Магнитный поток формула единица. Электромагнитная индукция
магнитная индукция - является плотностью магнитного потока в данной точке поля. Единицей магнитной индукции является тесла (1 Тл = 1 Вб/м 2).
Возвращаясь к полученному ранее выражению (1), можно количественно определить магнитный поток через некоторую поверхность как произведение величины заряда, протекающего через проводник совмещенный с границей этой поверхности при полном исчезновении магнитного поля, на сопротивление электрической цепи, по которой протекают эти заряды
.В описанных выше опытах с пробным витком (кольцом), он удалялся на такое расстояние, при котором исчезали всякие проявления магнитного поля. Но можно просто перемещать этот виток в пределах поля и при этом в нем также будут перемещаться электрические заряды. Перейдем в выражении (1) к приращениям
Ф + Δ Ф = r (q - Δ q ) => Δ Ф = -rΔ q => Δ q = -Δ Ф/r |
где Δ Ф и Δ q - приращения потока и количества зарядов. Разные знаки приращений объясняются тем, что положительный заряд в опытах с удалением витка соответствовал исчезновению поля, т.е. отрицательному приращению магнитного потока.
С помощью пробного витка можно исследовать все пространство вокруг магнита или катушки с током и построить линии, направление касательных к которым в каждой точке будет соответствовать направлению вектора магнитной индукции B (рис. 3)
Эти линии называются линиями вектора магнитной индукции или магнитными линиями .
Пространство магнитного поля можно мысленно разделить трубчатыми поверхностями, образованными магнитными линиями, причем, поверхности можно выбрать таким образом, чтобы магнитный поток внутри каждой такой поверхности (трубки) численно был равен единице и изобразить графически осевые линии этих трубок. Такие трубки называют единичными, а линии их осей - единичными магнитными линиями . Картина магнитного поля изображенная с помощью единичных линий дает не только о качественное, но и количественное представление о нем, т.к. при этом величина вектора магнитной индукции оказывается равной количеству линий, проходящих через единицу поверхности, нормальной вектору B , а количество линий, проходящих через любую поверхность равно значению магнитного потока .
Магнитные линии непрерывны и этот принцип можно математически представить в виде
т.е. магнитный поток, проходящий через любую замкнутую поверхность равен нулю .
Выражение (4) справедливо для поверхности s любой формы. Если рассматривать магнитный поток проходящий через поверхность, образованную витками цилиндрической катушки (рис. 4), то ее можно разделить на поверхности, образованные отдельными витками, т.е. s =s 1 +s 2 +...+s 8 . Причем через поверхности разных витков в общем случае будут проходить разные магнитные потоки. Так на рис. 4, через поверхности центральных витков катушки проходят восемь единичных магнитных линий, а через поверхности крайних витков только четыре.
Для того, чтобы определить полный магнитный поток, проходящий через поверхность всех витков, нужно сложить потоки, проходящие через поверхности отдельных витков, или, иначе говоря, сцепляющиеся с отдельными витками. Например, магнитные потоки, сцепляющиеся с четырьмя верхними витками катушки рис. 4, будут равны: Ф 1 =4; Ф 2 =4; Ф 3 =6; Ф 4 =8. Также, зеркально-симметрично с нижними.
Потокосцепление - виртуальный (воображаемый общий) магнитный поток Ψ, сцепляющийся со всеми витками катушки, численно равен сумме потоков, сцепляющихся с отдельными витками: Ψ = w э Ф m , где Ф m - магнитный поток, создаваемый током, проходящим по катушке, а w э - эквивалентное или эффективное число витков катушки. Физический смысл потокосцепления - сцепление магнитных полей витков катушки, которое можно выразить коэффициентом (кратностью) потокосцепления k = Ψ/Ф = w э.
То есть для приведенного на рисунке случая, двух зеркально-симметричных половинок катушки:
Ψ = 2(Ф 1 + Ф 2 + Ф 3 + Ф 4) = 48 |
Виртуальность, то есть воображаемость потокосцепления проявляется в том, что оно не представляет собой реального магнитного потока, который никакая индуктивность не может кратно увеличивать, но поведение импеданса катушки таково, что кажется, что магнитный поток увеличивается кратно эффективному количеству витков, хотя реально - это просто взаимодействие витков в том же самом поле. Если бы катушка увеличивала магнитный поток своим потокосцеплением, то можно было бы создавать умножители магнитного поля на катушке даже без тока, ибо потокосцепление не подразумевает замкнутости цепи катушки, но лишь совместную геометрию близости витков.
