Алканы — номенклатура, получение, химические свойства. Что такое алканы: строение и химические свойства
Алканы или алифатические насыщенные углеводороды - соединения с открытой (нециклічним) цепью, в молекулах которых атомы углерода соединены между собой σ-связью. Атом углерода в алканах находятся в состоянии sp 3 -гибридизации.
Алканы образуют гомологический ряд, в котором каждый член отличается на постоянную структурную единицу -CH 2 -, что называется гомологической разностью. Простейший представитель - метан CH 4 .
- Общая формула алканов: C n H 2n+2
Для алканов кроме структурной существует конформационная изомерия и начиная с гептана - енантіомерія:
Номенклатура IUPAC В названиях алканов используют префиксы н- , втор- , изо , трет- , нео :
- н- означает нормальную (нерозгалужену) строение углеводородного цепи;
- втор- применяется только для вторичного бутила;
- трет- означает алкил третичной структуры;
- изо разветвления на конце цепи;
- нео используется для алкілу с четвертичным атомом углерода.
Номенклатура разветвленных алканов построена основана на следующих основных правилах:
- Для построения названия выбирают длинную цепь атомов углерода и нумеруют его арабскими цифрами (локантами), начиная с конца, ближе к которому находится заместитель, например:
- Если одна и та же алкільна группа встречается более одного раза, то в названии перед ней ставят помножуючі приставки ди- (перед гласной ди- ), три- , тетра- и т. п. и обозначают цифрой каждый алкил отдельно, например:
Необходимо заметить, что для сложных остатков (групп) применяются помножуючі префиксы вроде бис- , трис- , тетракіс- прочее.
- Если в боковых ответвлениях главной цепи размещены различные алкіли-заместители, то их переразовують по алфавиту (при этом помножуючі приставки ди- , тетра- и т. п, а также префиксы н- , втор- , трет- не принимают во внимание), например:
- Если возможны два или более вариантов длиннейшей цепи, то выбирают тот, который имеет максимальное количество боковых разветвлений.
- Названия сложных алкильных групп строятся по тем же принципам, что и названия алканов, но нумерация цепи алкілу всегда автономна и начинается с того атома углерода, имеющего свободную валентность , например:
- При использовании в названии такой группы ее берут в скобки и в алфавитном порядке учитывается первая буква названия всей:
Промышленные методы добычи 1. Извлечения алканов газа. Природный газ состоит главным образом из метана и небольших примесей этана, пропана, бутана. Газ под давлением при пониженных при пониженных температурах разделяют на соответствующие фракции.
2. Извлечения алканов из нефти. Сырую нефть очищают и подвергают переработке (розгонка, фракціювання, крекинг). Из продуктов переработки получают смеси или индивидуальные соединения.
3. Гидрирование угля (метод Ф. Бергіуса, 1925 г.). Каменный или бурый уголь в автоклавах при 30 МПа в присутствии катализаторов (оксиды и сульфиды Fe, Mo, W, Ni) в среде углеводородов гидрированные и превращаются в алканы, так называемое моторное топливо:
nC + (n+1)H 2 = C n H 2n+2
4. Оксосинтеза алканов (метод Ф. Фишера - Г. Тропша, 1922 г.). По методу Фишера - Тропша алканы получают из синтез-газа. Синтез-газ представляет собой смесь CO и H 2 с различным соотношением. Его получают из метана одной из реакций, которые происходят при 800-900°C в присутствии оксида никеля NiO, нанесенного на Al 2 O 3:
CH 4 + H 2 O ⇄ CO + 3H 2
CH 4 + CO 2 ⇄ 2CO + 2H 2
2CH 4 + O 2 ⇄ 2CO + 4H 2
Алканы получают по реакции (температура около 300°C, катализатор Fe-Co):
nCO + (2n+1)H 2 → C n H 2n+2 + nH 2 O
Образованная смесь углеводородов, состоящая в основном из алканов строения (n=12-18), называют "синтином".
