Сернистый газ — физические свойства, получение и применение. Оксид серы (IV) и сернистая кислота
Оксид серы (IV) проявляет свойства
1) только основного оксида
2) амфотерного оксида
3) кислотного оксида
4) несолеобразующего оксида
Ответ: 3
Пояснение:
Оксид серы (IV) SO 2 является кислотным оксидом (оксидом неметалла), в котором сера имеет заряд +4. Этот оксид образует соли сернистой кислоты при H 2 SO 3 и при взаимодействии с водой образует саму сернистую кислоту H 2 SO 3 .
К несолеобразующим оксидам (оксидам, не проявляющих ни кислотных, ни основных, ни амфотерных свойств и не образующим соли) относятся NO, SiO, N 2 O (закись азота), CO.
Основные оксиды – это оксида металлов в степенях окисления +1, +2. К ним относятся оксиды металлов главной подгруппы первой группы (щелочные металлы) Li-Fr, оксиды металлов главной подгруппы второй группы (Mg и щелочноземельные металлы) Mg-Ra и оксиды переходных металлов в низших степенях окисления.
Амфотерные оксиды — солеобразующие оксиды, проявляющие в зависимости от условий либо осно́вные, либо кислотные свойства (то есть проявляющие амфотерность). Образуются переходными металлами. Металлы в амфотерных оксидах обычно проявляют степень окисления от +3 до +4, за исключением ZnO, BeO, SnO, PbO.
Кислотным и основным оксидом являются соответственно
2) CO 2 и Al 2 O 3
Ответ: 1
Пояснение:
Кислотные оксиды – оксиды, проявляющие кислотные свойства и образующие соответствующие кислородсодержащие кислоты. Из представленного списка к ним относятся: SO 2 , SO 3 и CO 2 . При взаимодействии с водой они образуют следующие кислоты:
SO 2 + H 2 O = H 2 SO 3 (сернистая кислота)
SO 3 + H 2 O = H 2 SO 4 (серная кислота)
CO 2 + H 2 O = H 2 CO 3 (угольная кислота)
Основные оксиды – это оксида металлов в степенях окисления +1, +2. К ним относятся оксиды металлов главной подгруппы первой группы (щелочные металлы) Li-Fr, оксиды металлов главной подгруппы второй группы (Mg и щелочноземельные металлы) Mg-Ra и оксиды переходных металлов в низших степенях окисления. Из представленного списка к основным оксидам относятся: MgO, FeO.
Амфотерные оксиды — солеобразующие оксиды, проявляющие в зависимости от условий либо осно́вные, либо кислотные свойства (то есть проявляющие амфотерность). Образуются переходными металлами. Металлы в амфотерных оксидах обычно проявляют степень окисления от +3 до +4, за исключением ZnO, BeO, SnO, PbO. Из представленного списка к амфотерным оксидам относятся: Al 2 O 3 , ZnO.
Оксид серы (VI) взаимодействует с каждым из двух веществ:
1) вода и соляная кислота
2) кислород и оксид магния
3) оксид кальция и гидроксид натрия
Ответ: 3
Пояснение:
Оксид серы (VI) SO 3 (степень окисления серы +6) является кислотным оксидом, реагирует с водой с образованием соответствующей серной кислоты H 2 SO 4 (степень окисления серы также +6):
SO 3 + H 2 O = H 2 SO 4
Как кислотный оксид SO 3 не взаимодействует с кислотами, т. е. с HCl реакция не идет.
Сера в SO 3 проявляет высшую степень окисления +6 (равную номеру группы элемента), поэтому SO 3 с кислородом не реагирует (кислород не окисляет серу в степени окисления +6).
С основным оксидом MgO образуется соответствующая соль – сульфат магния MgSO 4:
MgO + SO 3 = MgSO 4
Поскольку оксид SO 3 является кислотным, он взаимодействует с основными оксидами и основаниями с образованием соответствующих солей:
MgO + SO 3 = MgSO 4
NaOH + SO 3 = NaHSO 4 или 2NaOH +SO 3 = Na 2 SO 4 + H 2 O
Как было отмечено выше, с водой SO 3 реагирует с образованием серной кислоты.
С переходным металлом CuSO 3 не взаимодействует.
Оксид углерода (IV) реагирует с каждым из двух веществ:
1) водой и оксидом кальция
2) кислородом и оксидом серы (IV)
3) сульфатом калия и гидроксидом натрия
4) фосфорной кислотой и водородом
Ответ: 1
Пояснение:
Оксид углерода (IV) CO 2 является кислотным оксидом, поэтому взаимодействует с водой с образованием неустойчивой угольной кислоты H 2 CO 3 и с оксидом кальция с образованием карбоната кальция CaCO 3:
CO 2 + H 2 O = H 2 CO 3
CO 2 + CaO = CaCO 3
С кислородом углекислый газ CO 2 не реагирует, поскольку кислород не может окислить элемент, находящийся в высшей степени окисления (для углерода это +4 по номеру группы, в которой он находится).
С оксидом серы (IV) SO 2 реакция не идет, поскольку, являясь кислотным оксидом, CO 2 не взаимодействует с оксидом, обладающим также кислотными свойствами.
Углекислый газ CO 2 не взаимодействует с солями (например, с сульфатом калия K 2 SO 4), но взаимодействует с щелочами, поскольку он обладает основными свойствами. Реакция протекает с образованием кислой или средней соли в зависимости от избытка или недостатка реагентов:
NaOH + CO 2 = NaHCO 3 или 2NaOH + CO 2 = Na 2 CO 3 + H 2 O
CO2, являясь кислотным оксидом, не реагирует ни с кислотными оксидами, ни с кислотами, поэтому реакция между углекислым газом и фосфорной кислотой H 3 PO 4 не происходит.
CO 2 восстанавливается водородом до метана и воды:
CO 2 + 4H 2 = CH 4 + 2H 2 O
Основные свойства проявляет высший оксид элемента
Ответ: 3
Пояснение:
Основные свойства проявляют основные оксиды — оксиды металлов в степенях окисления +1 и +2. К ним относятся:
Из представленных вариантов к основным оксидам относится только оксид бария BaO. Все остальные оксиды серы, азота и углерода относятся либо к кислотным, либо к несолеобразующим: CO, NO, N 2 O.
Оксиды металлов со степенью окисления + 6 и выше являются
1) несолеобразующими
2) основными
3) амфотерными
Ответ: 4
Пояснение:
- — оксиды металлов главной подгруппы первой группы (щелочные металлы) Li – Fr;
- — оксиды металлов главной подгруппы второй группы (Mg и щелочноземельные металлы) Mg – Ra;
- — оксиды переходных металлов в низших степенях окисления.
Кислотные оксиды (ангидриды) — оксиды, проявляющие кислотные свойства и образующие соответствующие кислородсодержащие кислоты. Образованы типичными неметаллами и некоторыми переходными элементами. Элементы в кислотных оксидах обычно проявляют степень окисления от +4 до +7. Следовательно, оксид металла в степени окисления +6 обладает кислотными свойствами.