Часто реальное распределение потокосцепления по виткам катушки неизвестно, но его можно принять равномерным и одинаковым для всех витков, если реальную катушку заменить эквивалентной с другим числом витков w э, сохраняя при этом величину потокосцепления Ψ = w э Ф m , где Ф m - поток, сцепляющийся с внутренними витками катушки, а w э - эквивалентное или эффективное число витков катушки. Для рассмотренного на рис. 4 случая w э = Ψ/Ф 4 =48/8=6.
Пусть в некоторой малой области пространства существует магнитное поле, которое можно считать однородным, то есть в этой области вектор магнитной индукции постоянен, как по величине, так и по направлению.
Выделим малую площадку площадью ΔS
, ориентация которой задается единичным вектором нормали n
(рис. 445).
рис. 445
Магнитный поток через эту площадку ΔФ m
определяется как произведение площади площадки на нормальную составляющую вектора индукции магнитного поля
Где
скалярное произведение векторов B
и n
;
B n
− нормальная к площадке компонента вектора магнитной индукции.
В произвольном магнитном поле магнитный поток через произвольную поверхность, определяется следующим образом (рис. 446):
рис. 446
− поверхность разбивается на малые площадки ΔS i
(которые можно считать плоскими);
− определяется вектор индукции B i
на этой площадке (который в пределах площадки можно считать постоянным);
− вычисляется сумма потоков через все площадки, на которые разбита поверхность
Эта сумма называется потоком вектора индукции магнитного поля через заданную поверхность (или магнитным потоком).
Обратите внимание, что при вычислении потока суммирование проводится по точкам наблюдения поля, а не по источникам, как при использовании принципа суперпозиции. Поэтому магнитный поток является интегральной характеристикой поля, описывающей его усредненные свойства на всей рассматриваемой поверхности.
Трудно найти физический смысл магнитного потока, как и для иных полей это полезная вспомогательная физическая величина. Но в отличие от других потоков, магнитный поток настолько часто встречается в приложениях, что в системе СИ удостоился «персональной» единицы измерения − Вебер 2 : 1 Вебер
− магнитный поток однородного магнитного поля индукции 1 Тл
через площадку площадью 1 м 2
ориентированную перпендикулярно вектору магнитной индукции.
Теперь докажем простую, но чрезвычайно важную теорему о магнитном потоке через замкнутую поверхность.
Ранее мы установили, что силовые любого магнитного поля являются замкнутыми, уже из этого следует, что магнитный поток, через любую замкнутую поверхность равен нулю.
Тем не менее, приведем более формальное доказательство этой теоремы.
Прежде всего, отметим, что для магнитного потока справедлив принцип суперпозиции: если магнитное поле создано несколькими источниками, то для любой поверхности поток поля, созданного системой элементов тока, равен сумме потоков полей, созданных каждым элементом тока в отдельности.
Это утверждение следует непосредственно из принципа суперпозиции для вектора индукции и прямо пропорциональной связью между магнитным потоком и вектором магнитной индукции. Следовательно достаточно доказать теорему для поля, созданного элементом тока, индукция которого определяется по закону Био-Саварра-Лапласа. Здесь для нас важна структура поля, обладающего осевой круговой симметрией, значение модуля вектора индукции несущественно.
Выберем в качестве замкнутой поверхности поверхность бруска, вырезанного, как показано на рис. 447.
рис. 447
Магнитный поток отличен от нуля только через его две боковые грани, но эти потоки имеют противоположные знаки. Вспомним, что для замкнутой поверхности выбирают внешнюю нормаль, поэтому на одной из указанных граней (передней) поток положительный, а на задней отрицательный. Причем модули этих потоков равны, так как распределение вектора индукции поля на этих гранях одинаково. Данный результат не зависит от положения рассмотренного бруска. Произвольное тело можно разбить на бесконечно малые части, каждая из которых подобна рассмотренному бруску.
Наконец, сформулируем еще одно важное свойство потока любого векторного поля. Пусть произвольная замкнутая поверхность ограничивает некоторое тело (рис. 448).
