их концах синтезируются теломеры. Только эти фрагменты отходят в анафазе в два дочерних ядра, где становятся мелкими хромосомами, тогда как крупные концевые части хроматид остаются в экваториальной плоскости и тем самым впоследствии оказываются вне ядра, где в конечном счете элиминируются. В результате ядра двух дочерних клеток С1а и С1б содержат меньше хроматина по сравнению с клетками С2 и Г2. Это и есть диминуция хроматина. В ходе дальнейшего развития эмбриона диминуция повторяется еще три раза в клетках С2, С3 и С4, являющихся предшественницами соматических клеток (рис. 5, б). Из избежавших диминуции клеток линии, обозначаемой на рисунке буквой Г в ходе дальнейшей дифференцировки образуются генеративные клетки.

Для осуществления диминуции важно, что хромосомы нематод являются полицентрическими, то есть имеют диффузные центромеры. В митозах, сопровождаемых диминуцией, нити веретена прикрепляются только к неэлиминируемым фрагментам хроматид, что объясняет последующие события. Напротив, в митотических клетках зародышевого пути непрерывный кинетохор распространяется на всю длину хроматиды.


Рисунок 5. Диминуция хроматина у Parascaris univalens: а - цитологическая картина диминуции хроматина

На левой схеме изображены анафазы второго деления дробления на стадии двух клеток. Диминуция происходит в верхней клетке С1. В нижней клетке Г1 идет нормальный митоз. Справа представлена стадия четырех клеток после завершения второго деления дробления; б - схема дифференцировки клеток зародышевого пути и соматических клеток на ранних стадиях эмбрионального развития аскариды. Пресоматические клетки С1, С2, С3 и С4, подвергшиеся диминуции, изображены кружками, окруженными четырьмя точками.

У P. univalens при диминуции удаляется около 85% хроматина. Основная часть удаляемого материала состоит из сателлитной ДНК. Однако при диминуции удаляются и некоторые уникальные гены, например ген ALEP1 , который кодирует определенный рибосомный белок. Этот белок синтезируется только в генеративных клетках и отсутствует в соматических. Таким образом, элиминируемый хроматин содержит не просто ненужную ДНК, но необходим для клеток зародышевого пути. Предполагается, что элиминация гена ALEP1 вызывает структурные различия между рибосомами зародышевых и соматических клеток, которые могут обусловливать дифференциальную трансляцию специфических мРНК в двух типах клеток.

Эффект диминуции хроматина указывает на то, что большая часть избыточной ДНК не несет ни кодирующих, ни регуляторных функций. Функции избыточной ДНК как-то связаны с клетками germ line. Возможно, что некодирующая часть генома играет важную роль в изоляции видов, осуществляемой в мейозе при конъюгации хромосом.

При случайном скрещивании видов с диминуцией хроматина и без диминуции: В яйцеклетке в ее цитоплазме у видов с диминуцией хроматина есть ферменты, участвующие в диминуции хроматина. В результате диминуции хроматина могут подвергнуться структурные гены отцовского происхождения. Потеря структурных генов - гибель гибридного зародыша.

При обратном направлении скрещивания отцовские хромосомы не пройдут через цикл диминуции хроматина, так как в яйцеклетке не будет нужных ферментов. В результате отцовские структурные гены останутся в неактивной форме. Зародыш тоже погибнет.

Хроматин представляет собой белки (негистоновые и гистоновые) и комплекс нуклеиновых кислот (РНК и ДНК), которые своей совокупностью образуют в пространстве высокоупорядоченные структуры - хромосомы эукариот.

В хроматине соотношение белка и ДНК - приблизительно 1:1, основная масса белка представлена гистонами.

Виды хроматина

По своей структуре хроматин неоднороден. Условно весь хроматин подразделяется на две функциональные категории:

1) неактивная - гетерохроматин - содержит в себе в данный момент несчитываемую генетическую информацию;

2) активная - эухроматин - именно с него производится считывание генетической информации.

Соотношение содержания гетерохроматина и эухроматина постоянно находится в подвижной стадии. Зрелые клетки, к примеру крови, имеют ядра, характеризующиеся конденсированным, наиболее плотным хроматином, лежащим глыбками.

В ядрах соматических женских клеток глыбки хроматина сближены с мембраной ядра - это женский хроматин половой клетки.

