Теплоемкость кварцевого песка. Теплоёмкость, теплоусвоение и инерция. Теплоемкость строительных материалов
Общая тепловая емкость песчаной горной породы использующейся в качестве строительного материала. Что такое коэффициент "С": (уд.) удельная теплоемкость ПЕСКА (песчаного материала). Чем отличаются эти виды теплофизических характеристик природного мелкозернистого материала, почему нельзя обойтись одним физическим параметром, описывающим тепловые свойства и зачем понадобилось вводить коэффициент "умножать сущности, усложняя жизнь нормальным людям"?Не удельной, а общей тепловой емкостью, в общепринятом физическом смысле, называется способность вещества нагреваться. По крайней мере так говорит нам любой учебник по теплофизике - это классическое определение теплоемкости (правильная формулировка). На самом деле это интересная физическая особенность. Мало знакомая нам по бытовой жизни "сторона медали". Оказывается, что при подведении тепла извне (нагреве, разогреве), не все вещества одинаково реагируют на тепло (тепловую энергию) и нагреваются по разному. Способность ПЕСКА кварцевого намывного природного получать, принимать, удерживать и накапливать (аккумулировать) тепловую энергию называется теплоемкостью ПЕСКА речного . А сама , является физической характеристикой горной породы, описывающей теплофизические свойства строительной песчаной смеси. При этом, в разных прикладных аспектах, в зависимости от конкретного практического случая, для нас важным может оказаться что-то одно. Например: способность вещества принимать тепло или способность накапливать тепловую энергию или "талант" удерживать ее. Однако, не смотря на некоторую разницу, в физическом смысле, нужные нам свойства будут описаны теплоемкостью песчаного материала .
Небольшая, но очень "гадкая загвоздка" имеющая принципиальный характер заключается в том, что способность нагреваться - тепловая емкость мелкозернистой песчаной породы , непосредственно связана не только с химическим составом, молекулярной структурой вещества, но и с его количеством (весом, массой, объемом). Из-за такой "неприятной" связи, общая теплоемкость песчаного материала становится слишком неудобной физической характеристикой вещества. Так как, один измеряемый параметр, одновременно описывает "две разные вещи". А именно: действительно характеризует теплофизические свойства ПЕСКА , однако, "попутно" учитывает еще и его количество. Формируя своеобразную интегральную характеристику, в которой автоматически связана "высокая" теплофизика и "банальное" количество вещества (в нашем случае: строительного сыпучего материала).
Ну зачем нам нужны такие теплофизические характеристики сыпучего материала, у которых явно прослеживается "неадекватная психика"? С точки зрения физики, общая теплоемкость песчаной породы (самым неуклюжим способом), пытается не только описать количество тепловой энергии способной накопиться в мелкозернистом строительном материале, но и "попутно сообщить нам" о количестве кварцевого ПЕСКА . Получается абсурд, а не внятная, понятная, стабильная, корректная теплофизическая характеристика песчаной горной породы . Вместо полезной константы, пригодной для практических теплофизических расчетов , нам "подсовывают" плавающий параметр, являющийся суммой (интегралом) количества тепла принятого ПЕСКОМ и его массой или объемом мелкозернистой горной породы.
Спасибо конечно, за такой "энтузиазм", однако количество ПЕСКА речного намывного я могу измерить и самостоятельно. Получив результаты в гораздо более удобной, "человеческой" форме. Количество ПЕСКА кварцевого сухого мне хотелось бы не "извлекать" математическими методами и расчетами по сложной формуле из общей теплоемкости песчаного материала для строительных работ , при различных температурах, а узнать вес (массу) в граммах (гр, г), килограммах (кг), тоннах (тн), кубах (кубических метрах, кубометрах, м3), литрах (л) или миллилитрах (мл). Тем более, что умные люди давно придумали вполне подходящие для этих целей измерительные инструменты. Например: весы или другие приборы.