5. Сухая перегонка. В относительно небольших количествах алканы получают при помощи сухой перегонки или нагрева угля, сланцев, древесины, торфа без доступа воздуха. Примерный состав полученной смеси при этом составляет 60% водорода, 25% метана и 3-5% этилена.
Лабораторные методы добывания 1. Получение из галогеналкілів
1.1. Взаимодействие с металлическим натрием (Вурц, 1855 г.). Реакция состоит во взаимодействии щелочного металла с галогеналкілом и применяется для синтеза высших симметричных алканов:
2CH 3 -I + 2Na ⇄ CH 3 -CH 3 + 2NaI
В случае участия в реакции двух разных галогеналкілів образуется смесь алканов:
3CH 3 -I + 3CH 3 CH 2 -I + 6Na → CH 3 -CH 3 + CH 3 CH 2 CH 3 + CH 3 CH 2 CH 2 CH 3 + 6NaI
1.2 Взаимодействие с літійдіалкілкупратами. Метод (иногда называют реакцией Е. Коре - Х. Хауса) заключается во взаимодействии реакционноспособных літійдіалкілкупратів R 2 CuLi с галогеналкілами. Сначала происходит взаимодействие металлического лития с галогеналканом в среде эфира. Далее соответствующий алкіллітій реагирует с галогенідом меди(I) с образованием растворимого літійдіалкілкупрату:
CH 3 Cl + 2Li → CH 3 Li + LiCl
2CH 3 Li + CuI → (CH 3 ) 2 CuLi + LiI
При взаимодействии такого літійдіалкілкупрату с соответствующим галогеналкілом образуется конечное соединение:
(CH 3 ) 2 CuLi + 2CH 3 (CH 2 ) 6 CH 2 -I → 2CH 3 (CH 2 ) 6 CH 2 -CH 3 + LiI + CuI
Метод позволяет достичь выхода алканов почти 100% при применении первичных галогеналкілів. При их вторичной или третичной строении выход составляет 30-55%. Природа алкільної составляющей в літійдіалкілкупраті мало влияет на выход алкану.
1.3 Восстановление галогеналкілів. Восстанавливать галогеналкіли возможно каталитически возбужденным молекулярным водородом, атомарным водородом, йодоводнем тому подобное:
CH 3 I + H 2 → CH 4 + HI (катализатор Pd)
CH 3 CH 2 I + 2H → CH 3 CH 3 + HI
CH 3 I + HI → CH 4 + I 2
Метод имеет препаративне значение, часто используют сильный восстановитель - йодоводень.
2. Получение из солей карбоновых кислот.
2.1 Электролиз солей (Кольбе, 1849 г.).
Реакция Кольбе заключается в электролизе водных растворов солей карбоновых кислот:
R-COONa ⇄ R-COO - + Na +
На аноде анион карбоновой кислоты окисляется, образуя свободный радикал, и легко декарбоксилюється или отщеплять CO 2 . Алкильные радикалы далее вследствие рекомбинации превращаются в алканы:
R-COO - → R-COO . + e -
R-COO . → R . + CO 2
R . + R . → R-R
Препаративный метод Кольбе считается эффективным при наличии соответствующих карбоновых кислот и невозможности применить другие методы синтеза.
2.2 Сплавления солей карбоновых кислот со щелочью. Соли щелочных металлов карбоновых кислот при славленні с щелочью образуют алканы:
CH 3 CH 2 COONa + NaOH → Na 2 CO 3 + CH 3 CH 3
3. Восстановление кислородсодержащих соединений (спиртов, кетонов, карбоновых кислот). Восстановителями выступают вышеупомянутые соединения. Чаще всего применяют йодоводень, который способен восстанавливать даже кетоны: Первые четыре представителя алканов от метана до бутана (C 1 -C 4) - газы, от пентана до пентадекану (C 5 -C 15 - жидкости, от гексадекану (C 16) - твердые вещества. Увеличения их молекулярных масс приводит к увеличению температур кипения и плавления, при чем алканы с разветвленной цепью кипят при более низкой температуре, чем алканы нормального строения. Это объясняется меньшей вандерваальсівською взаимодействием между молекулами разветвленных углеводородов в жидком состоянии. Температура плавления четных гомологов выше по сравнению с температурой соответственно для нечетных.
