Основы электродинамики. Нестаци-онарные процессы в вакууме. Возбуждение вихревого электрического поля переменным магнитным потоком в проводниковом контуре

Из истории электродинамики

Курс общей физики (лекции)

Раздел II Электродинамика

Москва, 2003

Лекция 1 «Основы электростатики»

План лекции

1.Введение. Предмет классической электродинамики.

a. Из истории электродинамики.

b. Электродинамика и научно-технический прогресс.

2.Электрические заряды.

a. Свойства электрических зарядов.

b. Закон Кулона.

3.Электрическое поле.

a. Идеи близко – и дальнодействия.

b. Напряжённость электрического поля. Поле точечного заряда. Графическое представление электрических полей.

4.Принцип суперпозиции электрических полей.

a. Поле диполя.

b. Поле бесконечной заряженной нити.

Введение. Предмет классической электродинамики

Из истории электродинамики

Разнообразные электрические и магнитные явления, которые люди наблюдают с незапамятных времён, всегда пробуждали их любопытство и интерес. Однако, «наблюдать» ещё не значит «исследовать».

Первые научные шаги в изучении электричества и магнетизма были сделаны только в конце 16 века врачом английской королевы Елизаветы Уильямом Гильбертом (1540 – 1603). В своей монографии «О магните, магнитных телах и о большом магните - Земля», Гильберт впервые ввёл понятие «магнитное поле Земли»… Экспериментируя с различными материалами, он обнаружил, что свойством притягивать легкие предметы обладает не только янтарь, потёртый о шёлк, но и многие другие тела: алмаз, хрусталь, смола, сера и т.д. Эти вещества он назвал «электрические», то есть «как янтарь». Так возник термин «электричество».

Первую теорию электрических явлений попытался создать французский исследователь Шарль Дюфэ (1698 – 1739). Он установил, что существует электричество двух родов: «Один род, - писал он, - я назвал «стеклянным» электричеством, другой - «смоляным». Особенность этих двух родов электричества: отталкивать однородное с ним и притягивать противоположное…» (1733 г.).

Дальнейшее развитие теория электричества получила в работах американского учённого Бенджамина Франклина (1706 – 1790). Он ввёл понятие «положительное» и «отрицательное» электричество, установил закон сохранения электрического заряда, исследовал «атмосферное электричество», предложил идею громоотвода. Целый ряд созданных им экспериментальных установок стали классикой и уже более 200 лет украшают физические лаборатории учебных заведений (например, «колесо Франклина»).

В 1785 году французский исследователь Шарль Кулон (1736 – 1806) экспериментально установил закон взаимодействия неподвижных электрических зарядов и позднее - магнитных полюсов. Закон Кулона - фундамент электростатики. Он позволил, наконец-то, установить единицу измерения электрического заряда и магнитных масс. Открытие этого закона стимулировало разработку математической теории электрических и магнитных явлений.

Впрочем, долгое время (ещё со времён Гильберта) считалось, что электричество и магнетизм не имеют ничего общего. Только в 1820 году датчанин Ганс Эрстед (1777 – 1851) обнаружил влияние электрического тока на магнитную стрелку, которое он объяснил тем, что «вокруг проволоки с током образуется магнитный вихрь». Иными словами Эрстед установил, что электрический ток является источником магнитного поля. Это положение стало первым из двух основных законов электродинамики. Второе было установлено экспериментально английским физиком Майклом Фарадеем (1791 – 1867). В 1831 году он впервые наблюдал явление «магнитоэлектрической индукции», когда в проводящем контуре возникал индукционный электрический ток при изменении магнитного потока, пронизывающего этот контур.

В конце 19-го столетия разрозненные результаты исследований электромагнитных явлений обобщил молодой шотландский физик Джемс Кларк Максвелл (1831 – 1879). Он создал классическую теорию электродинамики, в которой в частности предсказал существование электромагнитных волн, выдвинул идею электромагнитной природы света, вычислил объемную плотность энергии электромагнитной волны, рассчитал давление, которое должна производить электромагнитная волна при падении на поглощающую поверхность.

Определение 1

Электродинамика – это теория, что рассматривает электромагнитные процессы в вакууме и различных средах.

Электродинамика охватывает совокупность процессов и явлений, в которых ключевую роль играют действия между заряженными частицами, что осуществляются посредством электромагнитного поля.

История развития электродинамики

История развития электродинамики – это история эволюции традиционных физических понятий. Еще до середины 18 столетия были установлены важные опытные результаты, что обусловлены электричеством:

  • отталкивание и притяжение;
  • деление вещество на изоляторы и проводники;
  • существование двух типов электричества.

Также достигнуты немалые результаты в изучении магнетизма. Применение электричества начиналось со второй половины 18 столетия. Возникновение гипотезы об электричестве как особенной материальной субстанции связано с именем Франклина (1706-1790 гг.) А в 1785 году Кулон установил закон взаимодействия точечных зарядов.

Вольт (1745-1827 гг.) изобрел множество электроизмерительных приборов. В 1820 году был установлен закон, что определял механическую силу, с которой магнитное поле воздействует на элемент электрического тока. Данное явление приобрело название закон Ампера. Также Ампер установил закон силового воздействия нескольких токов. В 1820 году Эрстед открыл магнитное действие электрического тока. В 1826 году установлен закон Ома.