рис. 448
Разобьем это тело на две части, ограниченные частями исходной поверхности Ω 1
и Ω 2
, и замкнем их общей границей раздела тела. Сумма потоков через эти две замкнутые поверхности равна потоку через исходную поверхность! Действительно сумма потоков через границу (один раз для одного тела, другой раз для другого) равна нулю, так как в каждом случае надо брать разные, противоположные нормали (каждый раз внешнюю). Аналогично можно доказать утверждение для произвольного разбиения тела: если тело разбито на произвольное число частей, то поток через поверхность тела равен сумме потоков через поверхности всех частей разбиения тела. Это утверждение очевидно для потока жидкости.
Фактически мы доказали, что если поток векторного поля равен нулю через некоторую поверхность ограничивающее малый объем, то этот поток равен нулю через любую замкнутую поверхность.
Итак, для любого магнитного поля справедлива теорема о магнитном потоке: магнитный поток через любую замкнутую поверхность равен нулю Ф m = 0.
Ранее мы рассматривали теоремы о потоке для поля скоростей жидкости и электростатического поля. В этих случаях поток через замкнутую поверхность полностью определялся точечными источниками поля (истоками и стоками жидкости, точечными зарядами). В общем случае наличие ненулевого потока через замкнутую поверхность свидетельствует о наличии точечных источников поля. Следовательно, физическим содержанием теоремы о магнитном потоке является утверждение об отсутствии магнитных зарядов.
Если вы хорошо разобрались в данном вопросе и сумеете объяснить и отстоять свою точку зрения, то можете формулировать теорему о магнитном потоке и так: «Еще никто не нашел монополя Дирака».
Следует особо подчеркнуть, что, говоря об отсутствии источников поля, мы имеем виду именно точечных источников, подобных электрическим зарядам. Если провести аналогию с полем движущейся жидкости, электрические заряды подобны точкам, из которых вытекает (или втекает) жидкость, увеличивая или уменьшая ее количество. Возникновение магнитного поля, благодаря движению электрических зарядов подобно движению тела в жидкости, которое приводит к появлению вихрей, не изменяющих общего количества жидкости.
Векторные поля, для которых поток через любую замкнутую поверхность равен нулю получили красивое, экзотическое название − соленоидальные . Соленоидом называется проволочная катушка, по которой можно пропускать электрический ток. Такая катушка может создавать сильные магнитные поля, поэтому термин соленоидальный означает «подобный полю соленоида», хотя можно было назвать такие поля попроще − «магнитоподобные». Наконец такие поля еще называют вихревыми , подобно полю скоростей жидкости, образующей в своем движении всевозможные турбулентные завихрения.
Теорема о магнитном потоке имеет большое значение, она часто используется при доказательстве различных свойств магнитных взаимодействий, с ней мы будем встречаться неоднократно. Так, например, теорема о магнитном потоке доказывает, что вектор индукции магнитного поля, создаваемого элементом, не может иметь радиальной составляющей, иначе поток через цилиндрическую поверхность коаксиальную с элементом тока был бы отличен от нуля.
Теперь проиллюстрируем применение теоремы о магнитном потоке для расчета индукции магнитного поля. Пусть магнитное поле создается кольцом с током, которое характеризуется магнитным моментом p m
. Рассмотрим поле вблизи оси кольца на расстоянии z
от центра, значительно большем радиуса кольца (рис. 449).
рис. 449
Ранее мы получили формулу для индукции магнитного поля на оси для больших расстояний от центра кольца
Мы не допустим большой ошибки, если будем считать, что такое же значение имеет вертикальная (пусть ось кольца вертикальна) компонента поля в пределах небольшого кольца радиуса r
, плоскость которого перпендикулярна оси кольца. Так как вертикальная компонента поля изменяется с изменением расстояния, то неизбежно должны присутствовать радиальные компоненты поля, иначе не будет выполняться теорема о магнитном потоке! Оказывается этой теоремы и формулы (3) достаточно, чтобы найти эту радиальную компоненту. Выделим тонкий цилиндр толщиной Δz
и радиуса r
, нижнее основание которого находится на расстоянии z
от центра кольца, соосный с кольцом и применим теорему о магнитном потоке к поверхности этого цилиндра. Магнитный поток через нижнее основание равен (учтите, что вектора индукции и нормали здесь противоположны)
где B z (z)
z
;
поток через верхнее основание равен
где B z (z + Δz)
− значение вертикальной компоненты вектора индукции на высоте z + Δz
;
поток через боковую поверхность (из осевой симметрии следует, что модуль радиальной составляющей вектора индукции B r
на этой поверхности постоянен):
По доказанной теореме сумма этих потоков равна нулю, поэтому справедливо уравнение
из которого определим искомую величину
Осталось использовать формулу (3) для вертикальной составляющей поля и провести необходимые вычисления 3
Действительно, убывание вертикальной компоненты поля приводит к появлению горизонтальных компонент: уменьшение вытекания через основания приводит к «течи» через боковую поверхность.