Алканы гораздо легче за воду, неполярные и трудно поляризуются, однако растворимы в большинстве неполярных растворителей, благодаря чему сами могут быть растворителем для многих органических соединений.
Алканы - соединения гомологического ряда метана. Это насыщенные нециклические углеводороды. Химические свойства алканов зависят от строения молекулы и физического состояния веществ.
Строение алканов
Молекула алкана состоит из атомов углерода и водорода, которые образуют метиленовые (-CH 2 -) и метильные (-CH 3) группы. Углерод может создавать четыре ковалентные неполярные связи с соседними атомами. Именно наличие прочных σ-связей -С-С- и -С-Н обуславливает инертность гомологического ряда алканов.
Рис. 1. Строение молекулы алкана.
Соединения реагируют на свету или при нагревании. Реакции протекают по цепному (свободно-радикальному) механизму. Таким образом, связи способны расщепляться только под действием свободных радикалов. В результате замещения водорода образуются галогеналканы, соли, циклоалканы.
Алканы относятся к предельным или насыщенным углеродам. Это значит, что молекулы содержат максимальное количество атомов водорода. Из-за отсутствия свободных связей реакции присоединения для алканов не характерны.
Химические свойства
Общие свойства алканов приведены в таблице.
Типы химических реакций |
Описание |
Уравнение |
Галогенирование |
Реагируют с F 2 , Cl 2 , Br 2 . Реакция с йодом не идёт. Галогены замещают атом водорода. Реакция с фтором сопровождается взрывом. Хлорирование и бромирование происходит при температуре 300-400°C. В результате образуются галогеналканы |
CH 4 + Cl 2 → CH 3 Cl + HCl |
Нитрование (реакция Коновалова) |
Взаимодействие с разбавленной азотной кислотой при температуре 140°C. Атом водорода замещается нитрогруппой NO 2 . В результате образуются нитроалканы |
CH 3 -CH 3 +HNO 3 → CH 3 -CH 2 -NO 2 + H 2 O |
Сульфохлорирование |
Сопровождается окислением с образованием алкансульфонилхлоридов |
R-H + SO 2 + Cl 2 → R-SO 3 Cl + HCl |
Сульфоокисление |
Образование алкансульфоновых кислот в избытке кислорода. Атом водорода замещается группой SO 3 H |
C 5 H 10 + HOSO 3 H → C 5 H 11 SO 3 H + H 2 O |
Происходит в присутствии катализатора при высоких температурах. В результате разрыва связей С-С образуются алканы и алкены |
C 4 H 10 → C 2 H 6 + C 2 H 4 |
|
В избытке кислорода происходит полное окисление до углекислого газа. При недостатке кислорода происходит неполное окисление с образованием угарного газа, сажи |
CH 4 + 2O 2 → CO 2 + 2H 2 O; 2CH 4 + 3O 2 → 2CO + 4H 2 O |
|
Каталитическое окисление |
Происходит частичное окисление алканов при небольшой температуре и в присутствии катализаторов. Могут образовываться кетоны, альдегиды, спирты, карбоновые кислоты |
C 4 H 10 → 2CH 3 COOH + H 2 O |
Дегидрирование |
Отщепление водорода в результате разрыва связей С-Н в присутствии катализатора (платины, оксида алюминия, оксида хрома) при температуре 400-600°С. Образуются алкены |
C 2 H 6 → C 2 H 4 + H 2 |
Ароматизация |
Реакция дегидрирования с образованием циклоалканов |
C 6 H 14 → C 6 H 6 + 4H 2 |
Изомеризация |
Образование изомеров под действием температуры и катализаторов |
C 5 H 12 → CH 3 -CH(CH 3)-CH 2 -CH 3 |
Чтобы понимать, как проходит реакция и какие радикалы замещаются, рекомендуется записывать структурные формулы.
Рис. 2. Структурные формулы.