В физике особое значение имеет гипотеза молекулярных токов, которая была предложена Ампером еще в 1820 году. Фарадей в 1831 году открыл закон электромагнитной индукции. Джеймс Клерк Максвелл (1831-1879 гг.) в 1873 году изложил уравнения, которые позже стали теоретической базой электродинамики. Следствием уравнений Максвелла является предсказание электромагнитной природы света. Также он предсказал возможность существования электромагнитных волн.

Со временем в физической науке сложилось представление об электромагнитном поле как о независимой материальной сущности, которая является неким носителем электромагнитных взаимодействий в пространстве. Различные магнитные и электрические явления всегда пробуждали интерес людей.

Зачастую под термином «электродинамика» понимается традиционная электродинамика, которая описывает только непрерывные свойства электромагнитного поля.

Электромагнитное поле – это главный предмет изучения электродинамики, а также особый вид материи, который проявляется при взаимодействии с заряженными частицами.

Попов А.С. в 1895 году изобрел радио. Именно оно оказало ключевой воздействие на дальнейшее развитие техники и науки. При помощи уравнений Максвелла можно описать все электромагнитные явления. Уравнения устанавливают взаимосвязь величин, которые характеризуют магнитные и электрические поля, распределяя в пространстве токи и заряды.

Рисунок 1. Развитие учения об электричестве. Автор24 - интернет-биржа студенческих работ

Становление и развитие традиционной электродинамики

Ключевым и наиболее значимым шагом в развитии электродинамики стало открытие Фарадея – явление электромагнитной индукции (возбуждение электродвижущей силы в проводниках при помощи переменного электромагнитного поля). Именно это стало основой электротехники.

Майкл Фарадей – это английский физик, который родился в семье кузнеца в Лондоне. Он окончил начальную школу и с 12 лет работал разносчиком газет. В 1804 году он стал учеником французского эмигранта Рибо, который поощрял стремление Фарадея к самообразованию. На лекциях он стремился пополнить свои знания по естественным наукам химии и физике. В 1813 году ему подарили билет на лекции Гемфри Дэви, которые сыграли решающую роль в его судьбе. С его помощью Фарадей получил место ассистента в Королевском институте.

Научная деятельность Фарадея проходила в Королевском институте, где он сначала помогал Дэви в его химических экспериментах, после чего начал проводить их самостоятельно. Фарадей получил бензол, осуществив снижение хлора и других газов. В 1821 году он обнаружил, как вращается магнит вокруг проводника с током, создав при этом первую модель электродвигателя.

На протяжении последующих 10 лет Фарадей занимается исследованием связей между магнитными и электрическими явлениями. Все его исследования были увенчаны открытием явления электромагнитной индукции, что свершилось в 1831 году. Он детально изучил это явление, а также сформировал его основной закон, в ходе которого выявил зависимость индукционного тока. Также Фарадей исследовал явления замыкания, размыкания и самоиндукции.

Открытие электромагнитной индукции произвело научное значение. Данное явление лежит в основе всех генераторов переменного и постоянного тока. Поскольку Фарадей постоянно стремился выявить природу электрического тока, это привело его к проведению экспериментов по прохождению тока через растворы солей, кислот и щелочей. В результате проведения этих исследований появился закон электролиза, который был открыт в 1833 году. В этом году он открывает вольтметр. В 1845 году Фарадей открыл явление поляризации света в магнитном поле. В этом году он также открыл диамагнетизм, а в 1847 году – парамагнетизм.

Замечание 1

На развитие всей физики ключевое влияние оказали идеи Фарадея о магнитном и электрическом полях. В 1832 году он высказал мысль о том, что распространение электромагнитных явлений – это волновой процесс, который происходит с конечной скоростью. В 1845 году Фарадей впервые употребляет термин «электромагнитное поле».

Открытия Фарадея получили широкую популярность во всем научном мире. В его честь Британское химическое общество учредило медаль Фарадея, которая стала почетной научной наградой.

Объясняя явления электромагнитной индукции и встретившись с затруднениями, Фарадей высказал предположение о реализации электромагнитных взаимодействий при помощи электрического и магнитного поля. Это все положило начало созданию концепции электромагнитного поля, что была оформлена Джеймсом Максвеллом.

Вклад Максвелла в развитие электродинамики

Джеймс Клерк Максвелл – это английский физик, который родился в Эдинбурге. Именно под его руководством создана Кавендишская лаборатория в Кембридже, которую он возглавлял всю свою жизнь.

Работы Максвелла посвящаются электродинамике, общей статистике, молекулярной физике, механике, оптике, а также теории упругости. Наиболее значимый вклад он сделал в электродинамику и молекулярную физику. Одним из основателей кинетической теории газов является Максвелл. Он установил функции распределения молекул по скоростям, что основаны на рассмотрении обратных и прямых столкновений максвелл развил теорию переноса в общем виде и применил ее к процессам диффузии, внутреннего трения, теплопроводности, а также ввел понятие релаксации.