Таким образом, мы доказали «криминальную теорему»: если через один конец трубы вытекает меньше, чем вливают в нее с другого конца, то где-то воруют через боковую поверхность.
1 Достаточно взять текст с определением потока вектора напряженности электрического поля и изменить обозначения (что здесь и сделано).
2 Названа в честь немецкого физика (члена Петербургской академии наук) Вильгельма Эдуарда Вебера (1804 – 1891)
3 Самые грамотные могут увидеть в последней дроби производную функции (3) и элементарно ее вычислить, нам же придется очередной раз воспользоваться приближенной формулой (1 + x) β ≈ 1 + βx.
Если электрический ток, как показали опыты Эрстеда, создает магнитное поле, то не может ли в свою очередь магнитное поле вызывать электрический ток в проводнике? Многие ученые с помощью опытов пытались найти ответ на этот вопрос, но первым решил эту задачу Майкл Фарадей (1791 - 1867).
В 1831 г. Фарадей обнаружил, что в замкнутом проводящем контуре при изменении магнитного поля возникает электрический ток. Этот ток назвали индукционным током.
Индукционный ток в катушке из металлической проволоки возникает при вдвигании магнита внутрь катушки и при выдвигании магнита из катушки (рис. 192),
а также при изменении силы тока во второй катушке, магнитное поле которой пронизывает первую катушку (рис. 193).
Явление возникновения электрического тока в замкнутом проводящем контуре при изменениях магнитного поля, пронизывающего контур, называется электромагнитной индукцией.
Появление электрического тока в замкнутом контуре при изменениях магнитного поля, пронизывающего контур, свидетельствует о действии в контуре сторонних сил неэлектростатической природы или о возникновении ЭДС индукции.
Количественное описание явления электромагнитной индукции дается на основе установления связи между ЭДС индукции и физической величиной, называемой магнитным потоком.
Магнитный поток.
Для плоского контура, расположенного в однородном магнитном поле (рис. 194), магнитным потоком Ф
через поверхность площадью S
называют величину, равную произведению модуля вектора магнитной индукции
на площадь S
и на косинус угла
между вектором
и нормалью к поверхности:
Правило Ленца.
Опыт показывает, что направление индукционного тока в контуре зависит от того, возрастает или убывает магнитный поток, пронизывающий контур, а также от направления вектора индукции магнитного поля относительно контура. Общее правило, позволяющее определить направление индукционного тока в контуре, было установлено в 1833 г. Э. X. Ленцем.
Правило Ленца можно наглядно показать с помощью легкого алюминиевого кольца (рис. 195).
Опыт показывает, что при внесении постоянного магнита кольцо отталкивается от него, а при удалении притягивается к магниту. Результат опытов не зависит от полярности магнита.
Отталкивание и притяжение сплошного кольца объясняется возникновением индукционного тока в кольце при изменениях магнитного потока через кольцо и действием на индукционный ток магнитного поля. Очевидно, что при вдвигании магнита в кольцо индукционный ток в нем имеет такое направление, что созданное этим током магнитное поле противодействует внешнему магнитному полю, а при выдвигании магнита индукционный ток в нем имеет такое направление, что вектор индукции его магнитного поля совпадает по направлению с вектором индукции внешнего поля.
Общая формулировка правила Ленца:
возникающий в замкнутом контуре индукционный ток имеет такое направление, что созданный им магнитный поток через площадь, ограниченную контуром, стремится компенсировать то изменение магнитного потока, которым вызывается данный ток.
Закон электромагнитной индукции.
Экспериментальное исследование зависимости ЭДС индукции от изменения магнитного потока привело к установлению закона электромагнитной индукции:
ЭДС индукции в замкнутом контуре пропорциональна скорости изменения магнитного потока через поверхность, ограниченную контуром.
