Cómo resolver logarítmicas. Logaritmo natural, función ln x

Hoy hablaremos de fórmulas logarítmicas y le daremos indicativo ejemplos de soluciones.

Ellos mismos implican patrones de solución de acuerdo con las propiedades básicas de los logaritmos. Antes de aplicar fórmulas de logaritmos para resolver, te recordamos todas las propiedades:

Ahora, basándonos en estas fórmulas (propiedades), mostraremos ejemplos de resolución de logaritmos.

Ejemplos de resolución de logaritmos basados ​​en fórmulas.

Logaritmo numero positivo b en base a (denotado por log a b) es un exponente al que se debe elevar a para obtener b, con b > 0, a > 0 y 1.

Según la definición, log a b = x, lo que equivale a a x = b, por lo tanto log a a x = x.

Logaritmos, ejemplos:

log 2 8 = 3, porque 2 3 = 8

log 7 49 = 2, porque 7 2 = 49

log 5 1/5 = -1, porque 5 -1 = 1/5

logaritmo decimal- este es un logaritmo ordinario, cuya base es 10. Se denota como lg.

log 10 100 = 2, porque 10 2 = 100

Logaritmo natural - también el logaritmo habitual, pero con la base e (e = 2,71828... - numero irracional). Denotado como ln.

Es recomendable memorizar las fórmulas o propiedades de los logaritmos, porque las necesitaremos más adelante para resolver logaritmos, ecuaciones logarítmicas y desigualdades. Analicemos cada fórmula nuevamente con ejemplos.

  • Identidad logarítmica básica
    un registro a b = b

    8 2log 8 3 = (8 2log 8 3) 2 = 3 2 = 9

  • El logaritmo del producto es igual a la suma de los logaritmos.
    iniciar sesión a (bc) = iniciar sesión a b + iniciar sesión a c

    registro 3 8,1 + registro 3 10 = registro 3 (8,1*10) = registro 3 81 = 4

  • El logaritmo del cociente es igual a la diferencia de los logaritmos.
    log a (b/c) = log a b - log a c

    9 registro 5 50 /9 registro 5 2 = 9 registro 5 50- registro 5 2 = 9 registro 5 25 = 9 2 = 81

  • Propiedades de la potencia de un número logarítmico y la base del logaritmo

    Exponente del número logarítmico log a b m = mlog a b

    Exponente de la base del logaritmo log a n b =1/n*log a b

    log a n b m = m/n*log a b,

    si m = n, obtenemos log a n b n = log a b

    registro 4 9 = registro 2 2 3 2 = registro 2 3

  • Transición a una nueva fundación.
    log a b = log c b/log c a,

    si c = b, obtenemos log b b = 1

    entonces log a b = 1/log b a

    log 0,8 3*log 3 1,25 = log 0,8 3*log 0,8 1,25/log 0,8 3 = log 0,8 1,25 = log 4/5 5/4 = -1

Como puedes ver, las fórmulas de logaritmos no son tan complicadas como parecen. Ahora, habiendo visto ejemplos de resolución de logaritmos, podemos pasar a ecuaciones logarítmicas. Consideraremos ejemplos de resolución de ecuaciones logarítmicas con más detalle en el artículo: "". ¡No te pierdas!

Si aún tienes dudas sobre la solución, escríbelas en los comentarios del artículo.

Nota: decidimos obtener una clase de educación diferente y estudiar en el extranjero como opción.

Logaritmo del número b (b > 0) en base a (a > 0, a ≠ 1)– exponente al que se debe elevar el número a para obtener b.

El logaritmo en base 10 de b se puede escribir como iniciar sesión (b), y el logaritmo en base e (logaritmo natural) es en(b).

A menudo se utiliza al resolver problemas con logaritmos:

Propiedades de los logaritmos

Hay cuatro principales propiedades de los logaritmos.

Sean a > 0, a ≠ 1, x > 0 y y > 0.

Propiedad 1. Logaritmo del producto

Logaritmo del producto igual a la suma de logaritmos:

log a (x ⋅ y) = log a x + log a y

Propiedad 2. Logaritmo del cociente

Logaritmo del cociente igual a la diferencia de logaritmos:

log a (x / y) = log a x – log a y

Propiedad 3. Logaritmo de potencia

Logaritmo de grado igual al producto de la potencia por el logaritmo:

Si la base del logaritmo está en grados, entonces se aplica otra fórmula:

Propiedad 4. Logaritmo de la raíz

Esta propiedad se puede obtener de la propiedad del logaritmo de una potencia, ya que la raíz enésima de la potencia es igual a la potencia de 1/n:

Fórmula para convertir de un logaritmo en una base a un logaritmo en otra base

Esta fórmula también se utiliza a menudo para resolver varias tareas a logaritmos:

Caso especial:

Comparar logaritmos (desigualdades)

Tengamos 2 funciones f(x) y g(x) bajo logaritmos con por los mismos motivos y entre ellos hay un signo de desigualdad:

Para compararlos, primero debes mirar la base de los logaritmos a:

  • Si a > 0, entonces f(x) > g(x) > 0
  • Si 0< a < 1, то 0 < f(x) < g(x)

Cómo resolver problemas con logaritmos: ejemplos

Problemas con logaritmos incluido en el Examen Estatal Unificado de Matemáticas para el grado 11 en las tareas 5 y 7, puede encontrar tareas con soluciones en nuestro sitio web en las secciones correspondientes. Además, las tareas con logaritmos se encuentran en el banco de tareas de matemáticas. Puede encontrar todos los ejemplos buscando en el sitio.