В 1867 году он впервые показал статистическую природу термодинамики, а в 1878 году ввел понятие «статистическая механика». Наиболее значимым научным достижением Максвелла является созданная им теория электромагнитного поля. В своей теории он использует новое понятие «ток смещения » и дает определение электромагнитного поля.

Замечание 2

Максвелл предсказывает новый важный эффект: существование электромагнитного излучения и электромагнитных волн в свободном пространстве, а также распространение их со скоростью света. Также он сформулировал теорему в теории упругости, устанавливая соотношение между ключевыми теплофизическими параметрами. Максвелл развивает теорию цветного зрения, исследует устойчивость колец Сатурна. Он показывает, что кольца не являются жидкими или твердыми, они представляют собой рой метеоритов.

Максвелл был известным популяризатором физических знаний. Содержание его четырех уравнений электромагнитного поля сводятся к следующему:

  1. Магнитное поле зарождается при помощи движущихся зарядов и переменного электрического поля.
  2. Электрическое поле с замкнутыми силовыми линиями зарождается при помощи переменного магнитного поля.
  3. Линии магнитного поля всегда замкнуты. Данное поле не имеет магнитных зарядов, которые подобны электрическим.
  4. Электрическое поле, которое имеет незамкнутые силовые линии, порождается электрическими зарядами, что являются источниками данного поля.

Предмет классической электродинамики

Классическая электродинамика – это теория, объясняющая поведение электромагнитного поля, осуществляющего электромагнитное взаимодействие между электрическими зарядами.

Законы классической макроскопической электродинамики сформулированы в уравнениях Максвелла, которые позволяют определять значения характеристик электромагнитного поля: напряженности электрического поля Е и магнитной индукции В в вакууме и в макроскопических телах в зависимости от распределения в пространстве электрических зарядов и токов.

Взаимодействие неподвижных электрических зарядов описывается уравнениями электростатики, которые можно получить как следствие уравнений Максвелла.

Микроскопическое электромагнитное поле, создаваемое отдельными заряженными частицами, в классической электродинамике определяется уравнениями Лоренца-Максвелла, которые лежат в основе классической статистической теории электромагнитных процессов в макроскопических телах. Усреднение этих уравнений приводит к уравнениям Максвелла.

Среди всех известных видов взаимодействия электромагнитное взаимодействие занимает первое место по широте и разнообразию проявлений. Это связано с тем, что все тела построены из электрически заряженных (положительных и отрицательных) частиц, электромагнитное взаимодействие между которыми, с одной стороны, на много порядков интенсивнее гравитационного и слабого, а с другой – является дальнодействующим в отличие от сильного взаимодействия.

Электромагнитным взаимодействием определяется строение атомных оболочек, сцепление атомов в молекулы (силы химической связи) и образование конденсированного вещества (межатомное взаимодействие, межмолекулярное взаимодействие).

Законы классической электродинамики неприменимы при больших частотах и, соответственно, малых длинах электромагнитных волн, т.е. для процессов, протекающих на малых пространственно-временных интервалах. В этом случае справедливы законы квантовой электродинамики.


1.2. Электрический заряд и его дискретность.
Теория близкодействия

Развитие физики показало, что физические и химические свойства вещества во многом определяются силами взаимодействия, обусловленными наличием и взаимодействием электрических зарядов молекул и атомов различных веществ.

Известно, что в природе существуют два вида электрических зарядов: положительные и отрицательные. Они могут существовать в виде элементарных частиц: электронов, протонов, позитронов, положительных и отрицательных ионов и др., а также "свободного электричества", но только в виде электронов. Поэтому положительно заряженное тело представляет собой совокупность электрических зарядов с недостатком электронов, а отрицательно заряженное тело – с их избытком. Заряды различных знаков компенсируют друг друга, следовательно, в незаряженных телах всегда имеются заряды обеих знаков в таких количествах, что их суммарное действие скомпенсировано.

Процесс перераспределения положительных и отрицательных зарядов незаряженных тел, или среди отдельных частей одного и того же тела, под влиянием различных факторов называется электризацией .

Так как при электризации происходит перераспределение свободных электронов, то электризуются, например, оба взаимодействующих тела, причем одно из них положительно, а другое – отрицательно. Количество же зарядов (положительных и отрицательных) при этом остается неизменным.

Отсюда следует вывод, что заряды не создаются и не исчезают, а лишь перераспределяются между взаимодействующими телами и частями одного и того же тела, в количественном отношении оставаясь неизменными.

В этом заключается смысл закона сохранения электрических зарядов, который математически можно записать так:

т.е. в изолированной системе алгебраическая сумма электрических зарядов остается величиной постоянной.

Под изолированной системой понимают такую систему, через границы которой не проникает никакое другое вещество, за исключением фотонов света, нейтронов, так как они не несут заряда.

Надо иметь в виду, что полный электрический заряд изолированной системы является релятивистки инвариантным, т.к. наблюдатели, находящиеся в любой заданной инерциальной системе координат, измеряя заряд, получают одно и то же значение.

Ряд экспериментов, в частности законы электролиза, опыт Милликена с каплей масла, показали, что в природе электрические заряды дискретны заряду электрона. Любой заряд кратен целому числу заряда электрона.

В процессе электризации заряд изменяется дискретно (квантуется) на величину заряда электрона. Квантование заряда является универсальным законом природы.