Особенно "раздражает плавающий характер" параметра: общая теплоемкость ПЕСКА строительного . Его нестабильное, переменчивое "настроение". При изменении "размера порции или дозы", теплоемкость ПЕСКА при различных температурах сразу меняется. Больше количество горной породы, физическая величина, абсолютное значение теплоемкости песчаного материала - увеличивается. Меньше количество горной породы, значение тепловой емкости песчаной смеси уменьшается. "Безобразие" какое-то получается! Другими словами, то что мы "имеем", ни как не может считаться константой, описывающей теплофизические характеристики ПЕСКА при различных температурах . А нам желательно "иметь" понятный, постоянный коэффициент, справочный параметр, характеризующий тепловые свойства кварцевой песчаной смеси, без "ссылок" на количество сыпучего строительного материала (вес, массу, объем). Что делать?
Здесь нам на помощь приходит очень простой, но "очень научный" метод. Он сводится к не только к приставе "уд. - удельная" , перед физической величиной, но к изящному решению, предполагающему исключение из рассмотрения количества вещества. Естественно, "неудобные, лишние" параметры: массу или объем ПЕСКА кварцевого исключить совсем невозможно. Хотя бы по той причине, что если не будет количества намывной песчаной смеси, то не останется и самого "предмета обсуждения". А вещество должно быть. Поэтому, мы выбираем некоторый условный стандарт массы сыпучей породы или объема песчаного материала, который можно считать единицей, пригодной для определения величины нужного нам коэффициента "С". Для веса ПЕСКА кварцевого мытого , такой единицей массы песчаной смеси, удобной в практическом применении, оказался 1 килограмм (кг).
Теперь, мы нагреваем один килограмм ПЕСКА на 1 градус, а количество тепла (тепловой энергии) , нужное нам для того чтобы нагреть сыпучий песчаный материал на один градус - это и есть наш корректный физический параметр, коэффициент "С" , хорошо, достаточно полно и понятно описывающий одно из теплофизических свойств ПЕСКА при различных температурах . Обратите внимание на то, что теперь мы имеем дело с характеристикой описывающей физическое свойство вещества, но не пытающейся "дополнительно поставить нас в известность" о его количестве. Удобно? Нет слов. Совершенно другое дело. Кстати, теперь мы уже говорим не про общую тепловую емкость песчаной смеси . Все изменилось. ЭТО УДЕЛЬНАЯ ТЕПЛОЕМКОСТЬ ПЕСКА речного мытого , которую иногда называют по другому. Как? Просто МАССОВАЯ ТЕПЛОЕМКОСТЬ ПЕСКА кварцевого . Удельная (уд.) и массовая (м.) - в данном случае: синонимы, они и означают здесь нужный нам коэффициент "С" .
Таблица 1. Коэффициент: удельная теплоемкость ПЕСКА (уд.). Массовая тепловая емкость ПЕСКА речного. Справочные данные для сыпучих строительных материалов естественного происхождения: горная порода, песчаная смесь.
Создание оптимального микроклимата и расход тепловой энергии на отопление частного дома в холодное время года во многом зависит от теплоизоляционных свойств строительных материалов, из которых возведена данная постройка. Одной из таких характеристик является теплоемкость. Это значение необходимо учитывать при выборе стройматериалов для конструирования частного дома. Поэтому далее будет рассмотрена теплоемкость некоторых строительных материалов.
Определение и формула теплоемкости
Каждое вещество в той или иной степени способно поглощать, запасать и удерживать тепловую энергию. Для описания этого процесса введено понятие теплоемкости, которая является свойством материала поглощать тепловую энергию при нагревании окружающего воздуха.
Чтобы нагреть какой-либо материал массой m от температуры t нач до температуры t кон, нужно будет потратить определенное количество тепловой энергии Q, которое будет пропорциональным массе и разнице температур ΔТ (t кон -t нач). Поэтому формула теплоемкости будет выглядеть следующим образом: Q = c*m*ΔТ, где с - коэффициент теплоемкости (удельное значение). Его можно рассчитать по формуле: с = Q/(m* ΔТ) (ккал/(кг* °C)).
