В чем суть гипотезы пуанкаре. Миллион долларов за дырку от бублика
Теорема Пуанкаре – математическая формула «Вселенной». Григорий Перельман. Часть 1 (из серии «Настоящий Человек в науке»)
Анри Пуанкаре (1854-1912), один из величайших математиков, в 1904 г. сформулировал знаменитую идею о деформированной трёхмерной сфере и в виде маленькой заметки на полях, помещённой в конце 65 страничной статьи, посвящённой совершенно другому вопросу, нацарапал несколько строчек довольно странной гипотезы со словами: «Ну этот вопрос может слишком далеко нас завести»…
Маркус Дю Сотой из Оксфордского университета считает, что теорема Пуанкаре - «это центральная проблема математики и физики , попытка понять какой формы может быть Вселенная , к ней очень трудно подобраться».
Раз в неделю Григорий Перельман ездил в Принстон, чтобы принять участие в семинаре «Института углублённых исследований». На семинаре один из математиков Гарвардского университета отвечает на вопрос Перельмана: «Теория Уильяма Тёрстона (1946-2012 гг., математик, труды в области «Трехмерной геометрии и топологии»), получившая название гипотезы геометризации описывает все возможные трёхмерные поверхности и является шагом вперёд по сравнению с гипотезой Пуанкаре. Если Вы докажете предположение Уильяма Тёрстона, то и гипотеза Пуанкаре распахнёт перед Вами все свои двери и более того её решение изменит весь топологический ландшафт современной науки ».
Шесть ведущих американских университетов в марте 2003 г. приглашают Перельмана прочесть цикл лекций, разъясняющих его работу. В апреле 2003 г. Перельман совершает научное турне. Его лекции становятся выдающимся научным событием. В Принстоне послушать его приезжают Джон Болл (председатель международного математического союза), Эндрю Уайлз (математик, работы в области арифметики эллиптических кривых, доказал теорему Ферма в 1994 г.), Джон Нэш (математик, работающий в области теории игр и дифференциальной геометрии).
Григорию Перельману удалось решить одну из семи задач тысячелетия и математически описать так называемою формулу Вселенной , доказать гипотезу Пуанкаре. Над этой гипотезой наиболее светлые умы бились более 100 лет, и за доказательство которой мировым математическим сообществом (математическим институтом имени Клэя) был обещан $1 млн. Её вручение прошло 8 июня 2010 г. Григорий Перельман не появился на ней, и у мирового математического сообщества «поотпадали челюсти».
В 2006 году за решение гипотезы Пуанкаре математику была присуждена высшая математическая награда - Филдсовская премия (медаль Филдса). Джон Болл лично посетил Санкт-Петербург с тем, чтобы уговорить принять премию. Её он принять отказался со словами: «Общество вряд ли способно всерьёз оценить мою работу».
«Филдсовская премия (и медаль) вручается один раз в 4 года на каждом международном математическом конгрессе молодым учёным (моложе 40 лет), внёсшим заметный вклад в развитие математики. Помимо медали награждённым вручается 15 тыс. канадских долларов ($13 000)»
В исходной формулировке гипотеза Пуанкаре звучит следующим образом: «Всякое односвязное компактное трёхмерное многообразие без края гомеоморфно трёхмерной сфере». В переводе на общедоступный язык, это означает, что любой трёхмерный объект, например, стакан можно преобразовать в шар путём одной только деформации, то есть его не нужно будет ни разрезать, ни склеивать. Иными словами, Пуанкаре предположил, что пространство не трёхмерно, а содержит значительно большее число измерений , а Перельман спустя 100 лет математически это доказал .
Выражение Григория Перельмана теоремы Пуанкаре о преобразовании материи в другое состояние, форму имеет сходство со знаниями, изложенными в книге Анастасии Новых «Сэнсэй IV»: «По факту, вся эта бесконечная для нас Вселенная занимает место в миллиарды раз меньше, чем кончик самой тонкой медицинской иглы» . А также возможностью управления материальной Вселенной путём преобразований, вносимых Наблюдателем из контролирующих измерений выше шестого (с 7 по 72 включительно) (доклад «ИСКОННАЯ ФИЗИКА АЛЛАТРА » тема «Эзоосмическая решётка»).