В электростатике изучаются свойства и взаимодействия зарядов, неподвижных в той системе отсчета, в которой они находятся.

Наличие у тел электрического заряда вызывает взаимодействие их с другими заряженными телами. При этом тела, заряженные одноименно, отталкиваются, а заряженные разноименно – притягиваются.

Теория близкодействия – одна из теорий взаимодействия в физике. Под взаимодействием в физике понимают всякое воздействие тел или частиц друг на друга, приводящее к изменению состояния их движения.

В механике Ньютона взаимное действие тел друг на друга количественно характеризуется силой. Более общей характеристикой взаимодействия является потенциальная энергия.

Первоначально в физике утвердилось представление о том, что взаимодействие между телами может осуществляться непосредственно через пустое пространство, которое не принимает участия в передаче взаимодействия. Передача взаимодействия происходит мгновенно. Так, считалось, что перемещение Земли должно сразу же приводить к изменению силы тяготения, действующей на Луну. В этом состоял смысл так называемой теории взаимодействия, получившей название теория дальнодействия. Однако эти представления были оставлены как не соответствующие действительности после открытия и исследования электромагнитного поля.

Было доказано, что взаимодействие электрически заряженных тел осуществляется не мгновенно и перемещение одной заряженной частицы приводит к изменению сил, действующих на другие частицы, не в тот же момент, а лишь спустя конечное время.

Каждая электрически заряженная частица создает электромагнитное поле, действующее на другие частицы, т.е. взаимодействие передается через "посредника" – электромагнитное поле. Скорость распространения электромагнитного поля равна скорости распространения света в вакууме. Возникла новая теория взаимодействия теория близкодействия.

Согласно данной теории, взаимодействие между телами осуществляется посредством тех или иных полей (например, тяготение посредством гравитационного поля), непрерывно распределенных в пространстве.

После появления квантовой теории поля представление о взаимодействиях существенно изменилось.

Согласно квантовой теории, любое поле является не непрерывным, а имеет дискретную структуру.

Вследствие корпускулярно-волнового дуализма, каждому полю соответствуют определенные частицы. Заряженные частицы непрерывно испускают и поглощают фотоны, которые и образуют окружающее их электромагнитное поле. Электромагнитное взаимодействие в квантовой теории поля является результатом обмена частиц фотонами (квантами) электромагнитного поля, т.е. фотоны являются переносчиками такого взаимодействия. Аналогично другие виды взаимодействий возникают в результате обмена частиц квантами соответствующих полей.

Несмотря на многообразие воздействий тел друг на друга (зависящих от взаимодействия слагающих их элементарных частиц), в природе, по современным данным, имеется лишь четыре типа фундаментальных взаимодействий: гравитационное, слабое, электромагнитное и сильное (в порядке возрастания интенсивности взаимодействия). Интенсивности взаимодействий определяются константами связи (в частности, электрический заряд для электромагнитного взаимодействия является константой связи).

Современная квантовая теория электромагнитного взаимодействия превосходно описывает все известные электромагнитные явления.

В 60 – 70-х годах века в основном построена единая теория слабого и электромагнитного взаимодействий (так называемое электрослабое взаимодействие) лептонов и кварков.

Современной теорией сильного взаимодействия является квантовая хромодинамика.

Делаются попытки объединения электрослабого и сильного взаимодействий в так называемое "Великое объединение", а также включения их в единую схему гравитационного взаимодействия.


МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ

ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО

ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

«Донской государственный технический университет»

(ДГТУ)

Контрольная работа

по дисциплине «Концепции современного естествознания»

Тема № 1.25 Становление и развитие классической электродинамики

(М. Фарадей, Д. Максвелл, Г. Герц).

Электродинамическая картина мира.

Выполнила: Онучина А.А.

студентка 1 курса направление подготовки заочное обучение

группа ИЗЭS11 № зачетной книжки 1573242

Проверил ________________

Ростов-на-Дону


План:

1. История электродинамики……………………………………………………..3

2. Становление и развитие классической электродинамики.…………….…… 5

3. Электродинамическая картина мира.…………………..……………………10

Список используемой литературы……..………………………………….……13


История электродинамики.

Классическая электродинамика – это теория электромагнитных процессов в различных средах и в вакууме. Охватывает огромную совокупность явлений, в которых основную роль играют взаимодействия между заряженными частицами, осуществляемые посредством электромагнитного поля.

История электродинамики – это история эволюции фундаментальных физических понятий. До середины 18 века были установлены важные опытные результаты, обусловленное электричеством: притяжение и отталкивание, открыто деление веществ на проводники и изоляторы, существование двух видов электричества. Достигнуты успехи в изучении магнетизма.

Практическое применение электричества началось со второй половины 18 века. С именем Фраклина (1706-1790гг.) связано появление гипотезы об электричестве как особой материальной субстанции. В 1785 году Ш.Кулоном установлен закон взаимодействия двух точечных зарядов. С именем А.Вольта (1745-1827гг.) связан ряд изобретений электроизмерительных приборов. В 1826 году установлен закон Ома. В 1820 году Эрстедом открыто магнитное действие электрического тока. В 1820 году установлен закон, определяющий механическую силу, с которой магнитное поле действует на внесенный в него элемент электрического тока – закон Ампера. Ампером также установлен закон силового взаимодействия двух токов.