¿Qué es un logaritmo?

Los logaritmos siempre se han considerado tema complejo V curso escolar matemáticas. Hay muchos diferentes definiciones logaritmo, pero por alguna razón la mayoría de los libros de texto utilizan el más complejo y fallido de ellos.

Definiremos el logaritmo de forma sencilla y clara. Para hacer esto, creemos una tabla:

Entonces, tenemos potencias de dos.

Logaritmos: propiedades, fórmulas, cómo resolver

Si tomas el número de la línea inferior, podrás encontrar fácilmente la potencia a la que tendrás que elevar dos para obtener este número. Por ejemplo, para obtener 16, debes elevar dos a la cuarta potencia. Y para obtener 64, debes elevar dos a la sexta potencia. Esto se puede ver en la tabla.

Y ahora, en realidad, la definición del logaritmo:

la base a del argumento x es la potencia a la que se debe elevar el número a para obtener el número x.

Designación: log a x = b, donde a es la base, x es el argumento, b es a lo que realmente es igual el logaritmo.

Por ejemplo, 2 3 = 8 ⇒log 2 8 = 3 (el logaritmo en base 2 de 8 es tres porque 2 3 = 8). Con el mismo éxito, log 2 64 = 6, ya que 2 6 = 64.

Se llama la operación de encontrar el logaritmo de un número hasta una base determinada. Entonces, agreguemos una nueva línea a nuestra tabla:

2 1 2 2 2 3 2 4 2 5 2 6
2 4 8 16 32 64
iniciar sesión 2 2 = 1 iniciar sesión 2 4 = 2 iniciar sesión 2 8 = 3 iniciar sesión 2 16 = 4 iniciar sesión 2 32 = 5 registro 2 64 = 6

Desafortunadamente, no todos los logaritmos se calculan tan fácilmente. Por ejemplo, intenta encontrar log 2 5. El número 5 no está en la tabla, pero la lógica dicta que el logaritmo estará en algún lugar del intervalo. porque 2 2< 5 < 2 3 , а чем больше степень двойки, тем больше получится число.

Estos números se llaman irracionales: los números después del punto decimal se pueden escribir hasta el infinito y nunca se repiten. Si el logaritmo resulta irracional, es mejor dejarlo así: log 2 5, log 3 8, log 5 100.

Es importante entender que un logaritmo es una expresión con dos variables (la base y el argumento). Al principio, mucha gente confunde dónde está la base y dónde está el argumento. Para evitar molestos malentendidos, basta con mirar la imagen:

Ante nosotros no hay más que la definición de logaritmo. Recordar: el logaritmo es una potencia, en el que se debe construir la base para obtener un argumento. Es la base la que está elevada a una potencia; está resaltada en rojo en la imagen. ¡Resulta que la base siempre está abajo! Les digo a mis alumnos esta maravillosa regla desde la primera lección, y no surge ninguna confusión.

Cómo contar logaritmos

Hemos descubierto la definición; todo lo que queda es aprender a contar logaritmos, es decir. deshazte del signo "registro". Para empezar, observamos que de la definición se desprenden dos hechos importantes:

  1. El argumento y la base siempre deben ser mayores que cero. Esto se desprende de la definición de grado mediante un exponente racional, al que se reduce la definición de logaritmo.
  2. La base debe ser diferente de uno, ya que uno, en cualquier grado, sigue siendo uno. Debido a esto, la pregunta “¿a qué potencia hay que elevar uno para obtener dos” no tiene sentido. ¡No existe tal grado!

Estas restricciones se denominan región valores aceptables (ODZ). Resulta que la ODZ del logaritmo se ve así: log a x = b ⇒x > 0, a > 0, a ≠ 1.

Tenga en cuenta que no existen restricciones sobre el número b (el valor del logaritmo). Por ejemplo, el logaritmo bien puede ser negativo: log 2 0,5 = −1, porque 0,5 = 2-1.

Sin embargo, ahora consideraremos sólo expresiones numéricas, donde no es necesario conocer el VA del logaritmo. Los autores de las tareas ya han tenido en cuenta todas las restricciones. Pero cuando entren en juego las ecuaciones y desigualdades logarítmicas, los requisitos de la licencia de conducir serán obligatorios. Después de todo, la base y el argumento pueden contener construcciones muy sólidas que no necesariamente corresponden a las restricciones anteriores.