Григория Перельмана отличали аскетичность жизни, суровость предъявляемых как себе, так и к другим этических требований. Глядя на него складывается ощущение, что он только телесно проживает в общем со всеми остальными современниками пространстве , а Духовно в каком-то ином , где даже за $1 млн. не идут на самые «невинные» компромиссы с Совестью . И что это за пространство такое, и можно ли хоть краешком глаза посмотреть на него?..
Исключительная важность гипотезы, выдвинутой около века назад математиком Пуанкаре, касается трёхмерных структур и является ключевым элементом современных исследований основ мироздания . Загадка эта, по мнению специалистов института Клэя, одна из семи принципиально важных для развития математики будущего.
Перельман, отвергая медали и премии спрашивает: «А зачем они мне? Они мне совершенно ни к чему. Каждому понятно, если доказательство правильное, то никакого другого признания уже не требуется. Пока во мне не развилась подозрительность, у меня был выбор, либо сказать вслух о дезинтеграции математического сообщества в целом, в связи с его низким моральным уровнем, либо ничего не сказать и позволить обращаться с собой, как с быдлом. Теперь же, когда я стал более чем подозрительным, я не могу оставаться быдлом и продолжать молчать, поэтому мне остаётся только уйти».
Для того чтобы заниматься современной математикой нужно иметь тотально чистый ум, без малейшей примеси, которая дезинтегрирует его, дезориентирует, подменяет ценности, и принять эту премию означает продемонстрировать слабость. Идеальный учёный занимается только наукой, не заботится больше ни о чём (власть и капитал), у него должен быть чистый ум, а для Перельмана нет большей важности, чем жить в соответствии с этим идеалом. Полезно ли для математики вся эта затея с миллионами, и нужен ли настоящему учёному такой стимул? И это желание капитала купить и подчинить себе всё в этом мире разве не оскорбительно? Или можно продать свою чистоту за миллион? Деньги, сколько бы там их ни было, эквивалентны истине Души ? Ведь мы имеем дело с априорной оценкой проблем, к которым деньги просто не должны иметь отношения, разве не так?! Делать же из всего этого что-то вроде лото-миллион, или тотализатор, значит потакать дезинтеграции научного, да и человеческого сообщества в целом (см. доклад «ИСКОННАЯ ФИЗИКА АЛЛАТРА » и в книге «АллатРа » последние 50 страниц о пути построения созидательного общества). И денежные средства (энергия), которые бизнесмены готовы отдавать на науку, если и надо использовать, то корректно, что ли, не унижая Дух подлинного служения , как ни верти, неоценимого денежным эквивалентом: «Что такое миллион, по сравнению , с чистотой, или Величием тех сфер (об измерениях глобальной Вселенной и о Духовном мире см. книгу «АллатРа » и доклад «ИСКОННАЯ ФИЗИКА АЛЛАТРА » ), в которые не способно проникнуть даже человеческое воображение (ум) ?! Что такое миллион звёздного неба для времени?!».
Приведем толкование остальных терминов, фигурирующих в формулировке гипотезы :
Топология - (от греч. topos - место и logos - учение) - раздел математики, изучающий топологические свойства фигур, т.е. свойства, не изменяющиеся при любых деформациях, производимых без разрывов и склеиваний (точнее, при взаимно однозначных и непрерывных отображениях). Примерами топологических свойств фигур являются размерность, число кривых, ограничивающих данную область, и т.д. Так, окружность, эллипс, контур квадрата имеют одни и те же топологические свойства, т.к. эти линии могут быть деформированы одна в другую описанным выше образом; в то же время кольцо и круг обладают различными топологическими свойствами: круг ограничен одним контуром, а кольцо - двумя.
Гомеоморфизм (греч. ομοιο - похожий, μορφη - форма) – взаимно однозначное соответствие между двумя топологическим пространствами, при котором оба взаимно обратных отображения, определяемые этим соответствием, непрерывны. Эти отображения называют гомеоморфными, или топологическими отображениями, а также гомеоморфизмами, а о пространствах говорят, что они принадлежат одному топологическому типу называются гомеоморфными, или топологически эквивалентными.
Трёхмерное многообразие без края. Это такой геометрический объект, у которого каждая точка имеет окрестность в виде трёхмерного шара. Примерами 3-многообразий может служить, во-первых, всё трехмерное пространство, обозначаемое R3 , а также любые открытые множества точек в R3 , к примеру, внутренность полнотория (бублика). Если рассмотреть замкнутое полноторие, т.е. добавить и его граничные точки (поверхность тора), то мы получим уже многообразие с краем – у краевых точек нет окрестностей в виде шарика, но лишь в виде половинки шарика.