Кислотные свойства проявляет оксид, формула которого
Ответ: 1
Пояснение:
Кислотные оксиды (ангидриды) — оксиды, проявляющие кислотные свойства и образующие соответствующие кислородсодержащие кислоты. Образованы типичными неметаллами и некоторыми переходными элементами. Элементы в кислотных оксидах обычно проявляют степень окисления от +4 до +7. Следовательно, оксид кремния SiO 2 с зарядом кремния +6 обладает кислотными свойствами.
Несолеобразующими оксидами являются N 2 O, NO, SiO, CO. CO – несолеобразующий оксид.
Основные оксиды – это оксиды металлов в степенях окисления +1 и +2. К ним относятся:
— оксиды металлов главной подгруппы первой группы (щелочные металлы) Li – Fr;
— оксиды металлов главной подгруппы второй группы (Mg и щелочноземельные металлы) Mg – Ra;
— оксиды переходных металлов в низших степенях окисления.
BaO принадлежит к основным оксидам.
Амфотерные оксиды — солеобразующие оксиды, проявляющие в зависимости от условий либо основные, либо кислотные свойства (то есть проявляющие амфотерность). Образуются переходными металлами. Металлы в амфотерных оксидах обычно проявляют степень окисления от +3 до +4, за исключением ZnO, BeO, SnO, PbO. Амфотерным оксидом является и оксид алюминия Al 2 O 3 .
Степень окисления хрома в его амфотерных соединениях равна
Ответ: 3
Пояснение:
Хром – элемент побочной подгруппы 6-й группы 4-го периода. Для него характерны степени окисления 0, +2, +3, +4, +6. Степени окисления +2 соответствуют оксид CrO, обладающий основными свойствами. Степени окисления +3 соответствует амфотерный оксид Cr 2 O 3 и гидроксид Cr(OH) 3 . Это — наиболее устойчивая степень окисления хрома. Степени окисления +6 соответствует кислотный оксид хрома (VI) CrO 3 и целый ряд кислот, простейшие из которых хромовая H 2 CrO 4 и двухромовая H 2 Cr 2 O 7 .
К амфотерным оксидам относится
Ответ: 3
Пояснение:
Амфотерные оксиды — солеобразующие оксиды, проявляющие в зависимости от условий либо основные, либо кислотные свойства (то есть проявляющие амфотерность). Образуются переходными металлами. Металлы в амфотерных оксидах обычно проявляют степень окисления от +3 до +4, за исключением ZnO, BeO, SnO, PbO. ZnO – амфотерный оксид.
Несолеобразующими оксидами являются N 2 O, NO, SiO, CO.
Основные оксиды – это оксиды металлов в степенях окисления +1 и +2. К ним относятся:
— оксиды металлов главной подгруппы первой группы (щелочные металлы) Li – Fr (к этой группе относится оксид калия K 2 O);
— оксиды металлов главной подгруппы второй группы (Mg и щелочноземельные металлы) Mg – Ra;
— оксиды переходных металлов в низших степенях окисления.
Кислотные оксиды (ангидриды) — оксиды, проявляющие кислотные свойства и образующие соответствующие кислородсодержащие кислоты. Образованы типичными неметаллами и некоторыми переходными элементами. Элементы в кислотных оксидах обычно проявляют степень окисления от +4 до +7. Следовательно, SO 3 – кислотный оксид, соответствующий серной кислоте H 2 SO 4 .
7FDBA3 Какие из приведенных утверждений верны?
А. Основные оксиды – это оксиды, которым соответствуют основания.
Б. Основные оксиды образуют только металлы.
1) верно только А
2) верно только Б
3) верны оба утверждения
4) оба утверждения неверны
Ответ: 3
Пояснение:
Основные оксиды – это оксиды металлов в степенях окисления +1 и +2. К ним относятся:
— оксиды металлов главной подгруппы первой группы (щелочные металлы) Li – Fr;
— оксиды металлов главной подгруппы второй группы (Mg и щелочноземельные металлы) Mg – Ra;
— оксиды переходных металлов в низших степенях окисления.
Основным оксидам в качестве гидроксида соответствуют основания.
Оба утверждения верны.
C водой при обычных условиях реагирует
1) оксид азота (II)
2) оксид железа (II)
3) оксид железа (III)
Ответ: 4
Пояснение:
Оксид азота (II) NO является несолеобразующим оксидом, поэтому не взаимодействует ни с водой, ни с основаниями.
Оксид железа (II) FeO является основным оксидом, не растворимым в воде. С водой не реагирует.
Оксид железа (III) Fe 2 O 3 является амфотерным оксидом, не растворимым в воде. С водой также не реагирует.
Оксид азота (IV) NO 2 является кислотным оксидом и реагирует с водой с образованием азотной (HNO 3 ; N +5) и азотистой (HNO 2 ; N +3) кислот:
2NO 2 + H 2 O = HNO 3 + HNO 2
В перечне веществ: ZnO, FeO, CrO 3 , CaO, Al 2 O 3 , Na 2 O, Cr 2 O 3
число оснόвных оксидов равно
Ответ: 3
Пояснение:
Основные оксиды – это оксиды металлов в степенях окисления +1 и +2. К ним относятся:
- — оксиды металлов главной подгруппы первой группы (щелочные металлы) Li – Fr;
- — оксиды металлов главной подгруппы второй группы (Mg и щелочноземельные металлы) Mg – Ra;
- — оксиды переходных металлов в низших степенях окисления.
Из предложенных вариантов к группе основных оксидов относятся FeO, CaO, Na 2 O.
Амфотерные оксиды — солеобразующие оксиды, проявляющие в зависимости от условий либо основные, либо кислотные свойства (то есть проявляющие амфотерность). Образуются переходными металлами. Металлы в амфотерных оксидах обычно проявляют степень окисления от +3 до +4, за исключением ZnO, BeO, SnO, PbO.
К амфотерным оксидам относятся ZnO, Al 2 O 3 , Cr 2 O 3 .
Кислотные оксиды (ангидриды) — оксиды, проявляющие кислотные свойства и образующие соответствующие кислородсодержащие кислоты. Образованы типичными неметаллами и некоторыми переходными элементами. Элементы в кислотных оксидах обычно проявляют степень окисления от +4 до +7. Следовательно, CrO 3 – кислотный оксид, соответствующий хромовой кислоте H 2 CrO 4 .
382482Оксид калия взаимодействует с
Ответ: 3
Пояснение:
Оксид калия (K 2 O) относится к основным оксидам. Как основный оксид K 2 O может взаимодействовать с амфотерными оксидами, т.к. с оксидами, проявляющими как кислотные, так и основные свойства (ZnO). ZnO является амфотерным оксидом. Не реагирует с основными оксидами (CaO, MgO, Li 2 O).
Реакция протекает следующим образом:
K 2 O + ZnO = K 2 ZnO 2
Основные оксиды – это оксиды металлов в степенях окисления +1 и +2. К ним относятся:
— оксиды металлов главной подгруппы первой группы (щелочные металлы) Li – Fr;
— оксиды металлов главной подгруппы второй группы (Mg и щелочноземельные металлы) Mg – Ra;
— оксиды переходных металлов в низших степенях окисления.