Ahora veamos el esquema general para calcular logaritmos. Consta de tres pasos:

  1. Expresa la base a y el argumento x como una potencia con la mínima base posible mayor que uno. En el camino, es mejor deshacerse de los decimales;
  2. Resuelva la ecuación para la variable b: x = a b ;
  3. El número b resultante será la respuesta.

¡Eso es todo! Si el logaritmo resulta irracional, esto ya será visible en el primer paso. El requisito de que la base sea mayor que uno es muy importante: esto reduce la probabilidad de error y simplifica enormemente los cálculos. Lo mismo con decimales: si los convierte inmediatamente en normales, habrá muchos menos errores.

Veamos cómo funciona este esquema usando ejemplos específicos:

Tarea. Calcula el logaritmo: log 5 25

  1. Imaginemos la base y el argumento como una potencia de cinco: 5 = 5 1 ; 25 = 5 2 ;
  2. Creemos y resolvamos la ecuación:
    iniciar sesión 5 25 = segundo ⇒(5 1) segundo = 5 2 ⇒5 segundo = 5 2 ⇒ segundo = 2;

  3. Recibimos la respuesta: 2.

Tarea. Calcula el logaritmo:

Tarea. Calcula el logaritmo: log 4 64

  1. Imaginemos la base y el argumento como una potencia de dos: 4 = 2 2 ; 64 = 2 6 ;
  2. Creemos y resolvamos la ecuación:
    log 4 64 = b ⇒(2 2) b = 2 6 ⇒2 2b = 2 6 ⇒2b = 6 ⇒ b = 3;
  3. Recibimos la respuesta: 3.

Tarea. Calcula el logaritmo: log 16 1

  1. Imaginemos la base y el argumento como una potencia de dos: 16 = 2 4 ; 1 = 2 0 ;
  2. Creemos y resolvamos la ecuación:
    iniciar sesión 16 1 = b ⇒(2 4) b = 2 0 ⇒2 4b = 2 0 ⇒4b = 0 ⇒ b = 0;
  3. Recibimos la respuesta: 0.

Tarea. Calcula el logaritmo: log 7 14

  1. Imaginemos la base y el argumento como una potencia de siete: 7 = 7 1 ; 14 no se puede representar como una potencia de siete, ya que 7 1< 14 < 7 2 ;
  2. Del párrafo anterior se desprende que el logaritmo no cuenta;
  3. La respuesta es ningún cambio: log 7 14.

Una pequeña nota sobre el último ejemplo. ¿Cómo puedes estar seguro de que un número no es una potencia exacta de otro número? Es muy simple: simplemente factorízalo en factores primos. Si la expansión tiene al menos dos factores diferentes, el número no es una potencia exacta.

Tarea. Descubra si los números son potencias exactas: 8; 48; 81; 35; 14.

8 = 2 · 2 · 2 = 2 3 - grado exacto, porque sólo hay un multiplicador;
48 = 6 · 8 = 3 · 2 · 2 · 2 · 2 = 3 · 2 4 - no es una potencia exacta, ya que existen dos factores: 3 y 2;
81 = 9 · 9 = 3 · 3 · 3 · 3 = 3 4 - grado exacto;
35 = 7 · 5 - nuevamente no es una potencia exacta;
14 = 7 · 2 - nuevamente no es un grado exacto;

Tenga en cuenta también que los números primos en sí son siempre potencias exactas de sí mismos.

logaritmo decimal

Algunos logaritmos son tan comunes que tienen un nombre y símbolo especiales.

del argumento x es el logaritmo en base 10, es decir La potencia a la que se debe elevar el número 10 para obtener el número x. Designación: lg x.

Por ejemplo, registro 10 = 1; iniciar sesión 100 = 2; lg 1000 = 3-etc.

De ahora en adelante, cuando aparezca una frase como “Buscar lg 0.01” en un libro de texto, sepa que no se trata de un error tipográfico. Este es un logaritmo decimal. Sin embargo, si no estás familiarizado con esta notación, siempre puedes reescribirla:
registro x = registro 10 x

Todo lo que es cierto para los logaritmos ordinarios también lo es para los logaritmos decimales.

Logaritmo natural

Hay otro logaritmo que tiene su propia designación. En cierto modo, es incluso más importante que el decimal. Estamos hablando del logaritmo natural.

del argumento x es el logaritmo en base e, es decir la potencia a la que se debe elevar el número e para obtener el número x. Designación: ln x.

Mucha gente se preguntará: ¿cuál es el número e? Este es un número irracional; su valor exacto no se puede encontrar ni escribir. Daré sólo las primeras cifras:
mi = 2,718281828459…

No entraremos en detalles sobre qué es este número y por qué es necesario. Solo recuerda que e es la base del logaritmo natural:
ln x = log e x

Así, ln e = 1; En mi 2 = 2; En mi 16 = 16 - etc. Por otra parte, ln 2 es un número irracional. En general, el logaritmo natural de cualquier número racional es irracional. Excepto, por supuesto, uno: ln 1 = 0.