Особое значение в физике имеет гипотеза молекулярных токов, предложенная Ампером в 1820 году.

В 1831 году Фарадеем открыт закон электромагнитной индукции. В 1873 году Джеймс Клерк Максвелл (1831-1879гг.) изложил короткие уравнения, ставшие теоретической основой электродинамики. Одним из следствий уравнений Максвелла явилось предсказание ЭМ природы света, он же предсказал возможность существования ЭМ волн. Постепенно в науке сложилось представление об ЭМ поле как о самостоятельной материальной сущности, являющейся носителем ЭМ взаимодействий в пространстве. Разнообразные электрические и магнитные явления, которые люди наблюдают с незапамятных времён, всегда пробуждали их любопытство и интерес. Чаще всего под термином электродинамика понимается классическая электродинамика, описывающая только непрерывные свойства электромагнитного поля. Электромагнитное поле - это основной предмет изучения электродинамики, вид материи, проявляющийся при взаимодействии с заряженными телами. В 1895 году Попов А.С., сделал величайшее изобретение-радио. Оно оказало колоссальное воздействие на последующее развитие науки и техники. Все электромагнитные явления можно описать с помощью уравнений Максвелла, которые устанавливают связь величин, характеризующих электрические и магнитные поля, с распределением в пространстве зарядов и токов.

Становление и развитие классической электродинамики

(М. Фарадей, Д. Максвелл, Г. Герц).

Важным шагом в развитии электродинамики было открытие М.Фарадеем явления электромагнитной индукции - возбуждения переменным магнитным полем электродвижущей силы в проводниках, - ставшей основой электротехники.

Майкл Фарадей - английский физик, родился в предместье Лондона в семье кузнеца. Окончив начальную школу, с двенадцати лет он работал разносчиком газет, а в 1804 г. поступил в ученики к переплетчику Рибо, французскому эмигранту, всячески поощрявшему страстное стремление Фарадея к самообразованию. Чтением и посещением лекций Фарадей стремился пополнить свои знания, причем его влекли главным образом естественные науки - химия и физика. В 1813 г. один из заказчиков подарил Фарадею пригласительные билеты на лекции Гемфри Дэви, сыгравшие решающую роль в судьбе юноши. Обратившись с письмом к Дэви, Фарадей с его помощью получил место лабораторного ассистента в Королевском институте.

Научная деятельность Фарадея протекала в стенах Королевского института, где он сначала помогал Дэви в химических экспериментах, а затем начал самостоятельные исследования. Фарадей осуществил сжижение хлора и некоторых других газов, получил бензол. В 1821 году он впервые наблюдал вращение магнита вокруг проводника с током и проводника с током вокруг магнита, создал первую модель электродвигателя. В течение последующих 10 лет Фарадей занимался исследованием связи между электрическими и магнитными явлениями. Его исследования увенчались открытием в 1831 году явления электромагнитной индукции. Фарадей детально изучил это явление, вывел его основной закон, выяснил зависимость индукционного тока от магнитных свойств среды, исследовал явление самоиндукции и экстратоки замыкания и размыкания.

Открытие явления электромагнитной индукции сразу же приобрело огромное научное и практическое значение; это явление лежит, например, в основе работы всех генераторов постоянного и переменного тока. Стремление выявить природу электрического тока привело Фарадея к экспериментам по прохождению тока через растворы кислот, солей и щелочей. Результатом этих исследований стало открытие в 1833 г. законов электролиза. В 1845 г. Фарадей обнаружил явление вращения плоскости поляризации света в магнитном поле. В том же году он открыл диамагнетизм, в 1847 году - парамагнетизм, также в 1833 году он изобрел вольтметр.

Идеи Фарадея об электрическом и магнитном полях оказали большое влияние на развитие всей физики. В 1832 году Фарадей высказал мысль о том, что распространение электромагнитных взаимодействий есть волновой процесс, происходящий с конечной скоростью, а в 1845 году он впервые употребил термин «магнитное поле».

Открытия Фарадея завоевали широчайшее признание во всём научном мире. В честь Майкла Фарадея Британское химическое общество учредило медаль Фарадея – одну из почётнейших научных наград.

Пытаясь объяснить явление электромагнитной индукции на основе концепции дальнодействия, но встретившись с затруднениями, он высказал предположение об осуществлении электромагнитных взаимодействий по средством электромагнитного поля, на основе концепции близкодействия. Это положило начало формированию концепции электромагнитного поля, оформленную Д.Максвеллом. Джеймс Клерк Максвелл - английский физик. Родился в Эдинбурге. Под его руководством была создана известная Кавендишская лаборатория в Кембридже, которую он возглавлял до конца своей жизни.

Работы Максвелла посвящены электродинамике, молекулярной физике, общей статистике, оптике, механике, теории упругости. Наиболее весомый вклад Максвелл сделал в молекулярную физику и электродинамику. В кинетической теории газов, одним из основателей которой он является, установил функции распределения молекул по скоростям, основанный на рассмотрении прямых и обратных столкновений, развил теорию переноса в общем виде, применив ее к процессам диффузии, теплопроводности и внутреннего трения, ввел понятие релаксации. В 1867 году первый показал статистическую природу второго начала термодинамики, в 1878 году ввел термин "статистическая механика".