Амфотерные оксиды – солеобразующие оксиды, проявляющие в зависимости от условий либо основные, либо кислотные свойства (то есть проявляющие амфотерность). Образуются переходными металлами. Металлы в амфотерных оксидах обычно проявляют степень окисления от +3 до +4, за исключением ZnO, BeO, SnO, PbO.
Кроме того, существуют несолеобразующие оксиды N 2 O, NO, SiO, CO. Несолеобразующие оксиды — оксиды, не проявляющие ни кислотных, ни основных, ни амфотерных свойств и не образующие соли.
Оксид кремния (IV) взаимодействует с каждым из двух веществ
2) H 2 SO 4 и BaCl 2
Ответ: 3
Пояснение:
Оксид кремния (SiO 2) является кислотным оксидом, поэтому взаимодействует с щелочами и основными оксидами:
SiO 2 + 2NaOH → Na 2 SiO 3 + H 2 O
Степень окисления +4 для серы является довольно устойчивой и проявляется в тетрагалогенидах SHal 4 , оксодигалогенидах SOHal 2 , диоксиде SO 2 и в отвечающих им анионах. Мы познакомимся со свойствами диоксида серы и сернистой кислоты.
1.11.1. Оксид серы (IV) Строение молекулы so2
Строение молекулы SO 2 аналогично строению молекулы озона. Атом серы находится в состоянии sp 2 -гибридизации, форма расположения орбиталей – правильный треугольник, форма молекулы – угловая. На атоме серы имеется неподеленная электронная пара. Длина связи S – O равна 0,143 нм, валентный угол составляет 119,5°.
Строение соответствует следующим резонансным структурам:
В отличие от озона, кратность связи S – O равна 2, то есть основной вклад вносит первая резонансная структура. Молекула отличается высокой термической устойчивостью.
Физические свойства
При обычных условиях диоксид серы или сернистый газ – бесцветный газ с резким удушливым запахом, температура плавления -75 °С, температура кипения -10 °С. Хорошо растворим в воде, при 20 °С в 1 объеме воды растворяется 40 объемов сернистого газа. Токсичный газ.
Химические свойства оксида серы (IV)
Сернистый газ обладает высокой реакционной способностью. Диоксид серы – кислотный оксид. Он довольно хорошо растворим в воде с образованием гидратов. Также он частично взаимодействует с водой, образуя слабую сернистую кислоту, которая не выделена в индивидуальном виде:
SO 2 + H 2 O = H 2 SO 3 = H + + HSO 3 - = 2H + + SO 3 2- .
В результате диссоциации образуются протоны, поэтому раствор имеет кислую среду.
При пропускании газообразного диоксида серы через раствор гидроксида натрия образуется сульфит натрия. Сульфит натрия реагирует с избытком диоксида серы и образуется гидросульфит натрия:
2NaOH + SO 2 = Na 2 SO 3 + H 2 O;
Na 2 SO 3 + SO 2 = 2NaHSO 3 .
Для сернистого газа характерна окислительно-восстановительная двойственность, например, он, проявляя восстановительные свойства, обесцвечивает бромную воду:
SO 2 + Br 2 + 2H 2 O = H 2 SO 4 + 2HBr
и раствор перманганата калия:
5SO 2 + 2KMnO 4 + 2H 2 O = 2KНSO 4 + 2MnSO 4 + H 2 SO 4 .
окисляется кислородом в серный ангидрид:
2SO 2 + O 2 = 2SO 3 .
Окислительные свойства проявляет при взаимодействии с сильными восстановителями, например:
SO 2 + 2CO = S + 2CO 2 (при 500 °С, в присутствии Al 2 O 3);
SO 2 + 2H 2 = S + 2H 2 O.
Получение оксида серы (IV)
Сжигание серы на воздухе
S + O 2 = SO 2 .
Окисление сульфидов
4FeS 2 + 11O 2 = 2Fe 2 O 3 + 8SO 2 .
Действие сильных кислот на сульфиты металлов
Na 2 SO 3 + 2H 2 SO 4 = 2NaHSO 4 + H 2 O + SO 2 .
1.11.2. Сернистая кислота и её соли
При растворении диоксида серы в воде образуется слабая сернистая кислота, основная масса растворенного SO 2 находится в виде гидратированной формы SO 2 ·H 2 O, при охлаждении также выделяется кристаллогидрат, лишь небольшая часть молекул сернистой кислоты диссоциирует на сульфит- и гидросульфит-ионы. В свободном состоянии кислота не выделена.
Будучи двухосновной, образует два типа солей: средние – сульфиты и кислые – гидросульфиты. В воде растворяются лишь сульфиты щелочных металлов и гидросульфиты щелочных и щелочно-земельных металлов.
Строение молекулы SO2
Строение молекулы SO2 аналогично строению молекулы озона. Атом серы находится в состоянии sp2-гибридизации, форма расположения орбиталей – правильный треугольник, форма молекулы – угловая. На атоме серы имеется неподеленная электронная пара. Длина связи S – O равна 0,143 нм, валентный угол составляет 119,5°.
Строение соответствует следующим резонансным структурам:
В отличие от озона, кратность связи S – O равна 2, то есть основной вклад вносит первая резонансная структура. Молекула отличается высокой термической устойчивостью.
Соединения серы +4 – проявляют окислительно-восстановительную двойственность, но с преобладанием восстановительных свойств.
1. Взаимодействие SO2 c кислородом
2S+4О2 + О 2 S+6О
2. При пропускании SO2 через сероводородную кислоту образуется сера.
S+4О2 + 2Н2S-2 → 3So + 2 Н2О
4 S+4 + 4 → So 1 - окислитель (восстановление)
S-2 - 2 → Sо 2 - восстановитель (окисление)
3. Сернистая кислота медленно окисляется кислородом воздуха в серную кислоту.
2H2S+4O3 + 2О → 2H2S+6O
4 S+4 - 2 → S+6 2 - восстановитель (окисление)
О + 4 → 2О-2 1 - окислитель (восстановление)
Получение:
1) оксида серы (IV) в промышленности:
горение серы:
обжиг пирита:
4FeS2 + 11O2 = 2Fe2O3
в лаборатории:
Na2SO3 + H2SO4 = Na2SO4 + SO2 + H2O
Сернистый газ , предупреждая брожение, облегчает осаждение загрязняющих веществ, обрывков тканей винограда с болезнетворной микрофлорой и позволяет проводить алкогольное брожение на чистых культурах дрожжей с целью увеличения выхода этилового спирта и улучшении состава других продуктов алкогольного брожения.
Роль сернистого газа таким образом не ограничивается антисептирующими действиями, оздоровляющими среду, но и распространяется на улучшение технологических условий брожения и хранения вина.
Эти условия при правильном использовании сернистого газа (ограничение дозировки и времени соприкосновения с воздухом) ведут к повышению качества вин и соков, их аромата, вкуса, а также прозрачности и цвета - свойств, связанных с устойчивостью вина и сока к помутнениям.
Сернистый газ - самый распространенный загрязнитель воздуха. Он выделяется всеми энергетическими установками при сжигании органического топлива. Сернистый газ может также выделяться предприятиями металлургической промышленности (источник -коксующиеся угли), а также рядом химических производств (например, производство серной кислоты). Он образуется при разложении содержащих серу аминокислот, входивших в состав белков древних растений, образовавших залежи угля, нефти, горючих сланцев.