Para los logaritmos naturales, son válidas todas las reglas que son verdaderas para los logaritmos ordinarios.

Ver también:

Logaritmo. Propiedades del logaritmo (potencia del logaritmo).

¿Cómo representar un número como logaritmo?

Usamos la definición de logaritmo.

Un logaritmo es un exponente al que se debe elevar la base para obtener el número bajo el signo del logaritmo.

Por lo tanto, para representar un cierto número c como un logaritmo en base a, es necesario poner una potencia con la misma base que la base del logaritmo bajo el signo del logaritmo y escribir este número c como exponente:

Absolutamente cualquier número se puede representar como un logaritmo: positivo, negativo, entero, fraccionario, racional, irracional:

Para no confundir a y c en las condiciones estresantes de una prueba o examen, puede utilizar la siguiente regla de memorización:

lo que está abajo baja, lo que está arriba sube.

Por ejemplo, debes representar el número 2 como un logaritmo en base 3.

Tenemos dos números: 2 y 3. Estos números son la base y el exponente, que escribiremos bajo el signo del logaritmo. Queda por determinar cuál de estos números se debe escribir, hasta la base del grado, y cuál, hasta el exponente.

La base 3 en la notación de un logaritmo está en la parte inferior, lo que significa que cuando representamos dos como un logaritmo en base 3, también escribiremos 3 en base.

2 es mayor que tres. Y en notación del grado dos escribimos encima del tres, es decir, a modo de exponente:

Logaritmos. Primer nivel.

Logaritmos

Logaritmo numero positivo b Residencia en a, Dónde a > 0, a ≠ 1, se llama exponente al que se debe elevar el número a, Para obtener b.

Definición de logaritmo se puede escribir brevemente así:

Esta igualdad es válida para b > 0, a > 0, a ≠ 1. Generalmente se llama identidad logarítmica.
La acción de encontrar el logaritmo de un número se llama por logaritmo.

Propiedades de los logaritmos:

Logaritmo del producto:

Logaritmo del cociente:

Reemplazo de la base del logaritmo:

Logaritmo de grado:

Logaritmo de la raíz:

Logaritmo con base de potencia:





Logaritmos decimales y naturales.

logaritmo decimal Los números llaman al logaritmo de este número en base 10 y escriben   lg. b
Logaritmo natural Los números se llaman logaritmo de ese número en base. mi, Dónde mi- un número irracional aproximadamente igual a 2,7. Al mismo tiempo escriben en b.

Otras notas sobre álgebra y geometría.

Propiedades básicas de los logaritmos.

Propiedades básicas de los logaritmos.

Los logaritmos, como cualquier número, se pueden sumar, restar y transformar de todas las formas posibles. Pero como los logaritmos no son exactamente números ordinarios, aquí existen reglas, que se llaman propiedades principales.

Definitivamente necesitas conocer estas reglas; sin ellas, no se puede resolver ni un solo problema logarítmico grave. Además, hay muy pocos: puedes aprender todo en un día. Entonces empecemos.

Sumar y restar logaritmos

Considere dos logaritmos con las mismas bases: log a x y log a y. Luego se pueden sumar y restar, y:

  1. log a x + log a y = log a (x y);
  2. log a x − log a y = log a (x: y).

Entonces, la suma de logaritmos es igual al logaritmo del producto y la diferencia es igual al logaritmo del cociente. Nota: momento clave Aquí - motivos idénticos. Si los motivos son diferentes, ¡estas reglas no funcionan!

Estas fórmulas te ayudarán a calcular una expresión logarítmica incluso cuando no se consideran sus partes individuales (consulta la lección “¿Qué es un logaritmo”). Eche un vistazo a los ejemplos y vea:

Registro 6 4 + registro 6 9.

Como los logaritmos tienen las mismas bases, usamos la fórmula de suma:
registro 6 4 + registro 6 9 = registro 6 (4 9) = registro 6 36 = 2.

Tarea. Encuentra el valor de la expresión: log 2 48 − log 2 3.

Las bases son las mismas, utilizamos la fórmula de diferencia:
registro 2 48 − registro 2 3 = registro 2 (48: 3) = registro 2 16 = 4.

Tarea. Encuentra el valor de la expresión: log 3 135 − log 3 5.

Nuevamente las bases son las mismas, entonces tenemos:
registro 3 135 − registro 3 5 = registro 3 (135: 5) = registro 3 27 = 3.

Como puedes ver, las expresiones originales se componen de logaritmos "malos", que no se calculan por separado. Pero después de las transformaciones se obtienen números completamente normales. Muchos se basan en este hecho. papeles de prueba. Sí, en el Examen Estatal Unificado se ofrecen expresiones tipo test con toda seriedad (a veces prácticamente sin cambios).