В СИ единица магнитного потока выбрана такой, чтобы коэффициент пропорциональности между ЭДС индукции и изменением магнитного потока был равен единице. При этом закон электромагнитной индукции
формулируется следующим образом: ЭДС индукции в замкнутом контуре равна модулю скорости изменения магнитного потока через поверхность, ограниченную контуром:
С учетом правила Ленца закон электромагнитной индукции записывается следующим образом:
ЭДС индукции в катушке. Если в последовательно соединенных контурах происходят одинаковые изменения магнитного потока, то ЭДС индукции в них равна сумме ЭДС индукции в каждом из контуров. Поэтому при изменении магнитного потока в катушке, состоящей из n одинаковых витков провода, общая ЭДС индукции в n раз больше ЭДС индукции в одиночном контуре:
Для однородного магнитного поля на основании уравнения (54.1) следует, что его магнитная индукция равна 1 Тл, если магнитный поток через контур площадью 1 м 2 равен 1 Вб:
.
Вихревое электрическое поле.
Закон электромагнитной индукции (54.3) по известной скорости изменения магнитного потока позволяет найти значение ЭДС индукции в контуре и при известном значении электрического сопротивления контура вычислить силу тока в контуре. Однако при этом остается нераскрытым физический смысл явления электромагнитной индукции. Рассмотрим это явление подробнее.
Возникновение электрического тока в замкнутом контуре свидетельствует о том, что при изменении магнитного потока, пронизывающего контур, на свободные электрические заряды в контуре действуют силы. Провод контура неподвижен, неподвижными можно считать свободные электрические заряды в нем. На неподвижные электрические заряды может действовать только электрическое поле. Следовательно, при любом изменении магнитного поля в окружающем пространстве возникает электрическое поле. Это электрическое поле и приводит в движение свободные электрические заряды в контуре, создавая индукционный электрический ток. Электрическое поле, возникающее при изменениях магнитного поля, называют вихревым электрическим полем.
Работа сил вихревого электрического поля по перемещению электрических зарядов и является работой сторонних сил, источником ЭДС индукции.
Вихревое электрическое поле отличается от электростатического поля тем, что оно не связано с электрическими зарядами, его линии напряженности представляют собой замкнутые линии. Работа сил вихревого электрического поля при движении электри ческого заряда по замкнутой линии может быть отлична от нуля.
ЭДС индукции в движущихся проводниках. Явление электромагнитной индукции наблюдается и в тех случаях, когда магнитное поле не изменяется во времени, но магнитный поток через контур изменяется из-за движения проводников контура в магнитном поле. В этом случае причиной возникновения ЭДС индукции является не вихревое электрическое поле, а сила Лоренца.
Для того чтобы уяснить смысл нового для нас понятия «магнитный поток», подробно разберем несколько опытов с наведением ЭДС, обращая внимание на количественную сторону производимых наблюдений.
В наших опытах будем пользоваться установкой, изображенной на рис. 2.24.
Она состоит из большой многовитковой катушки, намотанной, скажем, на трубу из плотного проклеенного картона. Питание катушки производится от аккумулятора через рубильник и регулировочный реостат. О величине тока, устанавливающегося в катушке, можно судить по амперметру (на рис. 2.24 не показан).
Внутри большой катушки может устанавливаться другая маленькая катушка, концы которой подведены к магнитоэлектрическому прибору - гальванометру.
Для наглядности рисунка часть катушки показана вырезанной - это позволяет увидеть расположение маленькой катушки.
При замыкании или размыкании рубильника в маленькой катушке наводится ЭДС и стрелка гальванометра на короткое время отбрасывается из нулевого положения.
По отклонению можно судить о том, в каком случае на веденная ЭДС больше, в каком меньше.
Рис. 2.24. Устройство, на котором можно изучать наведение ЭДС изменяющимся магнитным полем
Замечая число делений, на какое отбрасывается стрелка, можно количественно сравнивать действие, производимое наведенными ЭДС.
Первое наблюдение. Вставив внутрь большой катушки маленькую, закрепим ее и пока не будем ничего изменять в их расположении.
Включим рубильник и, меняя сопротивление реостата, включенного вслед за аккумулятором, установим определенное значение тока, например
Произведем теперь выключение рубильника, наблюдая за гальванометром. Пусть его отброс n окажется равным 5 делениям вправо:
Когда выключается ток 1 А.