Находит применение в промышленности для беления различных продуктов: сукна, шелка, бумажной массы, перьев, соломы, воска, щетины, конского волоса, пищевых продуктов, для дезинфекции фруктов и консервов и т. д. В качестве побочного продукта С. г. образуется и выделяется в воздух рабочих помещений в ряде производств: серной к-ты, целлюлезы, при обжиге руд, содержащих, сернистые металлы, в травилках на металлозаводах, при производстве стекла, ультрамарина и др., весьма часто С. г. содержится в воздухе котельных и зольных помещений, где он образуется при сжигании содержащих серу углей.
При растворении в воде образуется слабая и неустойчивая сернистая кислота H2SO3 (существует только в водном растворе)
SO2 + H2O ↔ H2SO3
Сернистая кислота диссоциирует ступенчато:
H2SO3 ↔ H+ + HSO3- (первая ступень, образуется гидросульфит – анион)
HSO3- ↔ H+ + SO32- (вторая ступень, образуется анион сульфит)
H2SO3 образует два ряда солей - средние (сульфиты) и кислые (гидросульфиты).
Качественной реакцией на соли сернистой кислоты является взаимодействие соли с сильной кислотой, при этом выделяется газ SO2 с резким запахом:
Na2SO3 + 2HCl → 2NaCl + SO2 + H2O 2H+ + SO32- → SO2 + H2O
4.doc
Сера. Сероводород, сульфиды, гидросульфиды. Оксиды серы (IV) и (VI). Сернистая и серная кислоты и их соли. Эфиры серной кислоты. Тиосульфат натрия
4.1. Сера
Сера - один из немногих химических эле-ментов, которыми уже несколько тысячелетий пользуется человек. Она широко распростране-на в природе и встречается как в свободном со-стоянии (самородная сера), так а в соединени-ях. Минералы, содержащие серу, можно разделить на две группы - сульфиды (колчеда-ны, блески, обманки) и сульфаты. Самородная сера в больших количествах встречается в Италии (остров Сицилия) и США. В СНГ месторождения самородной серы имеются в Поволжье, в государствах Средней Азии, в Крыму и других районах.
К минералам первой группы относятся свинцовый блеск PbS, медный блеск Cu 2 S, серебряный блеск - Ag 2 S, цинковая обман-ка - ZnS, кадмиевая обманка - CdS, пирит или железный кол-чедан - FeS 2 , халькопирит - CuFeS 2 , киноварь - HgS.
К минералам второй группы можно отнести гипс CaSO 4 2Н 2 О, мирабилит (глауберова соль) - Na 2 SO 4 10Н 2 O, ки-зерит - MgSO 4 Н 2 О.
Сера содержится в организмах животных и растений, так как входит в состав белковых молекул. Органические соединения серы содержатся в нефти.
Получение
1. При получении серы из природных соединений, например из серного колчедана, его нагревают до высоких температур. Сер-ный колчедан разлагается с образованием сульфида железа (II) и серы:
2. Серу можно получить окислением сероводорода недостатком кислорода по реакции:
2H 2 S+O 2 =2S+2Н 2 O
3. В настоящее время распространено получение серы восстанов-лением углеродом диоксида серы SO 2 - побочного продукта при выплавке металлов из сернистых руд:
SO 2 +С = СO 2 +S
4. Отходящие газы металлургических и коксовых печей содержат смесь диоксида серы и сероводорода. Эту смесь пропускают при высокой температуре над катализатором:
H 2 S+SO 2 =2H 2 O+3S
^ Физические свойства
Сера представляет собой твердое хрупкое вещество лимонно-желтого цвета. В воде практически нерастворима, но хорошо рас-творима в сероуглероде CS 2 анилине и некоторых других раство-рителях.
Плохо проводит тепло и электрический ток. Сера образует несколько аллотропных модификаций:
1 . ^ Ромбическая сера (наиболее устойчивая), кристаллы имеют вид октаэдров.
При нагревании серы изменяются ее цвет и вязкость: сначала образуется светло-желтая, а затем по мере повышения темпе-ратуры она темнеет и делается настолько вязкой, что не выте-кает из пробирки, при дальнейшем нагревании вязкость снова падает, а при 444, 6°С сера закипает.
2. ^ Моноклинная сера - модификация в виде темно-желтых игольчатых кристаллов, получается при медленном охлажде-нии расплавленной серы.
3. Пластическая сера образуется, если нагретую до кипения серу вылить в холодную воду. Легко растягивается подобно резине (см. рис. 19).
Природная сера состоит из смеси четырех устойчивых изотопов: 32 16 S, 33 16 S, 34 16 S, 36 16 S.
Атом серы, имея незавершенный внешний энергетический уровень, может присоединять два электрона и проявлять степень
Окисления -2. Такую степень окисления сера проявляет в соеди-нениях с металлами и водородом (Na 2 S, H 2 S). При отдаче или оттягивании электронов к атому более электроотрицательного элемента степень окисления серы может быть +2, +4, +6.
На холоду сера сравнительно инертна, но с повышением тем-пературы ее реакционная способность повышается. 1. С металлами сера проявляет окислительные свойства. При этих реакциях образуются сульфиды (с золотом, платиной и ириди-ем не реагирует): Fe+S=FeS
2. С водородом при нормальных условиях сера не взаимодейству-ет, а при 150-200°С протекает обратимая реакция:
3. В реакциях с металлами и с водородом сера ведет себя как типичный окислитель, а в присутствии сильных окислителей проявляет восстановительные свойства.
S+3F 2 =SF 6 (с иодом не реагирует)
4. Горение серы в кислороде протекает при 280°С, а на воздухе при 360°С. При этом образуется смесь SO 2 и SO 3:
S+O 2 =SO 2 2S+3O 2 =2SO 3
5. При нагревании без доступа воздуха сера непосредственно со-единяется с фосфором, углеродом, проявляя окислительные свойства:
2Р+3S=P 2 S 3 2S + С = CS 2
6. При взаимодействии со сложными веществами сера ведет себя в основном как восстановитель:
7. Сера способна к реакциям диспропорционирования. Так, при кипячении порошка серы с щелочами образуются сульфиты и сульфиды:
Применение
Серу широко применяют в промышленности и сельском хо-зяйстве. Около половины ее добычи расходуется для получения серной кислоты. Используют серу для вулканизации каучука: при этом каучук превращается в резину.
В виде серного цвета (тонкого порошка) серу применяют для борьбы с болезнями виноградника и хлопчатника. Ее упот-ребляют для получения пороха, спичек, светящихся составов. В медицине приготовляют серные мази для лечения кожных заболеваний.
4.2. Сероводород, сульфиды, гидросульфиды
Сероводород является аналогом воды. Его электронная формула
Показывает, что в образовании связей Н-S-H участвуют два р-электрона внешнего уровня атома серы. Молекула H 2 S имеет угловую форму, поэтому она полярна.