Extrayendo el exponente del logaritmo

Ahora compliquemos un poco la tarea. ¿Qué pasa si la base o argumento de un logaritmo es una potencia? Entonces el exponente de este grado se puede sacar del signo del logaritmo según las siguientes reglas:

Es fácil ver que la última regla sigue a las dos primeras. Pero es mejor recordarlo de todos modos; en algunos casos, esto reducirá significativamente la cantidad de cálculos.

Por supuesto, todas estas reglas tienen sentido si se observa la ODZ del logaritmo: a > 0, a ≠ 1, x > 0. Y una cosa más: aprende a aplicar todas las fórmulas no solo de izquierda a derecha, sino también al revés. , es decir. Puede ingresar los números antes del signo del logaritmo en el propio logaritmo.

Cómo resolver logaritmos

Esto es lo que más a menudo se requiere.

Tarea. Encuentra el valor de la expresión: log 7 49 6 .

Eliminemos el grado en el argumento usando la primera fórmula:
registro 7 49 6 = 6 registro 7 49 = 6 2 = 12

Tarea. Encuentra el significado de la expresión:

Tenga en cuenta que el denominador contiene un logaritmo, cuya base y argumento son potencias exactas: 16 = 2 4; 49 = 7 2. Tenemos:

Creo que el último ejemplo requiere alguna aclaración. ¿A dónde se han ido los logaritmos? Hasta el último momento trabajamos sólo con el denominador. Presentamos la base y el argumento del logaritmo allí en forma de potencias y eliminamos los exponentes: obtuvimos una fracción de "tres pisos".

Ahora veamos la fracción principal. El numerador y el denominador contienen el mismo número: log 2 7. Como log 2 7 ≠ 0, podemos reducir la fracción: 2/4 permanecerá en el denominador. Según las reglas de la aritmética, el cuatro se puede trasladar al numerador, que es lo que se hizo. El resultado fue la respuesta: 2.

Transición a una nueva fundación.

Hablando de las reglas para sumar y restar logaritmos, enfaticé específicamente que solo funcionan con las mismas bases. ¿Qué pasa si las razones son diferentes? ¿Y si no son potencias exactas del mismo número?

Las fórmulas para la transición a una nueva base vienen al rescate. Formulémoslos en forma de teorema:

Sea el logaritmo log ax. Entonces, para cualquier número c tal que c > 0 y c ≠ 1, la igualdad es verdadera:

En particular, si hacemos c = x, obtenemos:

De la segunda fórmula se deduce que la base y el argumento del logaritmo se pueden intercambiar, pero en este caso se “da la vuelta” a toda la expresión, es decir el logaritmo aparece en el denominador.

Estas fórmulas rara vez se encuentran en expresiones numéricas ordinarias. Es posible evaluar qué tan convenientes son solo al resolver ecuaciones y desigualdades logarítmicas.

Sin embargo, hay problemas que no pueden resolverse en absoluto excepto trasladándose a una nueva fundación. Veamos un par de estos:

Tarea. Encuentra el valor de la expresión: log 5 16 log 2 25.

Tenga en cuenta que los argumentos de ambos logaritmos contienen potencias exactas. Saquemos los indicadores: log 5 16 = log 5 2 4 = 4log 5 2; registro 2 25 = registro 2 5 2 = 2 registro 2 5;

Ahora “invirtamos” el segundo logaritmo:

Como el producto no cambia al reorganizar los factores, multiplicamos tranquilamente cuatro por dos y luego nos ocupamos de los logaritmos.

Tarea. Encuentra el valor de la expresión: log 9 100 lg 3.

La base y el argumento del primer logaritmo son potencias exactas. Anotemos esto y eliminemos los indicadores:

Ahora eliminemos el logaritmo decimal moviéndolo a una nueva base:

Identidad logarítmica básica

A menudo, en el proceso de solución es necesario representar un número como un logaritmo con respecto a una base determinada.

En este caso nos ayudarán las siguientes fórmulas:

En el primer caso, el número n se convierte en el exponente del argumento. El número n puede ser absolutamente cualquier cosa, porque es sólo un valor de logaritmo.

La segunda fórmula es en realidad una definición parafraseada. Así se llama: .

De hecho, ¿qué sucede si el número b se eleva a tal potencia que el número b elevado a esta potencia da el número a? Así es: el resultado es el mismo número a. Lea este párrafo con atención nuevamente; muchas personas se quedan estancadas en él.

Al igual que las fórmulas para pasar a una nueva base, la identidad logarítmica básica es a veces la única solución posible.

Tarea. Encuentra el significado de la expresión:

Tenga en cuenta que log 25 64 = log 5 8; simplemente tomó el cuadrado de la base y el argumento del logaritmo. Teniendo en cuenta las reglas para multiplicar potencias con la misma base, obtenemos:

Si alguien no lo sabe, esta fue una tarea real del Examen Estatal Unificado :)

Unidad logarítmica y cero logarítmico

En conclusión, daré dos identidades que difícilmente pueden llamarse propiedades; más bien, son consecuencias de la definición del logaritmo. Aparecen constantemente en los problemas y, sorprendentemente, crean problemas incluso para los estudiantes "avanzados".