Снова включим рубильник и, меняя сопротивление, увеличим ток большой катушки до 4 А.
Дадим гальванометру успокоиться, и снова выключим рубильник, наблюдая за гальванометром.
Если его отброс составлял 5 делений при выключении тока 1 А, то теперь при выключении 4 А заметим, что отброс увеличился в 4 раза:
Когда выключается ток 4 А.
Продолжая такие наблюдения, легко заключить, что отброс гальванометра, а значит, и наведенная ЭДС возрастают пропорционально росту отключаемого тока.
Но мы знаем, что изменение тока вызывает изменение магнитного поля (его индукции), поэтому правильный вывод из нашего наблюдения такой:
наводимая ЭДС пропорциональна скорости изменения магнитной индукции.
Более подробные наблюдения подтверждают правильность этого вывода.
Второе наблюдение. Продолжим наблюдение за отбросом гальванометра, производя выключение одного и того же тока, скажем, 1-4 А. Но будем изменять число витков N маленькой катушки, оставляя неизменными ее расположение и размеры.
Предположим, что отброс гальванометра
наблюдался при (100 витков на малой катушке).
Как изменится отброс гальванометра, если удвоить число витков?
Опыт показывает, что
Именно этого и следовало ожидать.
В самом деле, все витки маленькой катушки находятся под одинаковым воздействием магнитного поля, и в каждом витке должна наводиться, одинаковая ЭДС.
Обозначим ЭДС одного витка буквой Ей тогда ЭДС 100 витков, включенных последовательно один за другим, должна быть в 100 раз больше:
При 200 витках
При любом ином числе витков
Если ЭДС возрастает пропорционально числу витков, то само собой разумеется и то, что отброс гальванометра должен быть тоже пропорционален числу витков.
Это и показывает опыт. Итак,
наводимая ЭДС пропорциональна числу витков.
Еще раз подчеркиваем, что размеры маленькой катушки и ее расположение во время нашего опыта оставались неизменными. Само собой разумеется, что опыт проводился в одной и той же большой катушке при выключении того же тока.
Третье наблюдение. Проделав несколько опытов с одной и той же маленькой катушкой при неизменности включаемого тока, легко убедиться в том, что величина наводимой ЭДС зависит от того, как расположена маленькая катушка.
Для наблюдения зависимости наводимой ЭДС от положения маленькой катушки усовершенствуем несколько нашу установку (рис. 2.25).
К выходящему наружу концу оси маленькой катушки приделаем указательную стрелку и круг с делением (вроде
Рис. 2.25. Устройство для поворачивания маленькой катушки, закрепленной на стержне, пропущенном через стенки большой катушки. Стержень связан с указательной стрелкой. Положение стрелки на полукольце с делениями показывает, как расположена маленькая катушка тех, которые можно встретить на радиоприемниках).
Поворачивая стерженек, мы теперь по положению указательной стрелки можем судить о том положении, которое занимает маленькая катушка внутри большой.
Наблюдения показывают, что
наибольшая ЭДС наводится тогда, когда ось маленькой катушки совпадает с направлением магнитного поля,
другими словами, когда оси большой и малой катушек раллельны.
Рис. 2.26. К выводу понятия «магнитный поток». Магнитное поле изображено линиями, проведенными из расчета две линии на 1 см2: а - катушка площадью 2 см2 расположена перпендикулярно направлению поля. С каждым витком катушки сцеплен магнитный поток Этот поток изображен четырьмя линиями, пересекающими катушку; б - катушка площадью 4 см2 расположена перпендикулярно направлению поля. С каждым витком катушки сцеплен магнитный поток Этот поток изображен восемью линиями, пересекающими катушку; в - катушка площадью 4 см2 расположена наклонно. Магнитный поток, сцепленный с каждым из ее витков, изображен четырьмя линиями. Он равен так как каждая линия изображает, как это видно из рис. 2.26, а и б, поток в . Поток, сцепленный с катушкой, уменьшается из-за ее наклона
Такое расположение маленькой катушки показано на рис. 2.26, а и б. По мере поворота катушки наводимая в ней ЭДС будет все меньше и меньше.
Наконец, если плоскость маленькой катушки станет параллельной линиям, поля, в ней не будет наводиться никакой ЭДС. Может возникнуть вопрос, что же будет при дальнейшем повороте маленькой катушки?