Применение
Алканы широко применяются в промышленной химии, косметологии, строительстве. Из соединений изготавливают:
- топливо (бензин, керосин);
- асфальт;
- смазочные масла;
- вазелин;
- парафин;
- мыло;
- лаки;
- краски;
- эмали;
- спирты;
- синтетические ткани;
- каучук;
- адьдегиды;
- пластмассы;
- моющие средства;
- кислоты;
- пропелленты;
- косметические средства.
Рис. 3. Продукция, получаемая из алканов.
Что мы узнали?
Узнали о химических свойствах и применении алканов. Из-за прочных ковалентных связей между атомами углерода, а также между атомами углерода и водорода, алканы проявляют инертность. Возможны реакции замещения и разложения в присутствии катализатора при высоких температурах. Алканы - предельные углеводороды, поэтому реакции присоединения невозможны. Алканы используются для производства материалов, моющих средств, органических соединений.
Тест по теме
Оценка доклада
Средняя оценка: 4.1 . Всего получено оценок: 227.
ОПРЕДЕЛЕНИЕ
Алканами называются насыщенные углеводороды, молекулы которых состоят из атомов углерода и водорода, связанных между собой только σ-связями.
В обычных условиях (при 25 o С и атмосферном давлении) первые четыре члена гомологического ряда алканов (C 1 — C 4) - газы. Нормальные алканы от пентана до гептадекана (С 5 - С 17) - жидкости, начиная с С 18 и выше - твердые вещества. По мере увеличения относительной молекулярной массы, возрастают температуры кипения и плавления алканов. При одинаковом числе атомов углерода в молекуле алканы с разветвленным строением имеют более низкие температуры кипения, чем нормальные алканы. Строение молекулы алканов на примере метана приведено на рис. 1.
Рис. 1. Строение молекулы метана.
Алканы практически не растворимы в воде, так как их молекулы малополярны и не взаимодействуют с молекулами воды. Жидкие алканы легко смешиваются друг с другом. Они хорошо растворяются в неполярных органических растворителях, таких как бензол, тетрахлорметан, диэтиловый эфир и др.
Получение алканов
Основные источники различных предельных углеводородов, содержащих до 40 атомов углерода, — нефть и природный газ. Алканы с небольшим числом атомов углерода (1 - 10) можно выделить фракционной перегонкой природного газа или бензиновой фракции нефти.
Различают промышленные (I) и лабораторные (II) способы получения алканов.
C + H 2 → CH 4 (kat = Ni, t 0);
CO + 3H 2 → CH 4 + H 2 O (kat = Ni, t 0 = 200 - 300);
CO 2 + 4H 2 → CH 4 + 2H 2 O (kat, t 0).
— гидрирование непредельных углеводородов
CH 3 -CH=CH 2 + H 2 →CH 3 -CH 2 -CH 3 (kat = Ni, t 0);
— восстановление галогеналканов
C 2 H 5 I + HI →C 2 H 6 + I 2 (t 0);
— реакции щелочного плавления солей одноосновных органических кислот
C 2 H 5 -COONa + NaOH→ C 2 H 6 + Na 2 CO 3 (t 0);
— взаимодействие галогеналканов с металлическим натрием (реакция Вюрца)
2C 2 H 5 Br + 2Na → CH 3 -CH 2 -CH 2 -CH 3 + 2NaBr;
— электролиз солей одноосновных органических кислот
2C 2 H 5 COONa + 2H 2 O→H 2 + 2NaOH + C 4 H 10 + 2CO 2 ;
К(-): 2H 2 O + 2e → H 2 + 2OH — ;
A(+):2C 2 H 5 COO — -2e → 2C 2 H 5 COO + → 2C 2 H 5 + + 2CO 2 .
Химические свойства алканов
Алканы относятся к наименее реакционноспособным органическим соединениям, что объясняется их строением.
Алканы в обычных условиях не реагируют с концентрированными кислотами, расплавленными и концентрированными щелочами, щелочными металлами, галогенами (кроме фтора), перманганатом калия и дихроматом калия в кислой среде.
Для алканов наиболее характерны реакции, протекающие по радикальному механизму. Энергетически более выгоден гомолитический разрыв связей C-H и C-C, чем их гетеролитический разрыв.