  1. log a a = 1 es. Recuerda de una vez por todas: el logaritmo de cualquier base a de esa base es igual a uno.
  2. log a 1 = 0 es. La base a puede ser cualquier cosa, pero si el argumento contiene uno, ¡el logaritmo es igual a cero! Porque a 0 = 1 es consecuencia directa de la definición.

Esas son todas las propiedades. ¡Asegúrate de practicar poniéndolos en práctica! Descargue la hoja de trucos al comienzo de la lección, imprímala y resuelva los problemas.

Como sabes, al multiplicar expresiones con potencias, sus exponentes siempre suman (a b *a c = a b+c). Esta ley matemática fue deducida por Arquímedes y, más tarde, en el siglo VIII, el matemático Virasen creó una tabla de exponentes enteros. Fueron ellos quienes sirvieron para un mayor descubrimiento de los logaritmos. Se pueden encontrar ejemplos del uso de esta función en casi todos los lugares donde sea necesario simplificar una multiplicación engorrosa mediante una simple suma. Si dedicas 10 minutos a leer este artículo, te explicaremos qué son los logaritmos y cómo trabajar con ellos. En un lenguaje sencillo y accesible.

Definición en matemáticas

Un logaritmo es una expresión de la siguiente forma: log a b=c, es decir, el logaritmo de cualquier número no negativo (es decir, cualquier positivo) “b” a su base “a” se considera la potencia “c ” al cual se debe elevar la base “a” para finalmente obtener el valor “b”. Analicemos el logaritmo usando ejemplos, digamos que hay una expresión log 2 8. ¿Cómo encontrar la respuesta? Es muy simple, necesitas encontrar una potencia tal que de 2 a la potencia requerida obtengas 8. Después de hacer algunos cálculos mentales, ¡obtenemos el número 3! Y eso es cierto, porque 2 elevado a 3 da la respuesta 8.

Tipos de logaritmos

Para muchos alumnos y estudiantes, este tema parece complicado e incomprensible, pero en realidad los logaritmos no dan tanto miedo, lo principal es comprender su significado general y recordar sus propiedades y algunas reglas. Hay tres especies individuales expresiones logarítmicas:

  1. Logaritmo natural en a, donde la base es el número de Euler (e = 2,7).
  2. Decimal a, donde la base es 10.
  3. Logaritmo de cualquier número b en base a>1.

Cada uno de ellos se resuelve de forma estándar, incluyendo simplificación, reducción y posterior reducción a un solo logaritmo mediante teoremas logarítmicos. Para obtener los valores correctos de los logaritmos, conviene recordar sus propiedades y la secuencia de acciones a la hora de resolverlos.

Reglas y algunas restricciones.

En matemáticas existen varias reglas-restricciones que se aceptan como axioma, es decir, no están sujetas a discusión y son la verdad. Por ejemplo, es imposible dividir números por cero y también es imposible extraer la raíz par de números negativos. Los logaritmos también tienen sus propias reglas, siguiendo las cuales puedes aprender fácilmente a trabajar incluso con expresiones logarítmicas largas y amplias:

  • La base “a” siempre debe ser mayor que cero, y no igual a 1, de lo contrario la expresión perderá su significado, porque “1” y “0” en cualquier grado siempre son iguales a sus valores;
  • si a > 0, entonces a b >0, resulta que “c” también debe ser mayor que cero.

¿Cómo resolver logaritmos?

Por ejemplo, la tarea es encontrar la respuesta a la ecuación 10 x = 100. Esto es muy fácil, debes elegir una potencia elevando el número diez a lo que obtenemos 100. Esto, por supuesto, es 10 2 = 100.

Ahora representemos esta expresión en forma logarítmica. Obtenemos log 10 · 100 = 2. Al resolver logaritmos, todas las acciones prácticamente convergen para encontrar la potencia a la que es necesario ingresar la base del logaritmo para obtener un número determinado.

Para determinar con precisión el valor de un grado desconocido, es necesario aprender a trabajar con una tabla de grados. Se parece a esto:

Como puedes ver, algunos exponentes se pueden adivinar intuitivamente si tienes una mente técnica y conocimientos de la tabla de multiplicar. Sin embargo, para valores mayores necesitarás una tabla de potencia. Puede ser utilizado incluso por aquellos que no saben nada sobre temas matemáticos complejos. La columna de la izquierda contiene números (base a), fila superior números es el valor de la potencia c a la que se eleva el número a. En la intersección, las celdas contienen los valores numéricos que son la respuesta (a c =b). Tomemos, por ejemplo, la primera celda con el número 10 y la elevamos al cuadrado, obtenemos el valor 100, que se indica en la intersección de nuestras dos celdas. ¡Todo es tan simple y fácil que incluso el humanista más verdadero lo entenderá!