Условно приняв, что масса вещества равна 1 кг, а ΔТ = 1°C, можно получить, что с = Q (ккал). Это означает, что удельная теплоемкость равна количеству тепловой энергии, которая расходуется на нагревание материала массой 1 кг на 1°C.
Вернуться к оглавлению
Использование теплоемкости на практике
Строительные материалы с высокой теплоемкостью используют для возведения теплоустойчивых конструкций. Это очень важно для частных домов, в которых люди проживают постоянно. Дело в том, что такие конструкции позволяют запасать (аккумулировать) тепло, благодаря чему в доме поддерживается комфортная температура достаточно долгое время. Сначала отопительный прибор нагревает воздух и стены, после чего уже сами стены прогревают воздух. Это позволяет сэкономить денежные средства на отоплении и сделать проживание более уютным. Для дома, в котором люди проживают периодически (например, по выходным), большая теплоемкость стройматериала будет иметь обратный эффект: такое здание будет достаточно сложно быстро натопить.
Значения теплоемкости строительных материалов приведены в СНиП II-3-79. Ниже приведена таблица основных строительных материалов и значения их удельной теплоемкости.
Таблица 1
Кирпич обладает высокой теплоемкостью, поэтому идеально подходит для строительства домов и возведенияия печей.
Говоря о теплоемкости, следует отметить, что отопительные печи рекомендуется строить из кирпича, так как значение его теплоемкости достаточно высоко. Это позволяет использовать печь как своеобразный аккумулятор тепла. Теплоаккумуляторы в отопительных системах (особенно в системах водяного отопления) с каждым годом применяются все чаще. Такие устройства удобны тем, что их достаточно 1 раз хорошо нагреть интенсивной топкой твердотопливного котла, после чего они будут обогревать ваш дом на протяжении целого дня и даже больше. Это позволит существенно сэкономить ваш бюджет.
Вернуться к оглавлению
Теплоемкость строительных материалов
Какими же должны быть стены частного дома, чтобы соответствовать строительным нормам? Ответ на этот вопрос имеет несколько нюансов. Чтобы с ними разобраться, будет приведен пример теплоемкости 2-х наиболее популярных строительных материалов: бетона и дерева. имеет значение 0,84 кДж/(кг*°C), а дерева - 2,3 кДж/(кг*°C).
На первый взгляд можно решить, что дерево - более теплоемкий материал, нежели бетон. Это действительно так, ведь древесина содержит практически в 3 раза больше тепловой энергии, нежели бетон. Для нагрева 1 кг дерева нужно потратить 2,3 кДж тепловой энергии, но при остывании оно также отдаст в пространство 2,3 кДж. При этом 1 кг бетонной конструкции способен аккумулировать и, соответственно, отдать только 0,84 кДж.
Но не стоит спешить с выводами. Например, нужно узнать, какую теплоемкость будет иметь 1 м 2 бетонной и деревянной стены толщиной 30 см. Для этого сначала нужно посчитать вес таких конструкций. 1 м 2 данной бетонной стены будет весить: 2300 кг/м 3 *0,3 м 3 = 690 кг. 1 м 2 деревянной стены будет весить: 500 кг/м 3 *0,3 м 3 = 150 кг.
- для бетонной стены: 0,84*690*22 = 12751 кДж;
- для деревянной конструкции: 2,3*150*22 = 7590 кДж.
Из полученного результата можно сделать вывод, что 1 м 3 древесины будет практически в 2 раза меньше аккумулировать тепло, чем бетон. Промежуточным материалом по теплоемкости между бетоном и деревом является кирпичная кладка, в единице объема которой при тех же условиях будет содержаться 9199 кДж тепловой энергии. При этом газобетон, как строительный материал, будет содержать только 3326 кДж, что будет значительно меньше дерева. Однако на практике толщина деревянной конструкции может быть 15-20 см, когда газобетон можно уложить в несколько рядов, значительно увеличивая удельную теплоемкость стены.