Самым большим научным достижением Максвелла является созданная им в 1860-1865 годах теория электромагнитного поля. В своей теории электромагнитного поля Максвелл использовал новое понятие - ток смещения, дал определение электромагнитного поля и предсказал новый важный эффект: существование в свободном пространстве электромагнитного излучения, электромагнитных волн и его распространение в пространстве со скоростью света. Ученый также сформулировал теорему в теории упругости, установил соотношения между основными теплофизическими параметрами, развивал теорию цветного зрения, исследовал устойчивость колец Сатурна, показав, что кольца не являются твердыми или жидкими, а представляют собой рой метеоритов. Максвелл сконструировал ряд приборов. Он был известным популяризатором физических знаний.

1) магнитное поле порождается движущимися зарядами и переменным электрическим полем (током смещения);

2) электрическое поле с замкнутыми силовыми линиями (вихревое поле) порождается переменным магнитным полем;

3) силовые линии магнитного поля всегда замкнуты (это означает, что оно не имеет источников - магнитных зарядов, подобных электрическим);

4) электрическое поле с незамкнутыми силовыми линиями (потенциальное поле) порождается электрическими зарядами - источниками этого поля.

Из теории Джеймса Максвелла вытекает конечность скорости распространения электромагнитного взаимодействия и существование электромагнитных волн. Максвелловская теория электромагнитного поля является фундаментальным обобщением электродинамики, поэтому она по праву занимает почётное место в ряду величайших научных достижений человечества, таких как классическая механика, релятивистская физика и квантовая механика. В 1861-1862 годах Джеймс Максвелл публикует свою статью о физических силовых линиях. Основываясь на практическом совпадении скорости распространения электромагнитных возмущений и скорости света, Максвелл предположил, что свет тоже является электромагнитным возмущением. И эта, казалось бы, абсолютно фантастическая для того времени идея вдруг начала обрастать экспериментальными подтверждениями.

И все бы вроде ничего, да вот в 1885 году некий преподаватель школы для девочек в Базеле Иоганн Якоб Бальмер, после своих экспериментов, пишет коротенькую, буквально на пару страничек, статью где говорится: «Обратите внимание на спектральные линии водорода». Которая ввела физиков-теоретиков в состояние ступора на ближайшие два десятилетия. Четкие спектральные линии серии Бальмера наглядно продемонстрировали мировому физическому научному сообществу, что не всё так просто в этом мире.

Развитие классической электродинамики после Максвелла шло по нескольким направлениям, из которых отметим два основных. Во-первых, совершенствовалась математическая сторона теории Максвелла и были получены некоторые новые результаты. Во-вторых, произошло объединение теории электромагнитного поля с основными идеями теории строения вещества. Последнее направление привело к созданию электронной теории.

Также хочу отметить выдающегося немецкого физика Генриха Рудольф Герца. Окончил Берлинский университет, с 1885 года по 1889 год был профессором физики Университета в Карлсруэ. С 1889 года - профессор физики университета в Бонне.

Основное достижение - экспериментальное подтверждение электромагнитной теории света Джеймса Максвелла. Герц доказал существование электромагнитных волн.

Он построил электродинамику движущихся тел, исходя из гипотезы о том, что эфир увлекается движущимися телами. Однако его теория электродинамики не подтвердилась опытами и позднее уступила место электронной теории Хендрика Лоренца. Результаты, полученные Герцем, легли в основу создания радио. В 1886 году Герц впервые наблюдал и дал описание внешнего фотоэффекта. Герц разрабатывал теорию резонансного контура, изучал свойства катодных лучей, исследовал влияние ультрафиолетовых лучей на электрический разряд. Именем Герца с 1933 года называется единица измерения частоты Герц, которая входит в международную метрическую систему единиц СИ.

Физика - одна из важнейших наук, изучаемых человеком. Ее присутствие заметно во всех сферах жизни, иногда открытия даже меняют ход истории. Поэтому великие физики так интересны и значимы для людей.

Электродинамика - это область физики, в которой изучаются свойства и закономерности по­ведения электромагнитного поля и движение электрических зарядов, взаимодействующих друг с другом посредством этого поля.

Многие великие учёные физики посвятили свои жизни попыткам найти ответы на необходимые человечеству вопросы. Мир не стоит на месте, все течет и меняется, планета вращается вокруг оси, гроза всегда приходит с молнией и громом, а листья падают на землю. И именно простые на первый взгляд вещи пробудили в человеке интерес к точным и естественным наукам.


Похожая информация.


История развития классической электродинамики является поучительным примером того, как математизация естественно научной дисциплины и переход к изящному (хотя и достаточно сложному) языку описания повлекли за собой качественный скачок в понимании целого ряда явлений природы, часть из которых была первоначально предсказана теоретически (“на кончике пера”), а потом получила блестящее экспериментальное подтверждение. В настоящей теме будет содержаться достаточно большое количество математических формул, приводимых лишь с целью иллюстрации красоты и компактности языка математики.