Если мы повернем катушку больше чем на 90° (относительно исходного положения), то изменится знак наводимой ЭДС. Линии поля будут входить в катушку с другой стороны.
Четвертое наблюдение. Важно провести еще одно, заключительное наблюдение.
Выберем определенное положение, в которое будем ставить маленькую катушку.
Условимся, например, ставить ее всегда в такое положение, чтобы наводимая ЭДС была возможно большой (конечно, при данном числе витков и данном значении отключаемого тока). Изготовим несколько маленьких катушек разного диаметра, но с одинаковым числом витков.
Будем ставить эти катушки в одно и то же положение и, выключая ток, будем наблюдать за отбросом гальванометра.
Опыт покажет нам, что
наводимая ЭДС пропорциональна площади поперечного сечения катушек.
Магнитный поток. Все наблюдения позволяют нам сделать вывод о том, что
наводимая ЭДС всегда пропорциональна изменению магнитного потока.
Но что такое магнитный поток?
Сначала будем говорить о магнитном потоке через плоскую площадку S, образующую прямой угол с направлением магнитного поля. В этом случае магнитный поток равен произведению площади на индукцию или
здесь S - площадь нашей площадки, м2;; В - индукция, Тл; Ф - магнитный поток, Вб.
Единицей потока служит вебер.
Изображая магнитное поле посредством линий, мы можем сказать, что магнитный поток пропорционален числу линий, пронизывающих площадку.
Если линии поля проведены так, что число их на перпендикулярно поставленной плоскости равняется индукции поля В, то поток равен числу таких линий.
На рис. 2.26 магнитное люле в изображено линиями, проведенными из расчета двух линий на Каждая линия, таким образом, соответствует магнитному потоку величиной
Теперь для того чтобы определить величину магнитного потока, достаточно просто сосчитать количество линий, пронизывающих площадку, и умножить это число на
В случае рис. 2.26, а магнитный поток через площадку в 2 см2, перпендикулярную направлению поля,
На рис. 2.26, а эта площадка пронизана четырьмя магнитными линиями. В случае рис. 2.26, б магнитный поток через поперечную площадку в 4 см2 при индукции 0,2 Тл
и мы видим, что площадка пронизана восемью магнитными линиями.
Магнитный поток, сцепленный с витком. Говоря о наведенной ЭДС, нам нужно иметь в виду поток, сцепленный с витком.
Поток, сцепленный с витком - это поток, пронизывающий поверхность, ограниченную витком.
На рис. 2.26 поток, сцепленный с каждым витком катушки, в случае рис. 2.26, а равен а в случае рис. 2.26, б поток равен
Если площадка не перпендикулярна, а наклонена к магнитным линиям, то уже нельзя определять поток просто произведением площади на индукцию. Поток в этом случае определяется как произведение индукции на площадь проекции нашей площадки. Речь идет о проекции на плоскость, перпендикулярную линиям поля, или как бы о тени, отбрасываемой площадкой (рис. 2.27).
Однако при любой форме площадки поток по-прежнему пропорционален числу линий, проходящих через нее, или равен числу единичных линий, пронизывающих площадку.
Рис. 2.27. К выводу проекции площадки. Проводя опыты более подробно и объединяя наши третье и четвертое наблюдения, можно было бы сделать такой вывод; наводимая ЭДС пропорциональна площади той тени, которую отбрасывает наша маленькая катушка на плоскость, перпендикулярную линиям поля, если бы она была освещена лучами света, параллельными линиями поля. Такая тень называется проекцией
Так, на рис. 2.26, в поток через площадку в 4 см2 при индукции 0,2 Тл равен всего (линии ценой по ). Изображение магнитного поля линиями очень помогает при определении потока.
Если с каждым из N витков катушки сцеплен поток Ф, можно назвать произведение ЫФ полным потокосцеплением катушки. Понятием потокосцепления можно особенно удобно пользоваться, когда с разными витками сцеплены разные потоки. В этом случае полным потокосцеплением называют сумму потоков, сцепленных с каждым из витков.
Несколько замечаний о слове «поток». Почему мы говорим о потоке? Связано ли с этим словом представление о каком-то течении чего-то магнитного? В самом деле, говоря «электрический ток», мы представляем себе движение (поток) электрических зарядов. Так же ли обстоит дело и в случае магнитного потока?