Теплоёмкость тел - способность поглощать определённое количество тепла при нагревании, или отдавать при охлаждении. Теплоёмкость тела, это отношение бесконечно малого количества теплоты, полученного телом, к соответствующему приращению его температуры. Измеряется эта величина в Дж/К. Для практического же применения применяют Удельную теплоёмкость. Удельной теплоёмкостью называется теплоёмкость, отнесённая к единичному количеству вещества. Количество этого вещества, в свою очередь, может быть измерено в кубометрах, килограммах или в молях. В зависимости от того, к какой количественной единице относится теплоёмкость, различают объёмную, массовую и молярную теплоёмкость. В строительстве вряд-ли нам придётся встречаться с молярными измерениями, потому молярную теплоёмкость я оставлю физикам.
Массовая удельная теплоёмкость (обозначается буквой С), также называемая просто удельной теплоёмкостью - это количество теплоты, которое необходимо подвести к единице массы вещества, чтобы нагреть его на единицу температуры. В СИ измеряется в джоулях на килограмм на кельвин - Дж/(кг·К).
Объёмная теплоёмкость (С`) - это количество теплоты, которое необходимо подвести соответственно к единице объёма вещества, чтобы нагреть его на единицу температуры. В СИ измеряется в джоулях на кубический метр на кельвин Дж/(м ³·К). В строительных справочниках обычно приводят массовую удельную теплоёмкость - её и будем рассматривать.
На значение удельной теплоёмкости влияет температура вещества, давление и другие термодинамические параметры. С ростом температуры вещества его удельная теплоёмкость, как правило, возрастает, но некоторые вещества имеют совсем нелинейную кривую этой зависимости. К примеру, с повышением температуры от 0°С до 37°С удельная теплоёмкость воды снижается, а после 37°С до 100°С возрастает (см. картинку слева). Кроме того, удельная теплоёмкость зависит от того, каким образом позволено изменяться термодинамическим параметрам вещества (давлению, объёму и т. д.); например, удельная теплоёмкость при постоянном давлении и при постоянном объёме различны.
Формула расчёта удельной теплоёмкости: С=Q/(m·ΔT), где Q - количество теплоты, полученное веществом при нагреве (или выделившееся при охлаждении), m - масса вещества, ΔT - разность конечной и начальной температур вещества. Значения теплоёмкости многих стротиельных материалов представлены в таблице ниже.
Приведу еще для визуализации зависимость между теплопроводностью и теплоёмкостью некоторых маретиалов и ещё зависимость теплоёмкости и плотности:
Что же даёт нам эта характеристика материалов на практике?
Теплоёмкие материалы используют при возведении теплоустойчивых стен. Это важно для домов с периодическим отоплением, например, печным. Теплоёмкие материалы и стены из них хорошо аккумулируют тепло. Запасают его в период работы отопительной системы (печи) и постепенно отдают после выключения отопительной системы, позволяя тем самым поддерживать комфортную температуру в течение суток. Чем больше может быть запасено тепла в теплоёмкой конструкции, тем стабильней будет температура в помещении. Интересно заметить, что традиционный в домостроении кирпич и бетон имеют значительно меньшую теплоёмкость, чем например, пенополистирол, а эковата и вовсе в три(!) раза более теплоёмкая, чем бетон. Однако, в формуле теплоёмкости не зря задействована масса. Именно огромная масса бетона или кирпича в сравнении с той же эковатой позволяет в каменных стенах домов аккумулировать значительные количества тепла и сглаживать суточные колебания температур. И именно ничтожная масса утеплителя в каркасных домах, не смотря на бОльшую теплоёмкость, является слабым местом всех каркасных технологий.