^ Нахождение в природе
Сероводород встречается в природе в вулканических газах и в водах некоторых минеральных источников, например Пятигор-ска, Мацесты. Он образуется при гниении серосодержащих орга-нических веществ различных животных и растительных остат-ков. Этим объясняется характерный неприятный запах сточных вод, выгребных ям и свалок мусора.
Получение
1. Сероводород может быть получен непосредственным соедине-нием серы с водородом при нагревании:
2. Но обычно его получают действием разбавленной соляной или серной кислоты на сульфид железа (III):
2HCl+FeS=FeCl 2 +H 2 S 2H + +FeS=Fe 2+ +H 2 S Эту реакцию часто проводят в аппарате Киппа.
^ Физические свойства
В обычных условиях сероводород - бесцветный газ с силь-ным характерным запахом тухлых яиц. Очень ядовит, при вды-хании связывается с гемоглобином, вызывая паралич, что неред-
Ко приводит к смертельному исходу. В малых концентрациях менее опасен. Работать с ним надо в вытяжных шкафах или с герметически закрывающимися приборами. Допустимое содер-жание H 2 S в производственных помещениях составляет 0,01 мг в 1 л воздуха.
Сероводород сравнительно хорошо растворим в воде (при 20°С в 1 объеме воды растворяется 2,5 объема сероводорода).
Раствор сероводорода в воде называется сероводородной водой или сероводородной кислотой (она обнаруживает свойства слабой кислоты).
^ Химические свойства
1, При сильном нагревании сероводород почти полностью разла-гается с образованием серы и водорода.
2. Газообразный сероводород горит на воздухе голубым пламенем с образованием оксида серы (IV) и воды:
2H 2 S+3O 2 =2SO 2 +2Н 2 О
При недостатке кислорода образуется сера и вода: 2H 2 S+О 2 =2S+2Н 2 O
3. Сероводород - довольно сильный восстановитель. Это его важ-ное химическое свойство можно объяснить так. В растворе H 2 S сравнительно легко отдает электроны молекулам кислорода воздуха:
При этом кислород воздуха окисляет сероводород до серы, ко-торая делает сероводородную воду мутной:
2H 2 S+O 2 =2S+2H 2 O
Этим объясняется и то, что сероводород не накапливается в очень больших количествах в природе при гниении органичес-ких веществ - кислород воздуха окисляет его в свободную серу.
4, Сероводород энергично реагирует с растворами галогенов, на-пример:
H 2 S+I 2 =2HI+S Происходит выделение серы и обесцвечивание раствора йода.
5. Различные окислители энергично реагируют с сероводородом: при действии азотной кислоты образуется свободная сера.
6. Раствор сероводорода имеет кислую реакцию из-за диссоциа-ций:
H 2 SН + +HS - HS - H + +S -2
Обычно преобладает первая ступень. Он является очень слабой кислотой: слабее угольной, которая обычно вытесняет H 2 S из сульфидов.
Сульфиды и гидросульфиды
Сероводородная кислота, как двухосновная, образует два ряда солей:
Средние - сульфиды (Na 2 S);
Кислые - гидросульфиды (NaHS).
Эти соли могут быть получены: - взаимодействием гидроксидов с сероводородом: 2NaOH+H 2 S=Na 2 S+2Н 2 О
Непосредственным взаимодействием серы с металлами:
Обменной реакцией солей с H 2 S или между солями:
Pb(NO 3) 2 +Na 2 S=PbS+2NaNO 3
CuSO 4 +H 2 S=CuS+H 2 SO 4 Cu 2+ +H 2 S=CuS+2H +
Гидросульфиды почти все хорошо растворимы в воде.
Сульфиды щелочных и щелочноземельных металлов также легко растворимы в воде, бесцветны.
Сульфиды тяжелых металлов практически нерастворимы или малорастворимы в воде (FeS, MnS, ZnS); некоторые из них не растворяются и в разбавленных кислотах (CuS, PbS, HgS).
Как соли слабой кислоты, сульфиды в водных растворах силь-но гидролизованы. Например, сульфиды щелочных металлов при растворении в воде имеют щелочную реакцию:
Na 2 S+НОНNaHS+NaOH
Все сульфиды, как и сам сероводород, являются энергичными восстановителями:
3PbS -2 +8HN +5 O 3(разб.) =3PbS +6 O 4 +4Н 2 O+8N +2 O
Некоторые сульфиды имеют характерную окраску: CuS и PbS - черную, CdS - желтую, ZnS - белую, MnS - розовую, SnS - коричневую, Al 2 S 3 - оранжевую. На различной раствори-мости сульфидов и различной окраске многих из них основан качественный анализ катионов.
^ 4.3. Оксид серы (IV) и сернистая кислота
Оксид серы (IV), или сернистый газ, при обычных условиях бесцветный газ с резким удушливым запахом. При охлаждении до -10°С сжижается в бесцветную жидкость.
Получение
1. В лабораторных условиях оксид серы (IV) получают из солей сернистой кислоты действием на них сильными кислотами:
Na 2 SO 3 +H 2 SO 4 =Na 2 SO 4 +S0 2 +H 2 O 2NaHSO 3 +H 2 SO 4 =Na 2 SO 4 +2SO 2 +2H 2 O 2HSO - 3 +2H + =2SO 2 +2H 2 O
2. Также сернистый газ образуется при взаимодействии концент-рированной серной кислоты при нагревании с малоактивными металлами:
Cu+2H 2 SO 4 =CuSO 4 +SO 2 +2Н 2 О
Cu+4Н + +2SO 2- 4 =Cu 2+ + SO 2- 4 +SO 2 +2H 2 O
3. Оксид серы (IV) образуется также при сжигании серы в воздухе или кислороде:
4. В промышленных условиях SO 2 получают при обжиге пирита FeS 2 или сернистых руд цветных металлов (цинковой обманки ZnS, свинцового блеска PbS и др.):
4FeS 2 +11О 2 =2Fe 2 O 3 +8SO 2
Структурная формула молекулы SO 2:
В образовании связей в молекуле SO 2 принимают участие че-тыре электрона серы и четыре электрона от двух атомов кислоро-да. Взаимное отталкивание связывающих электронных пар и не-поделенной электронной пары серы придает молекуле угловую форму.
Химические свойства
1. Оксид серы (IV) проявляет все свойства кислотных оксидов:
Взаимодействие с водой,
Взаимодействие с щелочами,
Взаимодействие с основными оксидами.
2. Для оксида серы (IV) характерны восстановительные свойства:
S +4 O 2 +O 0 2 2S +6 O -2 3 (в присутствии катализатора, при нагревании)
Но в присутствии сильных восстановителей SO 2 ведет себя как окислитель:
Окислительно-восстановительная двойственность оксида серы (IV) объясняется тем, что сера имеет в нем степень окисления +4, и поэтому она может, отдавая 2 электрона, окисляться до S +6 , а принимая 4 электрона, восстанавливаться до S°. Проявление этих или других свойств зависит от природы реагирующего ком-понента.