Полното́рие (полното́рий) - геометрическое тело, гомеоморфное произведению двумерного диска и окружности D2 * S1. Неформально, полноторие - бублик, тогда как тор - только его поверхность (пустотелая камера колеса).
Односвязное. Оно означает, что любую непрерывную замкнутую кривую, расположенную целиком в пределах данного многообразия, можно плавно стянуть в точку, не покидая этого многообразия. Например, обычная двумерная сфера в R3 односвязна (кольцевую резинку, как угодно приложенную к поверхности яблока, можно плавной деформацией стянуть в одну точку, не отрывая резинки от яблока). С другой стороны, окружность и тор неодносвязны.
Компактное. Многообразие компактно, если любой его гомеоморфный образ имеет ограниченные размеры. Например, открытый интервал на прямой (все точки отрезка, кроме его концов) некомпактен, так как его можно непрерывно растянуть до бесконечной прямой. А вот замкнутый отрезок (с концами) является компактным многообразием с краем: при любой непрерывной деформации концы переходят в какие-то определённые точки, и весь отрезок обязан переходить в ограниченную кривую, соединяющую эти точки.
Продолжение следует...
Ильназ Башаров
Литература:
– Доклад «ИСКОННАЯ ФИЗИКА АЛЛАТРА» интернациональной группы учёных Международного общественного движения «АЛЛАТРА» под ред. Анастасии Новых, 2015 г. http://allatra-science.org/pub... ;
– Новых. А. «АллатРа», К.: АллатРа, 2013 г. http://schambala.com.ua/book/a... .
– Новых. А., «Сэнсэй-IV», К.: ЛОТОС, 2013 г., 632 c. http://schambala.com.ua/book/s...
– Сергей Дужин, докт.физ.-мат. наук,старший научный сотрудник Санкт- Петербургского отделения Математического института РАН
- Tutorial
Еще в XIX веке было известно, что если любую замкнутую петлю, лежащую на двумерной поверхности, можно стянуть в одну точку, то такую поверхность легко превратить в сферу. Так, поверхность воздушного шарика удастся трансформировать в сферу, а поверхность бублика – нет (легко вообразить себе петлю, которая в случае с бубликом не стянется в одну точку). Гипотеза, высказанная французским математиком Анри Пуанкаре в 1904 году, гласит, что аналогичное утверждение верно и для трехмерных многообразий.
Доказать гипотезу Пуанкаре удалось только в 2003 году. Доказательство принадлежит нашему соотечественнику Григорию Перельману. Эта лекция проливает свет на объекты, необходимые для формулировки гипотезы, историю поиска доказательства и его основные идеи.
Читают лекцию доценты механико-математического факультета МГУ к. ф-м. н. Александр Жеглов и к. ф.-м. н. Федор Попеленский.
Если не вдаваться в математические подробности, то вопрос, поднимаемый гипотезой Пуанкаре можно следующим образом: как охарактеризовать (трехмерную) сферу? Чтобы правильно понять этот вопрос, нужно познакомиться с одним из важнейших понятий в топологии – гомеоморфизмом. Разобравшись с ним, мы сможем точно сформулировать гипотезу Пуанкаре.
Чтобы совсем уж не залезать в математические подробности формального определения, мы скажем, что две фигуры считаются гомеоморфными, если можно установить такое взаимно-однозначно соответствие между точками этих фигур, при котором близким точкам одной фигуры соответствуют близкие точки другой фигуры и наоборот. Пропущенные нами подробности состоят как раз в адекватной формализации близости точек.
Легко понять, что две фигуры гомеоморфны, если одну из другой можно получить произвольной деформацией, при которой запрещено «портить» поверхности (рвать, сминать области в точку, делать дырки и т.п.).
Например, чтобы получить из диска полусферу, как показано на картинке выше, нам потребуется просто нажать сверху в его центр, придерживая внешний обод. Можно представлять себе, что поверхности сделаны из идеальной резины, так что все фигуры могут сжиматься и растягиваться как угодно. Нельзя делать только две вещи: разрывать и склеивать.
Более точное (но все же не окончательное с точки зрения строгости) представление о гомеоморфных фигурах мы будем иметь, если разрешим еще одну операцию: можно сделать на фигуре разрез, перекрутить, завязать, развязать и т.п., но потом обязательно заклеить разрез как было.