Непрерывные распределения зарядов. Входящие в выражения для электростатических и магнитостатических полей (9_4) и (9_8) суммы в случае макроскопических заряженных тел содержат очень большое число слагаемых, соответствующих вкладам в поля от точечных зарядов. Их вычисление неудобно с чисто “технической” точки зрения: математическая операция суммирования более трудоемка, чем, например, интегрирование (сказанное относится к аналитическим расчетам, при компьютерном счете суммирование предпочтительнее взятия интегралов, однако в 19 веке подобной альтернативы в математике не существовало). Переход к интегрированию требовал приближенной замены дискретного распределения элементарных зарядов на непрерывное , характеризуемое плотностью электрического заряда (отношение величины заряда к объему содержащего его небольшого, но макроскопического элемента пространства):

Естественно, что замена (1) приводила к “сглаживанию” рассчитываемых макроскопических полей по сравнению с реальными микроскопическими, сильно изменяющимися на сравнимых с размером атома расстояниях. Описанный переход к непрерывному распределение зарядов существенно упрощал расчеты, не снижая их практическую ценность (наука и техника 19 века еще не доросли до эффектов, происходящих на микроскопическом уровне организации материи).

Математический формализм. Переход к непрерывным распределениям зарядов и токов позволил переписать законы электро и магнитостатики сразу в нескольких математических формах, эквивалентных по физическому смыслу, но существенно различающихся по технике выполнения конкретных расчетов:

интегральные формулировки:


дифференциальные формулировки:

(3)
;

расчет полей через скалярный и векторный
потенциалы :


Т.о. адекватное описание одних и тех же законов естествознания возможно на различных языках математики .

Операторы . В начале 20 века в математике были введены новые объекты - операторы , без использования которых современная физика была бы немыслима. Понятие оператора является естественным обобщением традиционного для классической математики понятия функции. Если под функцией понимается закон (правило, отображение), по которому одному числу (набору чисел) ставится в соответствие другое число (набор чисел), то под оператором подразумевают закон, по которому одному объекту (группе объектов) ставится в соответствие другой объект (группа). Наиболее часто встречаются операторы, действующие на функции (операторы умножения на число, дифференцирования, интегрирования и т.д.) или векторы (оператор поворота, проектирования и т.д.). Весьма полезной оказалась идея определения математических операций над операторами. Например, под произведением двух операторов подразумевается оператор, выполняющий последовательно действия каждого из перемножаемых операторов. Для операции умножения операторов в общем случае не выполняется свойство коммутативности:

(5)
.

Использование языка операторов существенно сокращает запись многих математических формул и делает их более “элегантными”. Так введение лишь одного дифференциального оператора “набла”


при помощи стандартным образом определенных операций скалярного (,) и векторного [ , ] умножения позволяет записать системы уравнений (3) и (4) в весьма компактной форме:

(3’)
;

(4’)
,
.

В последних равенствах использован оператор Лапласа:

(7)
.

Помимо краткости записи преимущество операторного метода состоит в том, что. с самим оператором набла можно обращаться почти так же, как с обычным вектором, что, несомненно, облегчает громоздкие выкладки.

Закон электромагнитной индукции Фарадея. Долгое время электрические и магнитные явления считались независимыми, хотя даже на уровне магнитостатики это не совсем верно: магнитостатическое поле порождается постоянными токами, существование которых в веществе невозможно без наличия электрического поля. Фарадей экспериментальным путем установил, что изменяющееся во времени магнитное поле может порождать электрическое . Это электрическое поле в отличие от порождаемого зарядами потенциального электростатического является вихревым, т.е. его линии представляют собой замкнутые кривые (рис. 11_1). Открытый Фарадеем закон индукции впоследствии имел колоссальное практическое значение, поскольку открыл весьма удобный и дешевый способ преобразования механической энергии движения источников магнитного поля в электрическую, ныне лежащий в основе промышленного производства электроэнергии.

С точки зрения математической записи уравнений для поля открытое Фарадеем явление требует видоизменения системы уравнений (6):

(10)
.

Гипотеза Максвелла. Рассмотрев совместно систему уравнений (7) и (10) Максвелл обратил внимание на следующие ее недостатки:

1. Указанная система несовместна с законом сохранения заряда.

2. Система оказалась весьма несимметричной даже для случая описания электромагнитного поля в пустом пространстве (=0 и j=0 ).

Несоответствие уравнений закону сохранения заряда было достаточным аргументом для того, чтобы усомниться в их истинности, поскольку законы сохранения носят весьма общий характер. Оказалось, что существует множество способов видоизменения системы уравнений (7), (10), приводящих их в соответствие с законом сохранения. Максвеллом был выбран простейший из возможных путь, приводящий систему к симметричному виду в случае ее использования для описания полей в пустом пространстве. В последнее уравнение было добавлено слагаемое, описывающее возможность генерации вихревого магнитного поля изменяющимся электрическим (“ток смещения”):

(11)

.