Половой мужской хроматин представлен глыбкой в мужских соматических клетках, светящийся при окраске флюорохромами. Половой хроматин дает возможность устанавливать по клеткам, полученным из околоплодной жидкости беременной женщины, пол будущего ребенка.

Строение хроматина

Хроматин - нуклеопротеид клеточного ядра, который является основной составляющей хромосом.

Состав хроматина:

Гистоны - 30-50%;

Негистоновые белки - 4-33%;

ДНК - по массе 30-40%;

В зависимости от природы объекта, а также от способа выделения хроматина размеры молекул ДНК, число РНК, негистоновых белков колеблются в широких пределах.

Функции хроматина

Хроматин и хромосома по химической организации (комплекс ДНК с белками) друг от друга не отличаются, они переходят взаимно друг в друга.

В интерфазе различать отдельные хромосомы не представляется возможным. Они слабоспирализованны, образуют разрыхленный хроматин, распределяющийся по всему объему ядра. Как раз разрыхление структуры и считается требуемым условием для транскрипции, передачи информации наследственного характера, имеющейся в ДНК.

Кариотип

Кариотип (от карио... и греч. tэpos - образец, форма, тип), хромосомный набор, совокупность признаков хромосом (их число, размеры, форма и детали микроскопического строения) в клетках тела организма того или иного вида. Понятие кариотип введено сов. генетиком Г. А. Левитским (1924). Кариотип - одна из важнейших генетических характеристик вида, т.к. каждый вид имеет свой кариотип, отличающийся от кариотипа близких видов (на этом основана новая отрасль систематики - так называемая кариосистематика).



8.Особенности морфологического и функционального строения хромосом. Гетеро- и эухроматин. (один ответ на 2 вопроса).

Хромосомы: структура и классификация

Хромосомы (греч. – chromo – цвет, soma – тело) – это спирализованный хроматин. Их длина 0,2 – 5,0 мкм, диаметр 0,2 – 2 мкм.

Метафазная хромосома состоит из двух хроматид , которые соединяются центромерой (первичной перетяжкой ). Она делит хромосому на два плеча . Отдельные хромосомы имеют вторичные перетяжки . Участок, который они отделяют, называется спутником , а такие хромосомы – спутничными. Концевые участки хромосом называются теломеры . В каждую хроматиду входит одна непрерывная молекула ДНК в соединении с белками-гистонами. Интенсивно окрашивающиеся участки хромосом – это участки сильной спирализации (гетерохроматин). Более светлые участки – участки слабой спирализации (эухроматин).

Типы хромосом выделяют по расположению центромеры.

1. Метацентрические хромосомы – центромера расположена посередине, и плечи имеют одинаковую длину. Участок плеча около центромеры называется проксимальным, противоположный – дистальным.

2. Субметацентрические хромосомы – центромера смещена от центра и плечи имеют разную длину.

3. Акроцентрические хромосомы – центромера сильно смещена от центра и одно плечо очень короткое, второе плечо очень длинное.

В клетках слюнных желез насекомых (мух дрозофил) встречаются гигантские, политенные хромосомы (многонитчатые хромосомы).

Для хромосом всех организмов существует 4 правила:

1. Правило постоянства числа хромосом . В норме организмы определенных видов имеют постоянное, характерное для вида число хромосом. Например: у человека 46, у собаки 78, у мухи дрозофилы 8.

2. Парность хромосом . В диплоидном наборе в норме каждая хромосома имеет парную хромосому – одинаковую по форме и по величине.



3. Индивидуальность хромосом . Хромосомы разных пар отличаются по форме, строению и величине.

4. Непрерывность хромосом . При удвоении генетического материала хромосома образуется от хромосомы.

Набор хромосом соматической клетки, характерный для организма данного вида, называется кариотипом .

1. Хромосомы, одинаковые в клетках мужского и женского организмов, называются аутосомами

идиограммой

Классификацию хромосом проводят по разным признакам.

1. Хромосомы, одинаковые в клетках мужского и женского организмов,называются аутосомами . У человека в кариотипе 22 пары аутосом. Хромосомы, различные в клетках мужского и женского организмов, называются гетерохромосомами, или половыми хромосомами . У мужчины это Х и Y хромосомы, у женщины – Х и Х.

2. Расположение хромосом по убывающей величине называется идиограммой . Это систематизированный кариотип. Хромосомы располагаются парами (гомологичные хромосомы). Первая пара – самые большие, 22-я пара – маленькие и 23-я пара – половые хромосомы.