Реакции радикального замещения наиболее легко протекают по третичному, дплее - по вторичному и в последнюю очередь по первичному атому углерода.
Все химические превращения алканов протекают с расщеплением:
1) cвязей C-H
— галогенирование (S R)
CH 4 + Cl 2 → CH 3 Cl + HCl (hv );
CH 3 -CH 2 -CH 3 + Br 2 → CH 3 -CHBr-CH 3 + HBr (hv ).
— нитрование (S R)
CH 3 -C(CH 3)H-CH 3 + HONO 2 (dilute) → CH 3 -C(NO 2)H-CH 3 + H 2 O (t 0).
— сульфохлорирование (S R)
R-H + SO 2 + Cl 2 → RSO 2 Cl + HCl (hv ).
— дегидрирование
CH 3 -CH 3 → CH 2 =CH 2 + H 2 (kat = Ni, t 0).
— дегидроциклизация
CH 3 (CH 2) 4 CH 3 → C 6 H 6 + 4H 2 (kat = Cr 2 O 3 , t 0).
2) связей C-H и C-C
— изомеризация (внутримолекулярная перегруппировка)
CH 3 -CH 2 -CH 2 -CH 3 →CH 3 -C(CH 3)H-CH 3 (kat=AlCl 3 , t 0).
— окисление
2CH 3 -CH 2 -CH 2 -CH 3 + 5O 2 → 4CH 3 COOH + 2H 2 O (t 0 , p);
C n H 2n+2 + (1,5n + 0,5)O 2 → nCO 2 + (n+1) H 2 O (t 0).
Применение алканов
Алканы нашли применение в различных отраслях промышленности. Рассмотрим подробнее, на примере некоторых представителей гомологического ряда, а также смесей алканов.
Метан составляет сырьевую основу важнейших химических промышленных процессов получения углерода и водорода, ацетилена, кислородсодержащих органических соединений - спиртов, альдегидов, кислот. Пропан применяется как автомобильное топливо. Бутан используется для получения бутадиена, являющегося сырьем для производства синтетического каучука.
Смесь жидких и твердых алканов до С 25 , называемая вазелином применяется в медицине как основа мазей. Смесь твердых алканов С 18 - С 25 (парафин) применяется для пропитки различных материалов (бумага, ткани, древесина) для придания им гидрофобных свойств, т.е. несмачиваемости водой. В медицине используется для физиотерапевтическихпроцедур (парафинолечение).
Примеры решения задач
ПРИМЕР 1
Задание | При хлорировании метана получено 1,54 г соединения, плотность паров по воздуху которого равна 5,31. Рассчитайте массу диоксида марганца MnO 2 , которая потребуется для получения хлора, если соотношение объемов метана и хлора, введенных в реакцию равно 1:2. |
Решение | Отношение массы данного газа к массе другого газа, взятого в том же объеме, при той же температуре и том же давлении, называется относительной плотностью первого газа по второму. Данная величина показывает, во сколько раз первый газ тяжелее или легче второго газа.