Для решения описанной проблемы в каркасных домах устанавливают массивные теплоаккумуляторы - конструктивные элементы, имеющие высокую массу при достаточно высоком значении теплоёмкости. Это могут быть и какие-то внутренние стены из кирпича, массивная печь или камин, бетонные стяжки. Мебель в доме тоже является хорошим теплоаккумулятором, поскольку фанера, ДСП и любое дерево почти втрое больше может запасать тепла на килограмм веса, чем тот же кирпич. Недостаток такого подхода в том, что теплоаккумулятор необходимо проектировать ещё на стадии проектирования каркасного дома. В силу огромного его веса требуется заранее проектировать фундамент, представлять, как этот объект будет интегрирован в интерьер. Стоит отметить, что масса - это всё же не единственный критерий, нужно оценивать именно обе характеристики: массу и теплоёмкость. Даже золото со своим невероятным весом под 20 тонн на кубометр в качестве теплоаккумулятора будет работать лишь на 23% лучше, чем бетонный куб весом 2,5 тонны.
Но самым лучшим веществом для теплоаккумулятора является вовсе не бетон и даже не кирпич! Хороша медь, бронза и железо, но они уж чрезмерно тяжелы. Вода! Вода имеет огромную теплоёмкость, наибольшую среди доступных веществ. Ещё бОльшую теплоёмкость имеют газы Гелий (5190 Дж/(кг·К) и Водород (14300 Дж/(кг·К), но их немножко проблематично использовать...
Я посчитал количество запасённой тепловой энергии в 1 м³ и 1 тонне материала при ΔT=1 °С. Q=C·m·ΔT
Как видно из графического представления данных - с водой не может соперничать ни один материал по параметру количества запасённого тепла! Для того, чтобы запастись 1МДж теплоты нам понадобится 240 литров воды или почти 8 тонн золота! Вода в 2,6 раза больше накапливает тепла, чем кирпич (при одинаковом объёме). На практике это означает, что в качестве очень эффективного теплоаккумулятора лучше всего использовать ёмкости с водой. Реализация тёплого водяного пола так же поможет улучшить стабильность температурного режима.
Однако, эти рассуждения применимы для температур не выше 100°С. После закипания вода переходит в иное фазовое состояние и резко меняет свою теплоёмкость.
Математические упражнения
Для расчёта теплопотерь и системы отопления своего будущего дома я использовал специализированный программный продукт по расчёту элементов инженерных систем "VALTEC" от некоего ООО "Веста-Трейдинг". Программа VALTEC.PRG находится в открытом доступе и дает возможность рассчитать водяное радиаторное, напольное и настенное отопление, определить теплопотребность помещений, необходимые расходы холодной, горячей воды, объем канализационных стоков, получить гидравлические расчеты внутренних сетей тепло- и водоснабжения объекта. Так вот, используя эту чудесную бесплатную программку я высчитал, что теплопотери моего дома площадью в 152 квадратных метра составляют чуть менее 5 кВт тепловой энергии. В сутки выходит 120 кВт·ч или 432 МДж теплоты. Если допустить, что я буду использовать водяной теплоаккумулятор, который каким-либо источником тепла один раз в сутки разогреется до 85°С и будет постепенно отдавать тепло в систему тёплых полов до температуры 25°С (ΔT=60 °С), то для накопления 432 МДж теплоты мне потребуется ёмкость m=Q/(C·ΔT) , 432/(4,184·60)=1,7 м³.
А что было бы, если бы я установил в доме кирпичную печь, например. Разогретый в топке до 500°С кирпич весом в 1 тонну полностью компенсирует теплопотери моего дома в течение суток. При этом объём кирпича будет около 0,5 кубометра.