Ecuaciones y desigualdades

Resulta que bajo ciertas condiciones el exponente es el logaritmo. Por tanto, cualquier expresión numérica matemática se puede escribir como una igualdad logarítmica. Por ejemplo, 3 4 =81 se puede escribir como el logaritmo en base 3 de 81 igual a cuatro (log 3 81 = 4). Para potencias negativas las reglas son las mismas: 2 -5 = 1/32 lo escribimos como un logaritmo, obtenemos log 2 (1/32) = -5. Una de las secciones más fascinantes de las matemáticas es el tema de los "logaritmos". Veremos ejemplos y soluciones de ecuaciones a continuación, inmediatamente después de estudiar sus propiedades. Ahora veamos cómo son las desigualdades y cómo distinguirlas de las ecuaciones.

Dada una expresión de la siguiente forma: log 2 (x-1) > 3 - es desigualdad logarítmica, ya que el valor desconocido "x" está bajo el signo del logaritmo. Y también en la expresión se comparan dos cantidades: el logaritmo del número deseado en base dos es mayor que el número tres.

La diferencia más importante entre ecuaciones logarítmicas y desigualdades es que las ecuaciones con logaritmos (por ejemplo, el logaritmo 2 x = √9) implican uno o más valores numéricos específicos en la respuesta, mientras que al resolver una desigualdad, tanto el rango de valores aceptables Los valores y los puntos se determinan rompiendo esta función. Como consecuencia, la respuesta no es un simple conjunto de números individuales, como en la respuesta a una ecuación, sino una serie o conjunto continuo de números.

Teoremas básicos sobre logaritmos

Al resolver problemas primitivos de encontrar los valores de un logaritmo, es posible que no se conozcan sus propiedades. Sin embargo, cuando se trata de ecuaciones o desigualdades logarítmicas, en primer lugar, es necesario comprender claramente y aplicar en la práctica todas las propiedades básicas de los logaritmos. Veremos ejemplos de ecuaciones más adelante; primero veamos cada propiedad con más detalle.

  1. La identidad principal se ve así: a logaB =B. Se aplica sólo cuando a es mayor que 0, distinto de uno y B es mayor que cero.
  2. El logaritmo del producto se puede representar en la siguiente fórmula: log d (s 1 * s 2) = log d s 1 + log d s 2. En este caso requisito previo es: d, s 1 y s 2 > 0; a≠1. Puedes dar una prueba de esta fórmula logarítmica, con ejemplos y solución. Sean log a s 1 = f 1 y log a s 2 = f 2, luego a f1 = s 1, a f2 = s 2. Obtenemos que s 1 * s 2 = a f1 *a f2 = a f1+f2 (propiedades de grados), y luego por definición: log a (s 1 * s 2) = f 1 + f 2 = log a s1 + log a s 2, que es lo que había que demostrar.
  3. El logaritmo del cociente se ve así: log a (s 1/ s 2) = log a s 1 - log a s 2.
  4. El teorema en forma de fórmula toma la siguiente forma: log a q b n = n/q log a b.

Esta fórmula se llama "propiedad del grado de logaritmo". Se parece a las propiedades de los grados ordinarios, y no es sorprendente, porque todas las matemáticas se basan en postulados naturales. Veamos la prueba.

Sea log a b = t, resulta a t =b. Si elevamos ambas partes a la potencia m: a tn = b n ;

pero como a tn = (a q) nt/q = b n, entonces log a q b n = (n*t)/t, entonces log a q b n = n/q log a b. El teorema ha sido demostrado.

Ejemplos de problemas y desigualdades

Los tipos más comunes de problemas sobre logaritmos son ejemplos de ecuaciones y desigualdades. Se encuentran en casi todos los libros de problemas y también son una parte obligatoria de los exámenes de matemáticas. Para ingresar a una universidad o aprobar exámenes de ingreso en matemáticas, es necesario saber cómo resolver correctamente dichas tareas.

Desafortunadamente, no existe un plan o esquema único para resolver y determinar el valor desconocido del logaritmo, pero se pueden aplicar ciertas reglas a cada desigualdad matemática o ecuación logarítmica. En primer lugar, debe averiguar si la expresión se puede simplificar o conducir a apariencia general. Puedes simplificar expresiones logarítmicas largas si usas sus propiedades correctamente. Conozcámoslos rápidamente.

A la hora de resolver ecuaciones logarítmicas debemos determinar qué tipo de logaritmo tenemos: una expresión de ejemplo puede contener un logaritmo natural o uno decimal.

A continuación se muestran ejemplos de ln100, ln1026. Su solución se reduce al hecho de que necesitan determinar la potencia a la que la base 10 será igual a 100 y 1026, respectivamente. Para resolver logaritmos naturales, es necesario aplicar identidades logarítmicas o sus propiedades. Veamos ejemplos de resolución de problemas logarítmicos de varios tipos.

Cómo utilizar fórmulas logarítmicas: con ejemplos y soluciones

Entonces, veamos ejemplos del uso de los teoremas básicos sobre logaritmos.