Оксид серы (IV) хорошо растворим в воде (в 1 объеме при 20°С растворяется 40 объемов SO 2). При этом образуется существую-щая только в водном растворе сернистая кислота:
SO 2 +Н 2 ОH 2 SO 3
Реакция обратимая. В водном растворе оксид серы (IV) и сер-нистая кислота находятся в химическом равновесии, которое можно смещать. При связывании H 2 SO 3 (нейтрализация кисло-
Ты) реакция протекает в сторону образования сернистой кислоты; при удалении SO 2 (продувание через раствор азота или нагрева-ние) реакция протекает в сторону исходных веществ. В растворе сернистой кислоты всегда имеется оксид серы (IV), который при-дает ему резкий запах.
Сернистая кислота обладает всеми свойствами кислот. В рас-творе диссоциирует ступенчато:
H 2 SO 3 Н + +HSO - 3 HSO - 3 Н + +SO 2- 3
Термически неустойчива, летуча. Сернистая кислота, как двухосновная, образует два типа солей:
Средние - сульфиты (Na 2 SO 3);
Кислые - гидросульфиты (NaHSO 3).
Сульфиты образуются при полной нейтрализации кислоты щелочью:
H 2 SO 3 +2NaOH=Na 2 SO 3 +2Н 2 О
Гидросульфиты получаются при недостатке щелочи:
H 2 SO 3 +NaOH=NaHSO 3 +Н 2 О
Сернистая кислота и ее соли обладают как окислительными, так и восстановительными свойствами, что определяется приро-дой партнера по реакции.
1. Так, под действием кислорода сульфиты окисляются до суль-фатов:
2Na 2 S +4 O 3 +О 0 2 =2Na 2 S +6 O -2 4
Еще легче протекает окисление сернистой кислоты бромом и перманганатом калия:
5H 2 S +4 O 3 +2KMn +7 O 4 =2H 2 S +6 O 4 +2Mn +2 S +6 O 4 +K 2 S +6 O 4 +3Н 2 O
2. В присутствии же более энергичных восстановителей сульфиты проявляют окислительные свойства:
Из солей сернистой кислоты растворяются почти все гидро-сульфиты и сульфиты щелочных металлов.
3. Поскольку H 2 SO 3 является слабой кислотой, при действии кис-лот на сульфиты и гидросульфиты происходит выделение SO 2 . Этот метод обычно используют при получении SO 2 в лаборатор-ных условиях:
NaHSO 3 +H 2 SO 4 =Na 2 SO 4 +SO 2 +H 2 O
4. Растворимые в воде сульфиты легко подвергаются гидролизу, вследствие чего в растворе увеличивается концентрация OH - -ионов:
Na 2 SO 3 +НОНNaHSO 3 +NaOH
Применение
Оксид серы (IV) и сернистая кислота обесцвечивают многие красители, образуя с ними бесцветные соединения. Последние могут снова разлагаться при нагревании или на свету, в результа-те чего окраска восстанавливается. Следовательно, белящее дей-ствие SO 2 и H 2 SO 3 отличается от белящего действия хлора. Обычно рксидом серы (IV) белят шерсть, шелк и солому.
Оксид серы (IV) убивает многие микроорганизмы. Поэтому для уничтожения плесневых грибков им окуривают сырые подва-лы, погреба, винные бочки и др. Используется также при перевоз-ке и хранении фруктов и ягод. В больших количествах оксид серы IV) применяется для получения серной кислоты.
Важное применение находит раствор гидросульфита кальция CaHSO 3 (сульфитный щелок), которым обрабатывают древесину и бумажную массу.
^ 4.4. Оксид серы (VI). Серная кислота
Оксид серы (VI) (см. табл. 20) - бесцветная жидкость, затвердевающая при температуре 16,8°С в твердую кристаллическую массу. Он очень сильно поглощает влагу, образуя серную кислоту: SO 3 +Н 2 O= H 2 SO 4
Таблица 20. Свойства оксидов серы
Растворение оксиды серы (VI) в воде сопровождается выделе-нием значительного количества теплоты.
Оксид серы (VI) очень хорошо растворим в концентрирован-ной серной кислоте. Раствор SO 3 в безводной кислоте называется олеумом. Олеумы могут содержать до 70% SO 3 .
Получение
1. Оксид серы (VI) получают окислением сернистого газа кислоро-дом воздуха в присутствии катализаторов при температуре 450°С (см. Получение серной кислоты):
2SO 2 +O 2 =2SO 3
2. Другим способом окисления SO 2 до SO 3 является использование в качестве окислителя оксида азота (IV):
Образующийся оксид азота (II) при взаимодействии с кислоро-дом воздуха легко и быстро превращается в оксид азота (IV): 2NO+О 2 =2NO 2
Который вновь может использоваться в окислении SO 2 . Следо-вательно, NO 2 выполняет роль переносчика кислорода. Этот способ окисления SO 2 до SO 3 называется нитрозным. Молекула SO 3 имеет форму треугольника, в центре которого
Находится атом серы:
Такое строение обусловлено взаимным отталкиванием связы-вающих электронных пар. На их образование атом серы предоставил шесть внешних электронов.
Химические свойства
1. SO 3 - типичный кислотный оксид.
2. Оксид серы (VI) обладает свойствами сильного окислителя.
Применение
Оксид серы (VI) используют для производства серной кислоты. Наибольшее значение имеет контактный способ получения
Серной кислоты. По этому способу можно получить H 2 SO 4 любой концентрации, а также олеум. Процесс состоит из трех стадий: получение SO 2 ; окисление SO 2 в SO 3 ; получение H 2 SO 4 .
SO 2 получают обжигом пирита FeS 2 в специальных печах: 4FeS 2 +11О 2 =2Fe 2 O 3 +8SO 2
Для ускорения обжига пирит предварительно измельчают, а для более полного выгорания серы вводят значительно больше воздуха (кислорода), чем требуется по реакции. Газ, выходящий из печи обжига, состоит из оксида серы (IV), кислорода, азота, соединений мышьяка (из примесей в колчедане) и паров воды. Он называется обжиговым газом.
Обжиговый газ подвергается тщательной очистке, так как даже небольшое содержание соединений мышьяка, а также пыли и влаги отравляет катализатор. От соединений мышьяка и от пыли газ очищают, пропуская его через специальные электро-фильтры и промывную башню; влага поглощается концентриро-ванной серной кислотой в сушильной башне. Очищенный газ, содержащий кислород, нагревается в теплообменнике до 450°C и поступает в контактный аппарат. Внутри контактного аппарата имеются решетчатые полки, заполненные катализатором.
Раньше в качестве катализатора использовали мелкораздроб-ленную металлическую платину. Впоследствии она была замене-на соединениями ванадия - оксидом ванадия (V) V 2 O 5 или суль-фатом ванадила VOSO 4 , которые дешевле платины и медленнее отравляются.
Реакция окисления SO 2 в SO 3 обратимая:
2SO 2 +О 2 2SO 3
Увеличение содержания кислорода в обжиговом газе повы-шает выход оксида серы (VI): при температуре 450°С он обычно достигает 95% и выше.
Образовавшийся оксид серы (VI) далее подают методом про-тивотока в поглотительную башню, где он поглощается концент-рированной серной кислотой. По мере насыщения вначале обра-зуется безводная серная кислота, а затем олеум. В дальнейшем олеум разбавляют до 98% -ной серной кислоты и поставляют по-требителям.