3. В 1960г. была предложена Денверская классификация хромосом. Она строится на основании их формы, размеров, положения центромеры, наличия вторичных перетяжек и спутников. Важным показателем в этой классификации является центромерный индекс (ЦИ). Это отношение длины короткого плеча хромосомы ко всей ее длине, выраженное в процентах. Все хромосомы разделены на 7 групп. Группы обозначаются латинскими буквами от А до G.

Группа А включает 1 – 3 пары хромосом. Это большие метацентрические и субметацентрические хромосомы. Их ЦИ 38-49%.

Группа В . 4-я и 5-я пары – большие метацентрические хромосомы. ЦИ 24-30%.

Группа С . Пары хромосом 6 – 12: средней величины, субметацентрические. ЦИ 27-35%. В эту группу входит и Х-хромосома.

Группа D . 13 – 15-я пары хромосом. Хромосомы акроцентрические. ЦИ около 15%.

Группа Е . Пары хромосом 16 – 18. Сравнительно короткие, метацентрические или субметацентрические. ЦИ 26-40%.

Группа F . 19 – 20-я пары. Короткие, субметацентрические хромосомы. ЦИ 36-46%.

Группа G . 21-22-я пары. Маленькие, акроцентрические хромосомы. ЦИ 13-33%. К этой группе относится и Y-хромосома.

4. Парижская классификация хромосом человека создана в 1971 году. С помощью этой классификации можно определять локализацию генов в определенной паре хромосом. Используя специальные методы окраски, в каждой хромосоме выявляют характерный порядок чередования темных и светлых полос (сегментов). Сегменты обозначают по названию методов, которые их выявляют: Q – сегменты – после окрашивания акрихин-ипритом; G – сегменты – окрашивание красителем Гимза; R – сегменты – окрашивание после тепловой денатурации и другие. Короткое плечо хромосомы обозначают буквой p, длинное – буквой q. Каждое плечо хромосомы делят на районы и обозначают цифрами от центромеры к теломеру. Полосы внутри районов нумеруют по порядку от центромеры. Например, расположение гена эстеразы D – 13p14 – четвертая полоса первого района короткого плеча 13-й хромосомы.

Функция хромосом : хранение, воспроизведение и передача генетической информации при размножении клеток и организмов.

Хроматин ядра - это комплекс дезоксирибонуклеиновых кислот с белками, где ДНК находится в различной степени конденсации.

При световой микроскопии хроматин представляет собой глыбки неправильной формы, не имеющие четких границ, окрашивающиеся основными красителями. Слабо и сильно конденсированные зоны хроматина плавно переходят друг в друга. По электронной и светооптической плотности выделяют электронноплотный, ярко окрашенный гетерохроматин и менее окрашенный, менее электронно-плотный эухроматин.

Гетерохроматин - зона сильно конденсированной ДНК, связанной с гистоновыми белками. При электронной микроскопии заметны темные глыбки неправильной формы.

Гетерохроматин представляет собой плотно упакованные скопления нуклеосом. Гетерохроматин в зависимости от локализации подразделяют на пристеночный, матричный и перинуклеарный.

Пристеночный гетерохроматин прилежит к внутренней поверхности ядерной оболочки, матричный распределен в матриксе кариоплазмы, а перинуклеарный гетерохроматин примыкает к ядрышку.

Эухроматин - это участок слабо конденсированной ДНК. Эухроматин соответствует участкам хромосом, которые перешли в диффузное состояние, но между конденсированным и деконденсированным хроматином нет четкой границы. С нуклеиновыми кислотами в эухроматине связаны в основном негистоновые белки, но имеются и гистоны, формирующие нуклеосомы, которые рыхло распределены между участками неконденсированной ДНК. Негистоновые белки проявляют менее выраженные основные свойства, более разнообразны по химическому составу, жолюционно гораздо более изменчивы. Они участвуют в транскрипции и регулируют этот процесс. На уровне трансмиссионной электронной микроскопии эухроматин представляет собой структуру низкой электронной плотности, состоящую из мелкозернистых и тонкофибриллярных структур.

Нуклеосомы - это сложные дезоксирибонуклеопротеидные комплексы, содержащие ДНК и белки диаметром около 10 нм. Нуклеосомы состоят из 8 белков - гистонов Н2а, Н2в, НЗ и Н4, располагающихся в 2 ряда.