Относительную молекулярную массу воздуха принимают равной 29 (с учетом содержания в воздухе азота, кислорода и других газов). Следует отметить, что понятие «относительная молекулярная масса воздуха» употребляется условно, так как воздух - это смесь газов. Найдем молярную массу газа, образующегося при хлорировании метана: M gas = 29 ×D air (gas) = 29 × 5,31 = 154 г/моль. Это тетрахлорметан - CCl 4 . Запишем уравнение реакции и расставим стехиометрические коэффициенты: CH 4 + 4Cl 2 = CCl 4 + 4HCl. Рассчитаем количество вещества тетрахлорметана: n(CCl 4) = m(CCl 4) / M(CCl 4); n(CCl 4) = 1,54 / 154 = 0,01 моль. Согласно уравнению реакции n(CCl 4) : n(CH 4) = 1: 1, значит n(CH 4) = n(CCl 4) = 0,01 моль. Тогда, количество вещества хлора должно быть равно n(Cl 2) = 2 × 4 n(CH 4), т.е. n(Cl 2) = 8 × 0,01 = 0,08 моль. Запишем уравнение реакции получения хлора: MnO 2 + 4HCl = MnCl 2 + Cl 2 + 2H 2 O. Число моль диоксида марганца равно 0,08 моль, т.к. n(Cl 2) :n(MnO 2) = 1: 1. Найдем массу диоксида марганца: m(MnO 2) = n(MnO 2) ×M(MnO 2); M(MnO 2) = Ar(Mn) + 2×Ar(O) = 55 + 2×16 = 87 г/моль; m(MnO 2) = 0,08 × 87 = 10,4 г. |
Ответ | Масса диоксида марганца равна 10,4 г. |
ПРИМЕР 2
Задание | Установите молекулярную формулу трихлоралкана, массовая доля хлора в котором составляет 72,20%. Составьте структурные формулы всех возможных изомеров и дайте названия веществ по заместительной номенклатуре ИЮПАК. |
Ответ | Запишем общую формулу трихлоралкеана:
C n H 2 n -1 Cl 3 . По формуле ω(Cl) = 3×Ar(Cl) / Mr(C n H 2 n -1 Cl 3) × 100% рассчитаем молекулярную массу трихлоралкана: Mr(C n H 2 n -1 Cl 3) = 3 × 35,5 / 72,20 × 100% = 147,5. Найдем значение n: 12n + 2n - 1 + 35,5×3 = 147,5; Следовательно, формула трихлоралкана C 3 H 5 Cl 3 . Составим структурные формулы изомеров: 1,2,3-трихлорпропан (1), 1,1,2-трихлорпропан (2), 1,1,3-трихлорпропан (3), 1,1,1-трихлорпропан (4) и 1,2,2-трихлорпропан (5). CH 2 Cl-CHCl-CH 2 Cl (1); CHCl 2 -CHCl-CH 3 (2); CHCl 2 -CH 2 -CH 2 Cl (3); CCl 3 -CH 2 -CH 3 (4); Углеводороды, в молекулах которых атомы связаны одинарными связями и которые соответствуют общей формуле C n H 2 n
+2
. Вокруг одинарной углерод-углеродной связи возможно практически свободное вращение, и молекулы алканов могут приобретать самую разнообразную форму с углами при атомах углерода, близкими к тетраэдрическому (109° 28′), например, в молекуле н -пентана. Особо стоит напомнить о связях в молекулах алканов. Все связи в молекулах предельных углеводородов одинарные. Перекрывание происходит по оси, Отсутствие в молекулах предельных углеводородов полярных связей приводит к тому, что они плохо растворяются в воде, не вступают во взаимодействие с заряженными частицами (ионами). Наиболее характерными для алканов являются реакции, протекающие с участием свободных радикалов. Гомологический ряд метанаГомологи - вещества, сходные по строению и свойствам и отличающиеся на одну или более групп СН 2 . Изомерия и номенклатураДля алканов характерна так называемая структурная изомерия. Структурные изомеры отличаются друг от друга строением углеродного скелета. Простейший алкан, для которого характерны структурные изомеры, - это бутан. Основы номенклатуры1. Выбор главной цепи.
Формирование названия углеводорода начинается с определения главной цепи - самой длинной цепочки атомов углерода в молекуле, которая является как бы ее основой. Физические свойства алкановПервые четыре представителя гомологического ряда метана - газы. Простейший из них - метан - газ без цвета, вкуса и запаха (запах «газа», почувствовав который, надо звонить 04, определяется запахом меркаптанов - серосодержащих соединений, специально добавляемых к метану, используемому в бытовых и промышленных газовых приборах для того, чтобы люди, находящиеся рядом с ними, могли по запаху определить утечку). Химические свойства алкановРеакции замещения.