Чисто математическими следствиями из видоизмененной системы уравнений Максвелла были утверждение о сохранении энергии в электромагнитных процессах и теоретический вывод о возможности независимого от зарядов и токов существования поля в виде электромагнитных волн в пустом пространстве. Это последнее предсказание нашло блестящее экспериментальное подтверждение в знаменитых опытах Герца и Попова, положивших основу современной радиосвязи. Рассчитываемая из системы (11) скорость распространения электромагнитных волн оказалась равной экспериментально измеренной скорости распространения света в вакууме, что означало объединение практически ранее независимых разделов физики электромагнетизма и оптики в одну законченную теорию.

Проблема существования магнитного монополя. Колоссальный успех теории Максвелла продемонстрировал возможность теоретического поиска новых законов природы на основе анализа математических уравнений, описывающих ранее известные закономерности, с обязательной экспериментальной проверкой таким образом “угадываемых” результатов.

Симметричная для описания электромагнитных полей в пустом пространстве система уравнений Максвелла (11) существенно “теряет свою красоту” при учете электрических зарядов и токов: создаваемое электрическими зарядами потенциальное поле Е не имеет аналога в магнитных взаимодействиях. Эта ассиметрия послужила поводом для постановки множества экспериментов по поиску магнитных монополей (или магнитных зарядов) - гипотетических частиц, являющихся источником потенциального магнитного поля и теоретических исследований их предполагаемых свойств. До настоящего времени надежных экспериментальных данных о существовании магнитных монополей не получено.

Противоречия между электродинамикой и классической физикой. Сформулированные в виде законченной теории и выдержавшие экспериментальную проверку законы электромагнетизма Максвелла оказались в противоречии с принципами, лежащими в основе классического миропонимания Галлилея - Ньютона:

1. Удовлетворяющие принципу относительности Галилея классические силы могут зависеть от времени, расстояний между телами и их относительных скоростей, т.е. величин, не изменяющихся при переходе из одной инерциальной системы отсчета в другую. Магнитостатические поля и связанные с ними силы Лоренца являются функциями скоростей зарядов по отношению к наблюдателю и различны в разных инерциальных системах отсчета. Т.о. явления природы, обусловленные электромагнитными взаимодействиями, с точки зрения классической физики в различных инерциальных системах отсчета должны протекать по-разному.

2. Получаемая в результате решения уравнений Максвелла скорость распространения электромагнитных волн в пустом пространстве оказалась независящей от скоростей движения как источника этих волн, так и наблюдателя. Этот вывод полностью противоречило классическому закону сложения скоростей.

Все попытки видоизменить уравнения электромагнетизма так, чтобы привести их в согласие с принципами классического естествознания приводили к теоретическому предсказанию эффектов, ненаблюдаемых на эксперименте, и были признаны несостоятельными.

Преобразования Лоренца. Поскольку уравнения Максвелла не были инвариантными относительно преобразований Галилея, т.е. вопреки требованиям принципа относительности изменяли свою форму при переходе из одной инерциальной системы отсчета в другую, по правилам, задаваемым соотношениями:

(12) ,

Лоренцем был поставлен естественный вопрос об отыскании таких преобразований координат и времени, которые не изменяли бы уравнений Максвелла и были при этом максимально простыми. Эта задача была им решена как чисто математическая:

(13) .

Сравнивая преобразования Галилея (12) и Лоренца (13), легко заметить, что последние переходят в классические в случае скоростей, малых по сравнению со скоростью света с . Т.о. предложенные Лоренцем соотношения удовлетворяли принципу соответствия , согласно которому новая теория должна согласовываться со старой о областях, где последняя была надежно проверена на экспериментах. Кроме того, следующий из преобразований Лоренца релятивистский закон сложения скоростей оставлял скорость света инвариантной относительно переходя в любую инерциальную систему отсчета, движущуюся со скоростью, меньшей с .

Опыты Майкельсона. Следующее из уравнений Максвелла утверждение о постоянстве скорости света при переходах в другие системы отсчета полностью противоречило классическим представлениям. Вставал естественный вопрос о его экспериментальной проверке. Весьма изящный эксперимент был осуществлен Майкельсоном с помощью специально сконструированного им прибора - интерферомета , позволяющего сравнивать времена распространения световых сигналов вдоль двух взаимно перпендикулярных отрезков прямых, ограниченных на концах зеркалами (рис. 11_2). Идея опыта состояла в попытке зарегистрировать различие скоростей распространения света вдоль разных плеч интерферометра, вызванное орбитальным движением Земли. Опыты с интерферометром Майкельсона дали отрицательные результаты: скорость света с высокой точностью оказалась независящей от соотношения направлений его распространения и движения Земли .

Многочисленные попытки спасти классический закон сложения скоростей путем введения гипотетической среды - эфира , в которой распространяются световые колебания потерпели полную неудачу свойства предполагаемой Среды оказывались весьма экзотическими, никаких экспериментальных подтверждений ее реального существования получено не было.

Выход из возникшей на рубеже веков в естествознании тупиковой ситуации был предложен А. Эйнштейном, создавшим специальную теорию относительности (СТО), в которой на основе двух хорошо проверенных на эксперименте постулатов (утверждений) строится внутренне непротиворечивая (хотя и весьма странная с точки зрения классического естествознания и житейского опыта) концепция, объясняющая преобразования Лоренца и предсказывающая ряд новых явлений, реально зарегистрированных в природе.