Приведем еще один пример. Представим себе яблоко, в котором червяк прогрыз ход в виде узла и небольшую пещеру.
С точки зрения топологии поверхность этого яблока все равно останется сферой, т.к. если стянуть все это определенным образом, мы получим поверхность яблока в том же виде, как было до того, как червяк начал его есть.
Для закрепления попробуйте классифицировать буквы латинского алфавита с точностью до гомеоморфизма (т.е. выясните, какие буквы гомеоморфны, а какие - нет). Ответ зависит начертания букв (от типа шрифта или от гарнитуры), и для простейшего варианта начертания он приведен на следующем рисунке:
Из 26 букв у нас получается всего 8 классов.
На следующей картинке изображены гиря, кофейная чашка, бублик, сушка и кренделек. С топологической точки зрения поверхности гири, кофейной чашки, бублика и сушки одинаковы, т.е. гомеоморфны. Что касается кренделька, то он приведен здесь для сравнения с поверхностью, которую в топологии часто называют кренделем (он изображен в правом нижнем углу рисунка). Как вы, наверное, уже понимаете, и топологический крендель, и съедобный крендель отличаются от тора.
Формальная постановка вопроса
Пусть M – замкнутое связное многообразие размерности 3. Пусть на нем любая петля может быть стянута в точку. Тогда M гомеоморфно трехмерной сфере.Наибольшую трудность для неподготовленного человека здесь вызывает понятие «многообразия размерности 3» и свойства, выраженные словами «замкнутое» и «связное». Поэтому мы попробуем разобраться со всеми этими понятиями и свойствами на примере размерности 2, в этом случаем многое кардинально упрощается.
Гипотеза Пуанкаре для поверхностей
Пусть M – замкнутая связная поверхность (многообразие размерности 2). Пусть на ней любая петля может быть стянута в точку. Тогда поверхность M гомеоморфна двумерной сфере.Сначала определим, что такое поверхность. Возьмем конечный набор многоугольников, разбиваем все их стороны (ребра) на пары (т.е. всего сторон у всех многоугольников должно быть четное число), в каждой паре выбираем, каким из двух возможных способов будем их склеивать. Склеиваем. В результате поучается замкнутая поверхность.
Если полученная поверхность состоит из одного куска, а не из нескольких отдельных, то говорят, что поверхность связна. С формальной точки зрения это значит, что после склейки из любой вершины любого многоугольника можно по ребрам пройти в любую другую вершину.
Формально нужно требовать, чтобы из любой вершины любого многоугольника после склейки можно было пройти в любую вершину любого многоугольника (по ребрам).
Нетрудно сообразить, что связную поверхность можно склеить и из одного многоугольника. На рисунке видна идея, как это обосновывается:
Рассмотрим примеры простейших склеек:
В первом случае у нас получится сфера:
Во втором случае у нас получится тор (поверхность бублика, мы встречались с ним раньше):
В третьем случае получится так называемая бутылка Клейна:
Если склеивать не все стороны многоугольника, то получится поверхность с краем:
Важно отметить, что после склейки «шрамы» от нее носят чисто «косметический характер. Все точки поверхности равноправны: у любой точки имеется окрестность гомеоморфная диску.
Две поверхности считаются гомеоморфными, если схемы склейки каждой из них можно так разрезать на схемы склейки из более мелких многоугольников, что схемы склейки станут одинаковыми.
Разберем это утверждение на примере разбиения поверхности куба на части, из которых можно сложить развертку тетраэдра:
Верен и более общий факт: поверхности всех выпуклых многогранников – это сферы.
Теперь подробнее остановимся на понятии петли. Петял - это замкнутая кривая на рассматриваемой поверхности. Две петли называются гомотопными, если одну из них можно продеформировать в другую без разрывов и склеек, оставаясь на поверхности. Ниже приведен простейший случай стягивания петли на плоскости или сфере:
Даже если петля на плоскости или сфере имеет самопересечения, ее все равно можно стянуть:
На плоскости можно стянуть любую петлю:
А вот какие петли бывают на торе:
Стянуть такие петли невозможно. (К сожалению, доказательство выходит довольно далеко за рамки нашего рассказа.) Более того, показанные петли на торе не гомотопны. Предлагаем слушателям или читателям найти еще одну петлю на торе, не гомотопную этим двум - это очень простой вопрос. После этого попробуйте найти на торе четвертую петлю, не гомотопную этим трем - это будет несколько сложнее.