Особенностью моего проекта дома (в общем-то ничего особенного) является отопление тёплым водяным полом. Труба теплоносителя будет заложена в 7-и сантиметровый слой бетонной стяжки под всей площадю пола (152 м²) - это 10,64 м³ бетона! Под бетонной стяжкой планируется деревянное перекрытие по балкам с 25-ю сантиметрами пенополистирольного утеплителя - можно сказать, что через такой пирог утепления 1 м² пола будет терять тепла около 4 Вт, чем, конечно, можно смело пренебреч. Какова же будет теплоёмкость пола? При температуре теплоносителя 27°С бетонная стяжка впитает в себя 580 МДж теплоты, что эквивалентно 161 кВт·ч энергии и с лихвой перекрывает суточную потребность в тепле. Иными словами, зимой при -20°С (именно на такие температуры делался расчёт теплопотерь дома) мне нужно будет раз в два дня подогревать до 27°С пол, а если установить дополнительный водяной теплоаккумулятор на 1000 литров - то и вовсе раза два в неделю будет работать котёл!
Вот такая она, теплоёмкость при очень поверхностном рассмотрении.
Теплоусвоение
Коэффициент теплоусвоения (англ. U-value) отражает способность материала воспринимать теплоту при колебании температуры на его поверхности или, иными словами, этот коэффициент S показывает способность поверхности материала площадью в 1 м² усваивать теплоту в течение 1 с при температурном перепаде в 1 °С. Как это можно понять из повседневной жизни? Если приложить одновременно обе руки к двум поверхностям из бетона и пенопласта, имеющим одинаковую температуру, то первая будет восприниматься как более холодная - эксперимент ещё со школьных уроков физики. Это ощущение вызывается тем, что бетонная поверхность более интенсивно отбирает (усваивает) тепло от руки, чем пенопластовая, так как бетон имеет больший коэффициент теплоусвоения (Sбетона=18 Вт/(м²·°С), Seps=0,41 Вт/(м²·°С)), не смотря на то, что удельная теплоёмкость пенопласта в полтора раза больше, чем бетона.
Величина коэффициента теплоусвоения S материалов при периоде колебания теплового потока 24 ч пропорциональна коэффициенту теплопроводности λ , Вт/(м·K), удельной теплоёмкости с , Дж/(кг·K), и плотности материала ρ , кг/м³, и обратно пропорциональна периоду тепловых колебаний T , с (формула слева). Но в строительной практике используются формулы, учитывающие действие массового отношения влаги в материале и климатические условия эксплуатации. Дабы не загромождать вас ненужной инфой, предлагаю использовать уже вычисленные табличные данные из СНиП II-3-79 "Строительная теплотехника" . Наиболее интересные я собрал в небольшую табличку.
Теплоизоляционные материалы высокой эффективности (меньшим коэффициентом теплопроводности) обладают весьма низким коэффициентом теплоусвоения, т.е. при изменении температуры поверхности отнимают меньшее количество тепла и поэтому активно применяются для изоляции сооружений и аппаратов с резко переменным режимом работы.
Колебания температуры на наружной поверхности материала вызывают в свою очередь и колебания температуры в самом материале, причём они будут постепенно затухать в толще материала.
О теплоусвоении материалов я в процессе стройки ещё не слышал ни от одного строителя - может сложиться впечатление, что это некий теоретический и не очень важный параметр. Однако это не так - теплоусвоение материалов внутренней отделки, например полов, напрямую влияет на ощущение комфорта. Сможете ли вы комфортно ходить по полу босиком, или весь год придётся носить тапочки? Для полов существуют нормы по предельному коэффициенту теплоусвоения. Нормативная величина теплоусвоения покрытия для полов жилых зданий, больничных учреждений, диспансеров, поликлиник, общеобразовательных и детских школ, детских садов - не более 12 Вт/(м2-°С); для полов общественных зданий, кроме вышеуказанных, вспомогательных зданий и помещений промышленных предприятий, участков с постоянными рабочими местами в отапливаемых производственных зданиях, где выполняются легкие физические работы (категория I) - не более 14 Вт/(м2-°С); для полов в отапливаемых помещениях производственных зданий, где выполняются физические работы средней тяжести (категория II) - не более 17 Вт/(м2-°С).