  1. La propiedad del logaritmo de un producto se puede utilizar en tareas donde es necesario expandir gran importancia números b en factores más simples. Por ejemplo, log 2 4 + log 2 128 = log 2 (4*128) = log 2 512. La respuesta es 9.
  2. log 4 8 = log 2 2 2 3 = 3/2 log 2 2 = 1,5 - como puede ver, utilizando la cuarta propiedad de la potencia del logaritmo, logramos resolver una expresión aparentemente compleja e irresoluble. Sólo necesitas factorizar la base y luego quitar los valores del exponente del signo del logaritmo.

Asignaciones del Examen Estatal Unificado

Los logaritmos se encuentran a menudo en los exámenes de ingreso, especialmente muchos problemas logarítmicos en el Examen Estatal Unificado (examen estatal para todos los graduados de la escuela). Por lo general, estas tareas están presentes no solo en la parte A (la parte de prueba más sencilla del examen), sino también en la parte C (las tareas más complejas y voluminosas). El examen requiere un conocimiento preciso y perfecto del tema "Logaritmos naturales".

Los ejemplos y soluciones a los problemas están tomados de fuentes oficiales. Opciones del examen estatal unificado. Veamos cómo se resuelven tales tareas.

Dado log 2 (2x-1) = 4. Solución:
reescribamos la expresión, simplificándola un poco log 2 (2x-1) = 2 2, por definición del logaritmo obtenemos que 2x-1 = 2 4, por lo tanto 2x = 17; x = 8,5.

  • Es mejor reducir todos los logaritmos a la misma base para que la solución no sea engorrosa ni confusa.
  • Todas las expresiones bajo el signo del logaritmo se indican como positivas, por lo tanto, cuando se saca como multiplicador el exponente de una expresión que está bajo el signo del logaritmo y como base, la expresión que queda bajo el logaritmo debe ser positiva.

¿Qué es un logaritmo?

¡Atención!
Hay adicionales
materiales en la Sección Especial 555.
Para los que son muy "no muy..."
Y para los que “mucho…”)

¿Qué es un logaritmo? ¿Cómo resolver logaritmos? Estas preguntas confunden a muchos graduados. Tradicionalmente, el tema de los logaritmos se considera complejo, incomprensible y aterrador. Especialmente ecuaciones con logaritmos.

Esto es absolutamente falso. ¡Absolutamente! ¿No me crees? Bien. Ahora, en sólo 10 - 20 minutos usted:

1. entender que es un logaritmo.

2. Aprende a resolver una clase completa ecuaciones exponenciales. Incluso si no has oído nada sobre ellos.

3. Aprenda a calcular logaritmos simples.

Además, para ello sólo necesitarás conocer la tabla de multiplicar y cómo elevar un número a una potencia…

Siento que tienes dudas... Bueno, está bien, ¡marca el tiempo! ¡Ir!

Primero, resuelve esta ecuación en tu cabeza:

Si te gusta este sitio...

Por cierto, tengo un par de sitios más interesantes para ti).

Podrás practicar la resolución de ejemplos y descubrir tu nivel. Pruebas con verificación instantánea. Aprendamos, ¡con interés!)

Puede familiarizarse con funciones y derivadas.

Se desprende de su definición. Y entonces el logaritmo del número. b Residencia en A se define como el exponente al que se debe elevar un número a para obtener el numero b(El logaritmo existe sólo para números positivos).

De esta formulación se deduce que el cálculo x=log a b, equivale a resolver la ecuación ax=b. Por ejemplo, iniciar sesión 2 8 = 3 porque 8 = 2 3 . La formulación del logaritmo permite justificar que si b=a c, entonces el logaritmo del número b Residencia en a es igual Con. También está claro que el tema de los logaritmos está estrechamente relacionado con el tema de las potencias de un número.

Con logaritmos, como con cualquier número, puedes hacer operaciones de suma, resta y transformarnos en todos los sentidos posibles. Pero debido al hecho de que los logaritmos no son números completamente ordinarios, aquí se aplican sus propias reglas especiales, que se llaman propiedades principales.

Sumar y restar logaritmos.

Tomemos dos logaritmos con las mismas bases: registrar una x Y iniciar sesión y. Entonces es posible realizar operaciones de suma y resta:

log a x+ log a y= log a (x·y);

log a x - log a y = log a (x:y).

registrar un(X 1 . X 2 . X 3 ... x k) = registrar una x 1 + registrar una x 2 + registrar una x 3 + ... + iniciar sesión xk.

De teorema del cociente logaritmo Se puede obtener una propiedad más del logaritmo. Es de conocimiento común que el registro a 1= 0, por lo tanto

registro a 1 /b= iniciar sesión a 1 - registro un segundo= - iniciar sesión un segundo.

Esto significa que hay una igualdad:

iniciar sesión a 1 / b = - iniciar sesión a b.

Logaritmos de dos números recíprocos por la misma razón se diferenciarán entre sí únicamente por el signo. Entonces:

Registro 3 9 = - registro 3 1/9; registro 5 1/125 = - registro 5 125.