Эйлерова характеристика
Теперь, когда мы познакомились со всеми основными понятиями из формулировки гипотезы Пуанкаре, попробуем приступить к доказательству двумерного случая (лишний раз отметим, что это многократно проще трехмерного случая). А поможет нам в этом эйлерова характеристика.Эйлеровой характеристикой поверхности M назовем число B−P+Г. Здесь Г - число многоугольников, Р - это число ребер после склейки (в случае рассматриваемых поверхностей это половина числа сторон всех многоугольников), B - это число вершин, которое получается после склейки после склейки.
Если две схемы склейки задают гомеоморфные поверхности, то у этих схем числа B−P+Г одинаковы, т. е. B−P+Г является инвариантом поверхности.
Если поверхность уже как-то задана, то надо нарисовать на ней какой-нибудь граф, чтобы после разрезания по нему поверхность распалась на куски гомеоморфные дискам (например, кольца запрещены). Затем подсчитываем величину B−P+Г - это и есть эйлерова характеристика поверхности.
Будут ли гомеоморфны поверхности с одинаковыми эйлеровыми характеристиками, мы узнаем позже. Но совершенно точно можно утверждать, что если эйлеровы характеристики у поверхностей разные, то поверхности не гомеоморфны.
Знаменитое соотношение B−P+Г=2 для выпуклых многоугольников (теорема Эйлера) является частным случаем этой теоремы. В данном случае речь идет о конкретной поверхности - о сфере. Замечание Обозначение: Эйлерову характеристику поверхности M будем обозначать через χ(M): χ(M) = B − P + Γ
Если поверхность M связна, то χ(M) ≤ 2, причем χ(M) = 2 тогда и только тогда, когда M гомеоморфна сфере.
Посмотрев лекцию до конца, вы узнаете, как же все-таки доказывается гипотеза Пуанкаре в размерности 2, и как Григорию Перельману удалось доказать ее в размерности 3.
Гипотеза Пуанкаре выдвинута еще в начале XX в. французским математиком Анри Пуанкаре. Чтобы сформулировать ее, дадим
Определение.
Топологическое пространство X
называется односвязным, если оно линейно
связно и всякое непрерывное отображение
X
окружности в пространство X
можно продолжить до непрерывного
отображения
всего круга
.
Не трудно видеть, что сфера
односвязна
при n
2.
Гипотеза Пуанкаре. Всякое замкнутое односвязное трехмерное многообразие гомеоморфно трехмерной сфере.
Аналоги гипотезы Пуанкаре, касающиеся многообразий размерности 4 и больше, доказаны. Более того, получена топологическая классификация вообще всех замкнутых односвязных четырехмерных многообразий.
Это интересно: Почти 100 лет назад Пуанкаре установил, что двумерная сфера односвязна, и предположил, что трехмерная сфера тоже односвязна.
Другими словами, гипотеза Пуанкаре утверждает, что всякое односвязное замкнутое трехмерное многообразие гомеоморфно трехмерной сфере. Гипотеза сформулирована Пуанкаре в 1904 г. Обобщенная гипотеза Пуанкаре утверждает, что для любого n всякое многообразие размерности n гомотопически эквивалентно сфере размерности n тогда и только тогда, когда оно гомеоморфно ей. Для пояснения используют такую картинку: если обмотать яблоко резиновой лентой, то в принципе, стягивая ленту, можно сжать яблоко в точку. Если же обмотать такой же лентой пончик (пирожок с дыркой в середине), то в точку его сжать нельзя без разрыва или пончика, или резины. В таком контексте яблоко называют «односвязной» фигурой, пончик же не односвязен.
Жюль Анри Пуанкаре открыл специальную теорию относительности одновременно с Эйнштейном (1905 г.) и признан одним из величайших математиков за всю историю человечества.
Гипотеза Пуанкаре оставалась недоказанной на протяжении всего двадцатого столетия. В математическом мире она приобрела статус, аналогичный статусу Великой теоремы Ферма.