Вокруг белкового макромолекулярного комплекса фрагмент ДНК образует 2,5 спиральных витка и охватывает 140 нуклеотидных пар. Такой участок ДНК называют коровым и обозначают как core-ДНК (nDNA). Зону ДНК между нуклеосомами иногда называют линкером. Линкерные участки занимают около 60 пар нуклеотидов и их обозначают как iDNA.

Гистоны - это низкомолекулярные, эволюционно консервативные белки с выраженными основными свойствами. Они контролируют считывание генетической информации. В области нуклеосомы процесс транскрипции блокируется, но при необходимости может произойти «раскручивание» спирали ДНК, вокруг нее активизируется полимеризация яРНК. Таким образом, гистоны значимы как белки, контролирующие реализацию генетической программы и функциональную специфическую активность клетки.

Нуклеосомный уровень организации имеет и эухроматин, и гетерохроматин. Однако если к области линкеров присоединяется гистон Н1, то нуклеосомы объединяются между собой, и происходит дальнейшая конденсация (уплотнение) ДНК с образованием грубых конгломератов - гетерохроматина. В эухроматине же значительной конденсации ДНК не происходит.

Конденсация ДНК может происходить по типу сверхбусин или соленоида. При этом восемь нуклеосом компактно прилежат друг к другу и формируют сверхбусину. И в соленоидной модели, и в сверхбусине нуклеосомы, вероятнее всего, лежат в виде спирали.

ДНК может стать еще более компактной, формируя хромомеры. В хромомере фибриллы дезоксирибонуклеопротеида объединяются в петли, скрепленные негистоновыми белками. Хромомеры могут располагаться более или менее компактно. Хромомеры в процессе митоза становятся еще более конденсированными, образуя хромонему (нитевидную структуру). Хромонемы видны в световой микроскоп, образуются в профазу митоза и участвуют в образовании хромосом, располагаясь в виде спиральной укладки.

Морфологию хромосом удобнее изучать при их наибольшей конденсации в метафазе и в начале анафазы. В этом состоянии хромосомы имеют форму палочек разной длины, но с довольно постоянной толщиной. В них хорошо заметна зона первичной перетяжки, которая делит хромосому на два плеча.

Часть хромосом содержит вторичную перетяжку. Вторичная перетяжка представляет собой ядрышковый организатор, так как в интерфазу именно на этих участках происходит формирование ядрышек.

В области первичной перетяжки прикрепляются центромеры, или кинетохоры. Кинетохор представляет собой пластинку дискоидальной формы. К кинетохорам присоединяются микрогрубочки, которые связаны с центриолями. Микротрубочки «растаскивают» хромосомы в митозе.

Хромосомы могут существенно отличаться по размерам и соотношению плеч. Если плечи равны или почти равны, то они метацентрические. Если одно из плеч очень короткое (почти незаметное), то такая хромосома акроцентрическая. Промежуточное положение занимает субметацентрическая хромосома. Хромосомы, имеющие вторичные перетяжки, иногда называют спутниковыми.

Тельца Барра (половой хроматин) - эго особые структуры хроматина, чаще встречающиеся в клетках самок. В нейронах эти тельца находятся возле ядрышка. В эпителии они лежат пристеночно и имеют овальную форму, в нейтрофилах выступают в цитоплазму в виде «барабанной палочки», а в нейронах имеют округлую форму. Они встречаются и 90 % женских и только в 10 % мужских клеток. Тельце Барра соответствует одной из Х-половых хромосом, которая, как полагают, находится в конденсированном состоянии. Выявление телец Барра имеет значение для определения половой принадлежности животного.

Перихроматиновые и интерхроматиновые фибриллы встречаются в матриксе кариоплазмы и лежат либо вблизи хроматина (перихроматиновые), либо рассеяны (интерхроматиновые). Предполагают, что эти фибриллы являются слабо конденсированными рибонуклеиновыми кислотами, попавшими в косой или продольный срез.

Перихроматиновые гранулы - частицы размером 30…50 нм, высокой электронной плотности. Они лежат на периферии гетерохроматина и содержат ДНК и белки; это локальный участок с плотно упакованными нуклеосомами.

Интерхроматиновые гранулы имеют высокую электронную плотность, диаметр 20…25 нм и представляют собой скопление рибонуклеиновых кислот и ферментов. Это могут быть субъединицы рибосом, транспортируемых к ядерной оболочке.