Нет, когда мы говорим «магнитный поток», мы имеем в виду только определенную меру магнитного поля (произведение силы поля на площадь), похожую на меру, которой пользуются инженеры и ученые, изучающие движение жидкостей. При движении воды они называют ее потоком произведения скорости воды на площадь поперечно расположенной площадки (поток воды в трубе равен ее скорости на площадь поперечного сечения трубы).
Конечно, само магнитное поле, представляющее собой один из видов материи, связано и с особой формой движения. У нас еще нет достаточно отчетливых представлений и знаний о характере этого движения, хотя о свойствах магнитного поля современным ученым известно многое: магнитное поле связано с существованием особой формы энергии, его основной мерой является индукция, другой очень важной мерой является магнитный поток.
Поток вектора магнитной индукции В через какую либо поверхность. Магнитный поток через малую площадку dS, в пределах которой вектор В неизменен, равен dФ = ВndS, где Bn проекция вектора на нормаль к площадке dS. Магнитный поток Ф через конечную… … Большой Энциклопедический словарь
МАГНИТНЫЙ ПОТОК - (поток магнитной индукции), поток Ф вектора магн. индукции В через к. л. поверхность. М. п. dФ через малую площадку dS, в пределах к рой вектор В можно считать неизменным, выражается произведением величины площадки и проекции Bn вектора на… … Физическая энциклопедия
магнитный поток - Скалярная величина, равная потоку магнитной индукции. [ГОСТ Р 52002 2003] магнитный поток Поток магнитной индукции через перпендикулярную магнитному полю поверхность, определяемый как произведение магнитной индукции в данной точке на площадь… … Справочник технического переводчика
МАГНИТНЫЙ ПОТОК - (символ Ф), мера силы и протяженности МАГНИТНОГО ПОЛЯ. Поток через площадь А под прямым углом к одинаковому магнитному полю есть Ф=mНА, где m магнитная ПРОНИЦАЕМОСТЬ среды, а Н интенсивность магнитного поля. Плотность магнитного потока это поток… … Научно-технический энциклопедический словарь
МАГНИТНЫЙ ПОТОК - поток Ф вектора магнитной индукции (см. (5)) В через поверхность S, нормальную вектору В в однородном магнитном поле. Единица магнитного потока в СИ (см.) … Большая политехническая энциклопедия
МАГНИТНЫЙ ПОТОК - величина, характеризующая магнитное воздействие на данную поверхность. М. п. измеряется количеством магнитных силовых линий, проходящих через данную поверхность. Технический железнодорожный словарь. М.: Государственное транспортное… … Технический железнодорожный словарь
Магнитный поток - скалярная величина, равная потоку магнитной индукции... Источник: ЭЛЕКТРОТЕХНИКА. ТЕРМИНЫ И ОПРЕДЕЛЕНИЯ ОСНОВНЫХ ПОНЯТИЙ. ГОСТ Р 52002 2003 (утв. Постановлением Госстандарта РФ от 09.01.2003 N 3 ст) … Официальная терминология
магнитный поток - поток вектора магнитной индукции В через какую либо поверхность. Магнитный поток через малую площадку dS, в пределах которой вектор В неизменен, равен dФ = BndS, где Вn проекция вектора на нормаль к площадке dS. Магнитный поток Ф через конечную… … Энциклопедический словарь
магнитный поток - , поток магнитной индукции поток вектора магнитной индукции через какую либо поверхность. Для замкнутой поверхности суммарный магнитный поток равен нулю, что отражает соленоидный характер магнитного поля, т. е. отсутствие в природе … Энциклопедический словарь по металлургии
Магнитный поток - 12. Магнитный поток Поток магнитной индукции Источник: ГОСТ 19880 74: Электротехника. Основные понятия. Термины и определения оригинал документа 12 магнитный по … Словарь-справочник терминов нормативно-технической документации
Книги
- , Миткевич В. Ф.. В этой книге содержится многое, на что не всегда обращается должное внимание, когда речь идет о магнитном потоке, и что не было до сих пор достаточно определенно высказано или не было… Купить за 2252 грн (только Украина)
- Магнитный поток и его преобразование , Миткевич В. Ф.. Эта книга будет изготовлена в соответствии с Вашим заказом по технологии Print-on-Demand. В этой книге содержится многое, на что не всегда обращается должное внимание, когда речь идет о…