За доказательство гипотезы Пуанкаре Математический институт им. Клея присудил премию в миллион долларов, что может показаться удивительным: ведь речь идет об очень частном, малоинтересном факте. На самом деле, для математиков важны не столько свойства трехмерной поверхности, сколько факт трудности самого доказательства. В этой задаче в концентрированном виде сформулировано то, что не удавалось доказать с помощью имевшихся ранее идей и методов геометрии и топологии. Она позволяет как бы заглянуть на уровень глубже, в тот пласт задач, который можно будет решить только с помощью идей «нового поколения». Как и в ситуации с теоремой Ферма, выяснилось, что гипотеза Пуанкаре есть частный случай гораздо более общего утверждения о геометрических свойствах произвольных трехмерных поверхностей – гипотезы геометризации Тёрстона (Thurston"s Geometrization Conjecture). Поэтому усилия математиков были направлены не на решение этого частного случая, а на построение нового математического подхода, который способен справляться с такими задачами.
Российский математик Григорий Перельман, сотрудник лаборатории геометрии и топологии Санкт-Петербургского отделения Математического института им. В.А. Стеклова, утверждает, что доказал гипотезу Пуанкаре, то есть решил одну из самых знаменитых нерешенных математических задач. Необычным был способ, который Перельман избрал для обнародования своего доказательства. Вместо того чтобы опубликовать его в солидном научном журнале, что, кстати, было обязательным условием для присуждения приза в миллион долларов, Перельман разместил свою работу на одном из архивов Интернета. Хотя доказательство заняло всего 61 страницу, оно произвело сенсацию в научном мире.
Научный мир рукоплескал гению, обещая золотые горы и почетные титулы. Американский Институт математики Клея был готов присудить ему награду в $1 миллион. Никто не сомневался, что Всемирный конгресс математиков, назовет Перельмана победителем. Кстати, как известно, математики не входят в число учёных, награждаемых Нобелевской премией. Злые языки утверждают, что этот факт не случаен. Ведь, по слухам, именно математик попал в немилость знаменитому шведу Альфреду Нобелю, отбив у него любимую девушку в юности. Между тем российский гений отказался от миллиона, так и не опубликовав свое открытие в специализированных изданиях, уволился из Математического института им. Стеклова РАН, ушел в затворничество и, на церемонии вручения награды, которую вручал король Испании Хуан Карлос I, не появился. Он никак не отреагировал на сообщение о награде и приглашение ее получить, а как говорят знакомые: гений "ушел в леса" по грибы под Санкт-Петербургом.
Ученые считают, что 38-летний российский математик Григорий Перельман предложил верное решение проблемы Пуанкаре. Об этом на научном фестивале в Эксетере (Великобритания) заявил профессор математики Стэнфордского университета Кит Девлин.
Проблема (ее также называют задачей или гипотезой) Пуанкаре относится к числу семи важнейших математических проблем, за решение каждой из которых Математический институт Клэя (Clay Mathematics Institute) назначил премию в один миллион долларов. Именно это и привлекло столь широкое внимание к результатам, полученным Григорием Перельманом, сотрудником лаборатории математической физики Санкт-Петербургского отделения Математического института имени Стеклова .
Ученые всего мира узнали о достижениях Перельмана из двух препринтов (статей, предваряющих полноценную научную публикацию), размещенных автором в ноябре 2002-го и марте 2003 года на сайте архива предварительных работ Лос-Аламосской научной лаборатории .
Согласно правилам, принятым Научным консультативным советом института Клэя, новая гипотеза должна быть опубликована в специализированном журнале, имеющем "международную репутацию". Кроме того, по правилам Института, решение о выплате приза принимает, в конечном счёте, "математическое сообщество": доказательство не должно быть опровергнуто в течение двух лет после публикации. Проверкой каждого доказательства занимаются математики в разных странах мира.
Проблема Пуанкаре
Проблема Пуанкаре относится к области так называемой топологии многообразий - особым образом устроенных пространств, имеющих разную размерность. Двухмерные многообразия можно наглядно представить себе, например, на примере поверхности трехмерных тел − сферы (поверхности шара) или тора (поверхности бублика).
Легко вообразить, что произойдет с воздушным шариком, если его деформировать (изгибать, скручивать, тянуть, сжимать, пережимать, сдувать или надувать). Ясно, что при всех вышеперечисленных деформациях шарик будет изменять свою форму в широких пределах. Однако мы никогда не сможем превратить шарик в бублик (или наоборот) без нарушения непрерывности его поверхности, то есть не разрывая. В этом случае топологи говорят, что сфера (шарик) негомеоморфна тору (бублику). Это означает, что данные поверхности невозможно отобразить одну на другую. Говоря простым языком, сфера и тор различны по своим топологическим свойствам. А поверхность воздушного шарика при всевозможных его деформациях гомеоморфна сфере, равно как поверхность спасательного круга - тору. Иными словами, любая замкнутая двумерная поверхность, не имеющая сквозных отверстий, обладает теми же топологическими свойствами, что и двухмерная сфера.