Процесс протекает по свободнорадикальному механизму. Повышение температуры приводит к гомолитическому разрыву углерод-углеродной связи и образованию свободных радикалов. Эти радикалы взаимодействуют между собой, обмениваясь атомом водорода, с образованием молекулы алкана и молекулы алкена: Реакции термического расщепления лежат в основе промышленного процесса - крекинга углеводородов. Этот процесс является важнейшей стадией переработки нефти. 3. Пиролиз
. При нагревании метана до температуры 1000 °С начинается пиролиз метана - разложение на простые вещества: Алканы вступают в реакции, протекающие по свободнорадикальному механизму, т. к. все атомы углерода в молекулах алканов находятся в состоянии sp 3 -гибридизации. Молекулы этих веществ построены при помощи ковалентных неполярных С-С (углерод - углерод) связей и слабополярных С-Н (углерод - водород) связей. В них нет участков с повышенной и с пониженной электронной плотностью, легко поляризуемых связей, т. е. таких связей, электронная плотность в которых может смещаться под действием внешних факторов (электростатических полей ионов). Следовательно, алканы не будут реагировать с заряженными частицами, т. к. связи в молекулах алканов не разрываются по гетеролитическому механизму. Предельные углеводороды - это такие соединения, которые представляют собой молекулы, состоящие из атомов углерода, находящихся в состоянии гибридизации sp 3 . Они связаны между собой исключительно ковалентными сигма-связями. Название «предельные» или «насыщенные» углеводороды исходит из того факта, что эти соединения не имеют возможности присоединять какие-либо атомы. Они предельны, полностью насыщены. Исключение составляют циклоалканы. Что такое алканы?Алканы - это углеводороды предельные, а их углеродная цепь незамкнута и состоит из атомов углерода, связанных между собой при помощи одинарных связей. Она не содержит иных (то есть двойных, как у алкенов, или же тройных, как у алкилов) связей. Алканы также называют парафинами. Это название они получили, так как общеизвестные парафины являются смесью преимущественно данных предельных углеводородов С 18 -С 35 с особой инертностью. Общие сведения об алканах и их радикалахИх формула: С n Р 2 n +2 , здесь n больше или равно 1. Молярная масса вычисляется по формуле: М = 14n + 2. Характерная особенность: окончания в их названиях - «-ан». Остатки их молекул, которые образуются в результате замещения водородных атомов на иные атомы, имеют название алифатических радикалов, или алкилов. Их обозначают буквой R. Общая формула одновалентных алифатических радикалов: С n Р 2 n +1 , здесь n больше или равно 1. Молярная масса алифатических радикалов вычисляется по формуле: М = 14n + 1. Характерная особенность алифатических радикалов: окончания в названиях «-ил». Молекулы алканов имеют свои особенности строения:
Начинают гомологический ряд алканы: метан, этан, пропан, бутан и так далее. Физические свойства алкановАлканы - это вещества, которые не имеют цвета и нерастворимы в воде. Температура, при которой алканы начинают плавиться, и температура, при которой они закипают, повышаются в соответствии с увеличением молекулярной массы и длины углеводородной цепи. От менее разветвленных к более разветвленным алканам температуры кипения и плавления понижаются. Газообразные алканы способны гореть бледно-голубым либо бесцветным пламенем, при этом выделяется довольно много тепла. СН 4 -С 4 Н 10 представляют собой газы, у которых отсутствует также и запах. С 5 Н 12 -С 15 Н 32 - это жидкости, которые обладают специфическим запахом. С 15 Н 32 и так далее - это твердые вещества, которые также не имеют запаха. Химические свойства алкановДанные соединения являются малоактивными в химическом плане, что можно объяснить прочностью трудноразрываемых сигма-связей - С-С и С-Н. Также стоит учитывать, что связи С-С неполярны, а С-Н малополярны. Это малополяризуемые виды связей, относящиеся к сигма-виду и, соответственно, разрываться по наибольшей вероятности они станут по механизму гомолитическому, в результате чего будут образовываться радикалы. Таким образом, химические свойства алканов в основном ограничиваются реакциями радикального замещения. Реакции нитрованияАлканы взаимодействуют только с азотной