Структурная формула серной кислоты:
^ Физические свойства
Серная кислота - тяжелая бесцветная маслянистая жид-кость, кристаллизующаяся при +10,4°С, почти вдвое ( =1,83 г/см 3) тяжелее воды, не имеет запаха, нелетуча. Крайне гиг-роскопична. Поглощает влагу с выделением большого количества теплоты, поэтому нельзя воду приливать к концентрированной серной кислоте - произойдет разбрызгивание кислоты. Для раз-
Бавления надо серную кислоту приливать небольшими порциями к воде.
Безводная серная кислота растворяет до 70% оксида серы (VI). При нагревании отщепляет SO 3 до тех пор, пока не образует-ся раствор с массовой долей H 2 SO 4 98,3%. Безводная H 2 SO 4 почти не проводит электрический ток.
^ Химические свойства
1. С водой смешивается в любых соотношениях и образует гидраты различного состава:
H 2 SO 4 Н 2 О, H 2 SO 4 2Н 2 О, H 2 SO 4 3Н 2 O, H 2 SO 4 4Н 2 О, H 2 SO 4 6,5Н 2 O
2. Концентрированная серная кислота обугливает органические вещества - сахар, бумагу, дерево, волокно, отнимая от них элементы воды:
С 12 Н 22 О 11 +H 2 SO 4 =12С+H 2 SO 4 11Н 2 O
Образовавшийся уголь частично вступает во взаимодействие с кислотой:
На поглощении воды серной кислотой основана осушка газов.
Как сильная нелетучая кислота H 2 SO 4 вытесняет другие кисло-ты из сухих солей:
NaNO 3 +H 2 SO 4 =NaHSO 4 +HNO 3
Однако если добавлять, H 2 SO 4 к растворам солей, то вытесне-ния кислот не происходит.
H 2 SO 4 - сильная двухосновная кислота: H 2 SO 4 Н + +HSO - 4 HSO - 4 H + +SO 2- 4
Обладает всеми свойствами нелетучих сильных кислот.
Разбавленная серная кислота характеризуется всеми свойства-ми кислот-неокислителей. А именно: взаимодействует с метал-лами, которые стоят в электрохимическом ряду напряжений металлов до водорода:
Взаимодействие с металлами идет за счет восстановления ионов водорода.
6. Концентрированная серная кислота является энергичным окислителем. При нагревании окисляет большинство метал-лов, в том числе и стоящие в электрохимическом ряду напря-жений после водорода, Не реагирует только с платиной и золо-том. В зависимости от активности металла в качестве продуктов восстановления могут быть S -2 , S° и S +4 .
На холоду концентрированная серная кислота не взаимодей-ствует с такими сильными металлами, как алюминий, железо, хром. Это объясняется пассивацией металлов. Данную особен-ность широко используют при ее транспортировке в железной таре.
Однако при нагревании:
Таким образом, концентрированная серная кислота взаимо-действует с металлами за счет восстановления атомов кислотообразователя.
Качественной реакцией на сульфат-ион SO 2- 4 является образо-вание белого кристаллического осадка BaSO 4 , нерастворимого в воде и кислотах:
SO 2- 4 +Ba +2 BaSO 4
Применение
Серная кислота является важнейшим продуктом основной химической промышленности, занимающейся производством не-
Органических кислот, щелочей, солей, минеральных удобрений и хлора.
По разнообразию применения серная кислота занимает пер-вое место среди кислот. Наибольшее количество ее расходуется для получения фосфорных и азотных удобрений. Будучи нелету-чей, серная кислота используется для получения других кис-лот - соляной, фтороводородной, фосфорной и уксусной.
Много ее идет для очистки нефтепродуктов - бензина, керо-сина, смазочных масел - от вредных примесей. В машинострое-нии серной кислотой очищают поверхность металла от оксидов перед покрытием (никелированием, хромированием и др.). Сер-ную кислоту применяют в производстве взрывчатых веществ, ис-кусственных волокон, красителей, пластмасс и многих других. Ее употребляют для заливки аккумуляторов.
Важное значение имеют соли серной кислоты.
^ Сульфат натрия Na 2 SO 4 кристаллизуется из водных раство-ров в виде гидрата Na 2 SO 4 10Н 2 О, который называется глауберо-вой солью. Применяется в медицине в качестве слабительного. Безводный сульфат натрия применяют в производстве соды и стекла.
^ Сульфат аммония (NH 4) 2 SO 4 - азотное удобрение.
Сульфат калия K 2 SO 4 - калийное удобрение.
Сульфат кальция СаSО 4 встречается в природе в виде минера-ла гипса CaSO 4 2Н 2 О. При нагревании до 150°С он теряет часть воды и переходит в гидрат состава 2CaSO 4 H 2 O, называемый жженым гипсом, или алебастром. Алебастр при замешивании с водой в тестообразную массу через некоторое время снова затвер-девает, превращаясь в CaSO 4 2Н 2 О. Гипс широко применяется в строительном деле (штукатурка).
^ Сульфат магния MgSO 4 содержится в морской воде, обуслав-ливая ее горький вкус. Кристаллогидрат, называемый горькой солью, применяют как слабительное.
Купоросы - техническое название кристаллогидратов сульфатов металлов Fe, Cu, Zn, Ni, Co (обезвоженные соли купоросами не являются). Медный купорос CuSO 4 5Н 2 О - ядовитое вещество синего цвета. Его разбавленным раствором опрыскивают расте-ния и протравливают семена перед посевом. Железный купорос FeSO 4 7Н 2 О - светло-зеленое вещество. Применяют для борьбы с вредителями растений, приготовления чернил, минеральных красок и т.д. Цинковый купорос ZnSO 4 7Н 2 O используют в про-изводстве минеральных красок, в ситцепечатании, медицине.
^ 4.5. Эфиры серной кислоты. Тиосульфат натрия
К эфирам серной кислоты относятся диалкилсульфаты (RO 2)SO 2 . Это высококипящие жидкости; низшие растворимы в воде; в присутствии щелочей образуют спирт и соли серной кис-лоты. Низшие диалкилсульфаты - алкилирующие агенты.
Диэтилсульфат (C 2 H 5) 2 SO 4 . Температура плавления -26°С, температура кипения 210°С, растворим в спиртах, нерастворим в воде. Получен взаимодействием серной кислоты с этанолом. Яв-ляется этилирующим агентом в органическом синтезе. Проника-ет через кожу.
Диметилсульфат (CH 3) 2 SO 4 . Температура плавления -26,8°С, температура кипения 188,5°С. Растворим в спиртах, плохо - в воде. Реагирует с аммиаком в отсутствие раствори-теля (со взрывом); сульфирует некоторые ароматические со-единения, например эфиры фенолов. Получают взаимодейст-вием 60%-ного олеума с метанолом при 150°С, Является метилирующим агентом в органическом синтезе. Канцероген, поражает глаза, кожу, органы дыхания.