Проблема Пуанкаре утверждает то же самое для трехмерных многообразий (для двухмерных многообразий, таких как сфера, это положение было доказано еще в XIX веке). Как заметил французский математик, одно из важнейших свойств двухмерной сферы состоит в том, что любая замкнутая петля (например, лассо), лежащая на ней, может быть стянута в одну точку, не покидая при этом поверхности. Для тора это справедливо не всегда: петля, проходящая через его отверстие, стянется в точку либо при разломе тора, либо при разрыве самой петли. В 1904 году Пуанкаре высказал предположение, что если петля может стягиваться в точку на замкнутой трехмерной поверхности, то такая поверхность гомеоморфна трехмерной сфере. Доказательство этой гипотезы оказалось чрезвычайно сложной задачей.
Сразу уточним: упомянутая нами формулировка проблемы Пуанкаре говорит вовсе не о трехмерном шаре, который мы можем представить себе без особого труда, а о трехмерной сфере, то есть о поверхности четырехмерного шара, который представить себе уже гораздо труднее. Но в конце 1950-х годов неожиданно выяснилось, что с многообразиями высоких размерностей работать гораздо легче, чем с трех- и четырехмерными. Очевидно, отсутствие наглядности - далеко не главная трудность, с которой сталкиваются математики в своих исследованиях.
Задача, подобная проблеме Пуанкаре, для размерностей 5 и выше была решена в 1960 году Стивеном Смэйлом (Stephen Smale), Джоном Стэллингсом (John Stallings) и Эндрю Уоллесом (Andrew Wallace). Подходы, использованные этими учеными, оказались, однако, неприменимы к четырехмерным многообразиям. Для них проблема Пуанкаре была доказана лишь в 1981 году Майклом Фридманом (Michael Freedman). Трехмерный же случай оказался самым сложным; его решение и предлагает Григорий Перельман.
Необходимо отметить, что у Перельмана есть соперник. В апреле 2002 года профессор математики британского университета Саутгемптон Мартин Данвуди предложил свой метод решения проблемы Пуанкаре и теперь ожидает вердикт от института Клэя.
Специалисты считают, что решение проблемы Пуанкаре позволит сделать серьезный шаг в математическом описании физических процессов в сложных трехмерных объектах и даст новый импульс развитию компьютерной топологии. Метод, который предлагает Григорий Перельман, приведет к открытию нового направления в геометрии и топологии. Петербургский математик вполне может претендовать на премию Филдса (аналог Нобелевской премии, которую по математике не присуждают).
Между тем, некоторые находят поведение Григория Перельмана странным. Вот что пишет британская газета "Гардиан": "Скорее всего, подход Перельмана к разгадке проблемы Пуанкаре верный. Но не все так просто. Перельман не предоставляет доказательств того, что работа издана в качестве полноценной научной публикации (препринты таковой не считаются). А это необходимо, если человек хочет получить награду от института Клэя. Кроме того, он вообще не проявляет интереса к деньгам".
Видимо, для Григория Перельмана, как для настоящего ученого, деньги - не главное. За решение любой из так называемых "задач тысячелетия" истинный математик продаст душу дьяволу.
ГРИГОРИЙ ПЕРЕЛЬМАН |
Родился 13 июня 1966 года в Ленинграде, в семье служащих. Окончил знаменитую среднюю школу № 239 с углубленным изучением математики. В 1982 году в составе команды советских школьников участвовал в Международной математической олимпиаде, проходившей в Будапеште. Был без экзаменов зачислен на матмех Ленинградского государственного университета. Побеждал на факультетских, городских и всесоюзных студенческих математических олимпиадах. Получал Ленинскую стипендию. Окончив университет, Перельман поступил в аспирантуру при Санкт-Петербургском отделении Математического института им.В.А.Стеклова. Кандидат физико-математических наук. Работает в лаборатории математической физики. |
Китайские математики опубликовали полное доказательство гипотезы Пуанкаре, сформулированной в 1904 году, передает новостное агентство Xinhua. Гипотеза, касающаяся классификации многомерных поверхностей (а точнее, многообразий), входила в число "проблем тысячелетия", за решение каждой из которых американский Институт Клэя назначил награду в миллион долларов.