кислотой с концентрацией 10% либо с оксидом четырехвалентного азота в газовой среде при температуре 140°С. Реакция нитрования алканов носит название реакции Коновалова. В результате образуются нитросоединения и вода: CH 4 + азотная кислота (разбавленная) = CH 3 - NO 2 (нитрометан) + вода. Реакции горенияПредельные углеводороды очень часто применяются как топливо, что обосновано их способностью к горению: С n Р 2n+2 + ((3n+1)/2) O 2 = (n+1) H 2 O + n СО 2 . Реакции окисленияВ химические свойства алканов также входит их способность к окислению. В зависимости от того, какие условия сопровождают реакцию и как их изменяют, можно из одного и того же вещества получить различные конечные продукты. Мягкое окисление метана кислородом при наличии катализатора, ускоряющего реакцию, и температуры около 200 °С может дать в результате следующие вещества: 1) 2СН 4 (окисление кислородом) = 2СН 3 ОН (спирт - метанол). 2) СН 4 (окисление кислородом) = СН 2 О (альдегид - метаналь или формальдегид) + Н 2 О. 3) 2СН 4 (окисление кислородом) = 2НСООН (карбоновая кислота - метановая или муравьиная) + 2Н 2 О. Также окисление алканов может производиться в газообразной или жидкой среде воздухом. Такие реакции приводят к образованию высших жирных спиртов и соответствующих кислот. Отношение к нагреваниюПри температурах, не превышающих +150-250°С, обязательно в присутствии катализатора, происходит структурная перестройка органических веществ, которая заключается в изменении порядка соединения атомов. Данный процесс называется изомеризацией, а вещества, полученные в результате реакции - изомерами. Таким образом, из нормального бутана получается его изомер - изобутан. При температурах 300-600°С и наличии катализатора происходит разрыв связей С-Н с образованием молекул водорода (реакции дегидрирования), молекул водорода с замыканием углеродной цепи в цикл (реакции циклизации или ароматизации алканов): 1) 2СН 4 = С 2 Н 4 (этен) + 2Н 2. 2) 2СН 4 = С 2 Н 2 (этин) + 3Н 2. 3) С 7 Н 16 (нормальный гептан) = С 6 Н 5 - СН 3 (толуол) + 4Н 2 . Реакции галогенированияТакие реакции заключаются во введении в молекулу органического вещества галогенов (их атомов), в результате чего образуется связь С-галоген. При взаимодействии алканов с галогенами образуются галогенпроизводные. Данная реакция обладает специфическими особенностями. Она протекает по механизму радикальному, и чтобы ее проинициировать, необходимо на смесь галогенов и алканов воздействовать ультрафиолетовым излучением или же просто нагреть ее. Свойства алканов позволяют реакции галогенирования протекать, пока не будет достигнуто полное замещение на атомы галогена. То есть хлорирование метана не закончится одной стадией и получением метилхлорида. Реакция пойдет далее, будут образовываться все возможные продукты замещения, начиная с хлорметана и заканчивая тетрахлорметаном. Воздействие хлора при данных условиях на другие алканы приведет к образованию различных продуктов, полученных в результате замещения водорода у различных атомов углерода. От температуры, при которой идет реакция, будет зависеть соотношение конечных продуктов и скорость их образования. Чем длиннее углеводородная цепь алкана, тем легче будет идти данная реакция. При галогенировании сначала будет замещаться атом углерода наименее гидрированый (третичный). Первичный вступит в реакцию после всех остальных. Реакция галогенирования будет происходить поэтапно. На первом этапе заместиться только один атом водорода. C растворами галогенов (хлорной и бромной водой) алканы не взаимодействуют. Реакции сульфохлорированияХимические свойства алканов также дополняются реакцией сульфохлорирования (она носит название реакции Рида). При воздействии ультрафиолетового излучения алканы способны реагировать со смесью хлора и диоксида серы. В результате образуется хлороводород, а также алкильный радикал, который присоединяет к себе диоксид серы. В результате получается сложное соединение, которое становится стабильным благодаря захвату атома хлора и разрушения очередной его молекулы: R-H + SO 2 + Cl 2 + ультрафиолетовое излучение = R-SO 2 Cl + HCl. Образовавшиеся в результате реакции сульфонилхлориды находят широкое применение в производстве поверхностно-активных веществ. |