^ Тиосульфат натрия Na 2 S 2 O 3
Соль тиосерной кислоты, в которой два атома серы имеют различные степени окисления: +6 и -2. Кристаллическое вещест-во, хорошо растворимо в воде. Выпускается в виде кристаллогид-рата Na 2 S 2 O 3 5Н 2 O, в обиходе называемый гипосульфитом. По-лучают взаимодействием сульфита натрия с серой при кипячении:
Na 2 SO 3 +S=Na 2 S 2 O 3
Как и тиосерная кислота, является сильным восстановителем, Легко окисляется хлором до серной кислоты:
Na 2 S 2 O 3 +4Сl 2 +5Н 2 О=2H 2 SO 4 +2NaCl+6НСl
На этой реакции было основано применение тиосульфата натрия для поглощения хлора (в первых противогазах).
Несколько иначе происходит окисление тиосульфата натрия слабыми окислителями. При этом образуются соли тетратионовой кислоты, например:
2Na 2 S 2 O 3 +I 2 =Na 2 S 4 O 6 +2NaI
Тиосульфат натрия является побочным продуктом в произ-водстве NaHSO 3 , сернистых красителей, при очистке промыш-ленных газов от серы. Применяется для удаления следов хлора после отбеливания тканей, Для извлечения серебра из руд; явля-ется фиксажем в фотографии, реактивом в иодометрии, противоядием при отравлении соединениями мышьяка, ртути, противо-воспалительным средством.
Большая часть оксида серы(IV) используется для производства сернистой кислоты. Оксид серы (IV) применяется также для получения различных солей сернистой кислоты. Серная кислота проявляет кислотные свойства в реакциях с основаниями и основными оксидами. Поскольку серная кислота двухосновна, она образует два ряда солей: средние - сульфаты, например Na2SO4, и кислые - гидросульфаты, например NaHSO4.
Растворяется также в этаноле и се́рной кислоте. В присутствии сильных восстановителей SO2 способен проявлять окислительные свойства. Выпадение аэрозоля серной кислоты из дымовых факелов химических предприятий чаще отмечается при низкой облачности и высокой влажности воздуха.
Наибольших концентраций сернистый газ достигает в северном полушарии, особенно над территорией США, Европы, Китая, европейской части России и Украины. Образование белого осадка BaSO4(нерастворимого в кислотах) используется для идентификации серной кислоты и растворимых сульфатов.
Сернистая кислота существует только в растворе. Триоксид серы проявляется кислотные свойства. Эту реакцию используют для получения важнейшего продукта химической промышленности – серной кислоты. Поскольку сера в триоксиде серы имеет высшую степень окисления, то оксид серы(VI) проявляет окислительные свойства.
Вопрос: Какие химические свойства кислот вы знаете? Используется также в качестве консерванта (пищевая добавка Е220). Так как этот газ убивает микроорганизмы, им окуривают овощехранилища и склады. Пирометаллургические предприятия цветной и чёрной металлургии, а также ТЭЦ ежегодно выбрасывают в атмосферу десятки миллионов тонн серного ангидрида. 4. Реакции самоокисления-самовосстановления серы возможны и при ее взаимодействии с сульфитами.
Таким образом, SО2, сернистая кислота и ее соли могут проявлять как окислительные, так и восстановительные свойства. Сероводород идет на производство серы, сульфитов, тиосульфатов и серной кислоты, в лабораторной практике – для осаждения сульфидов. Применяется в производстве фосфорной, соляной, борной, плавиковой и др. кислот.
Он проявляет типичные свойства кислотных оксидов и хорошо растворяется в воде, образуя слабую сернистую кислоту. Химические свойства серной кислоты в значительной степени зависят от её концентрации. Медный купорос CuSO4 5Н2O используют в сельском хозяйстве для борьбы с вредителями и болезнями растений.
Соединения серы со степенью окисления +1
3. Напишите уравнения реакций, характеризующих свойства разбавленной серной кислоты как электролита. Пластическая сера темного цвета и способна растягиваться, как резина. Процесс окисления одного оксида в другой является обратимым. Тепловые эффекты химических реакций. Периодическое изменение свойств оксидов, гидроксидов, водородных соединений химических элементов. Физические и химические свойства водорода.
Растворяется в воде с образованием нестойкой серни́стой кислоты; растворимость 11,5 г/100 г воды при 20 °C, снижается с ростом температуры. Этот вазодилатирующий эффект сернистого газа опосредуется через АТФ-чувствительные кальциевые каналы и кальциевые каналы L-типа («дигидропиридиновые»). Диоксид серы в атмосфере Земли существенно ослабляет влияние парниковых газов (диоксид углерода, метан) на рост температуры атмосферы.
Разнообразие форм триоксида серы связано со способностью молекул SO3 полимеризоваться благодаря образованию донорно-акцепторных связей. Полимерные структуры SO3 легко переходят друг в друга, и твердый SO3 обычно состоит из смеси различных форм, относительное содержание которых зависит от условий получения серного ангидрида.
Железный купорос FеSО4 7Н2O применяли раньше для лечения чесотки, гельминтоза и опухолей желез, в настоящее время используют для борьбы с сельскохозяйственными вредителями. Глауберова соль» (мирабилит) Nа2SO4 10Н2O была получена немецким химиком И. Р. Глаубером при действии серной кислоты на хлорид натрия, в медицине ее используют как слабительное средство.
Она неустойчива и разлагается на сернистый газ и воду. Сернистая кислота не относится к сильным кислотам. Она является кислотой средней силы и диссоциирует ступенчато. Серная кислота вступает в реакции трёх типов: кислотно-основные, ионообменные, окислительно-восстановительные.
Эти реакции лучше проводить с разбавленной серной кислотой. Для серной кислоты характерны ионообменные реакции. Выделение газа происходит в реакциях с солями неустойчивых кислот, распадающихся с образованием газов (угольной, сернистой, сероводородной) либо с образованием летучих кислот, таких как соляная.
Внимание! Предварительный просмотр слайдов используется исключительно в ознакомительных целях и может не давать представления о всех возможностях презентации. Задание: Составьте уравнение диссоциации сернистой кислоты.
Интересно, что чувствительность по отношению к SO2 весьма различна у отдельных людей, животных и растений. Тиосульфат натрия содержит два атома серы в различных степенях окисления и проявляет восстановительные свойства.
SO2 обесцвечивает органические красителя и применяется для отбеливания шелка, шерсти и соломы. Концентрированная серная кислота служит для очистки нефтепродуктов от сернистых и непредельных органических соединений. Благодаря высокой гигроскопичности применяется для осушки газов, для концентрирования азотной кислоты.
Сероводород и сульфиды. При растворении сероводорода в воде образуется слабая сероводородная кислота, соли которой называют сульфидами. Соли сернистой кислоты, как двухосновной, могут быть средними - сульфитами, например сульфит натрия Na2SO3, и кислыми - гидросульфитами, например гидросульфит натрия NaHSO3.
Применяется он также и в качестве растворителя в лабораториях. Учитель: Сернистая кислота – неустойчивое соединение, легко распадается на оксид серы (IV) и воду, поэтому существует только в водных растворах. В поглотительной башне происходит поглощение оксида серы (VI) концентрированной серной кислотой. Из-за образования в больших количествах в качестве отходов диоксид серы является одним из основных газов, загрязняющих атмосферу.