Согласно Пуанкаре, любая замкнутая трехмерная "поверхность без дыр" (односвязное многообразие) эквивалентна трехмерной сфере, то есть поверхности четырехмерного шара. Сам Пуанкаре, автор математического аппарата эйнштейновской теории, представил первое обоснование, но позже обнаружил в собственных рассуждениях ошибку. Гипотезу в такой формулировке доказал в 2003 году российский математик Григорий Перельман, 70-страничную работу которого эксперты проверяют до сих пор. Другие случаи (размерности четыре и выше) были рассмотрены ранее.
По словам авторов, новая 300-страничная статья в Asian Journal of Mathematics не является независимой и опирается в первую очередь на результаты Перельмана. Чжу Сипин и Цао Хуайдун утверждают, что теперь ликвидировали ряд трудностей, способы преодоления которых Перельманом были только намечены. Известно, что в работе над доказательством также участвовал Шин-Тунь Яу, топологические труды которого (в частности, теория многообразий Калаби-Яу) считаются ключевыми для современной теории струн. Новая работа, отмечают специалисты, также потребует длительной перепроверки.
Александров А.Д., Нецветаев Н.Ю. Геометрия. М.: Наука, 1990
Приложение к реферату 2:
Анри Пуанкаре - один из самых известных французских ученых всех времен. За свою жизнь он успел достичь многого. Кроме того, что он совершил множество открытий в самых различных областях знаний, он также в течение многих лет преподавал в Сорбонне и являлся членом Французской академии наук, а с 1906 и до самой смерти в 1912 был ее президентом.
В современном мире самым известным его достижением считается теорема Пуанкаре, которая была доказана Григорием Перельманом.
Попытки доказательства
Множество ученых долгие годы занималось изучением теоремы, но успеха добились только несколько человек. Один из главных прорывов совершил американский ученый Тёрстон. Суть его работы состоит в том, что он смог зрительно проиллюстрировать многообразие элементов трехмерной плоскости. Работа Тёрстона получила название гипотезы геометризации, а за нее он был удостоен Филдсовской премии.
Несколько китайских ученых также были заинтересованы в том, чтобы теорема Пуанкаре была доказана. Среди них особо выделяется Шин Тун Яу, который даже делал заявления о том, что ему и его ученикам удалось это сделать.
Работа Перельмана
Григорий Перельман доказал теорему Пуанкаре после многих лет упорной работы над ней. Он начал свои исследования, находясь в Америке, где в течение долгого времени читал лекции в разных университетах. После своего знакомства с американским ученым Гамильтоном, который помог ему прояснить некоторые моменты он задумался о доказательстве теоремы. Через какое-то время он решил вернуться в родной Санкт-Петербург, где усердно принялся за работу.
В 2002 году Перельман опубликовал первую часть своей работы и отправил ее копию Шин Тун Яу, чтобы тот смог дать ей объективную оценку. Уже тогда ученому миру стало известно, что теорема Пуанкаре доказана. В течение нескольких месяцев Перельман опубликовал еще две части статьи, в которых была представлена его работа в очень сжатом виде.
В ученом мире принято так, что перед тем, как делается официальное заявление об открытии, его должны подтвердить несколько разных ученых, а только потом работа может быть официально опубликована. Прежде чем доказательство было опубликовано, теорема Пуанкаре-Перельмана была много раз подвергнута проверкам, а эта работа еще усложнялась тем фактом, что в ней использовалось значительное количество сокращений и было мало объяснений как для такого серьезного труда.
Тем не менее спустя некоторое время было признано, что Перельману удалось решить задачу, над которой бились многие поколения ученых.
Филдсовская премия
Эта премия вручается только раз в четыре года не более чем четырем ученым, которые внесли серьезный вклад в изучение математики. Ее удостоился и Перельман в 2006 году за доказательство но, как ни странно, он отказался от такой почетной награды и не присутствовал на вручении. По словам самого ученого, для него не важны почетные звания, ему принес удовольствие уже тот факт, что гипотеза доказана.
Теорема Пуанкаре являлась загадкой для множества ученых, но именно эксцентричный российский математик смог добиться ее решения и найти ответы на вопросы, которые продолжительное время волновали весь ученый мир.