Показатель теплоусвоения не нормируется: в помещениях с температурой поверхности пола выше 23 °С; в отапливаемых производственных помещениях, где выполняются тяжелые физические работы (категория III); в производственных зданиях, если на участки пола постоянных рабочих мест укладывают деревянные щиты или теплоизолирующие коврики; в общественных зданиях, эксплуатация которых не связана с постоянным пребыванием в них людей (залы музеев и выставок, фойе театров и киноте" атров и т. п.).
Тепловая инерция
Тепловая инерция, это способность ограждающей конструкции сопротивляться изменению температурного поля при перемененных тепловых воздействиях. Она определяет количество волн температурных колебаний, располагающихся (затухающих) в толще ограждения.
Параметр теплоусвоения неразрывно связан с тепловой инерцией материалов. На рисунке, иллюстрирующем прохождение температурных волн в толще материала можно видеть длину волны, обозначенную как l . Число таких волн, располагающихся в толще ограждения, является показателем тепловой инерции ограждения. Численная величина этого показателя имеет название "массивности ограждения" и обозначается D. Она равна для однородного ограждения произведению его термического сопротивления R на коэффициент теплоусвоения материала S: D=RS.
D - величина безразмерная. В ограждении, имеющем D=8.5, располагается около одной целой температурной волны. При D < 8,5 в ограждении распологается неполная волна (т.е. запаздывание колебаний на внутренней поверхности по отношению к колебаниям на наружней поверхности менее одного периода; при Т=24 часа запаздывание менее суток), а при D > 8,5 - в толще распологается более одной температурной волны.
Для многослойных ограждений его массивность определяется как сумма массивности отдельных слоёв:
D=R1S1+R2S2+....RnSn, где
R1, R2, Rn - термическое сопротивление отдельных слоёв,
S1, S2, Sn - расчётные коэффициенты теплоусвоения материала отдельных слоёв конструкции.
Ограждение считается:
Безынерционным при D < 1,5;
"Лёгким" при D от 1,5 до 4;
"Средней массивности" при D от 4 до 7;
"Массивным" при D > 7.
Интересно сравнить "массивность" D ограждения из, например, 20 см пенополистирола ПСБ-25 и глиняного кирпича:
D eps=R (0.2/0.035) * S (0.41)=2.34 (похолодание на улице скажется на температуре внутри примерно через 6,6 часов)
D кирпич=R (0.2/0.7) * S (9.2)=2.63 (похолодание на улице скажется на температуре внутри примерно через 7,5 часов)
Видим, что кирпичная кладка "массивнее" пенопласта лишь на 12% ! Интересный результат, но нужно отметить, что в реальности обычно используют более тонкую теплоизоляцию из пенопласта (стандартная СИП-панель - 15см EPS), а из кирпича делают более толстые стены. Так, при толщине кирпичной стены в 60 см параметр D=7.9 а это уже "массивное" строение во всех смыслах этого термина, температурная волна через такую стену будет проходить около 22 часов.
Тепловая инерция - безусловно, любопытное явление, но как его учитывать при подборе утеплителя? Мы можем представлять себе физический процесс прохождения тепловой волны через наш утеплитель, но если посмотрим на температуру внутренней поверхности (Tse), её амплитуду (A) и потери тепла (Q), то становится несколько не понятно, как этот параметр (D) может влиять на выбор. Например, возьмём толщину 30см:
Кирпичная стена D=3.35, A=2°C, Tse=15°C, Q=31;
Пенополистирол D=3.2, A=0.1°C, Tse=19,7°C Q=2.4;
Очевидно, что при почти равной тепловой инерции с пенопластом будет заметно теплее! Однако, тепловая инерция оказывает влияние на так называемую теплоустойчивость зданий. Согласно "Строительной теплотехнике " при расчётах тебуемых сопротивлений теплопередаче расчётная зимняя температура наружного воздуха зависит именно от тепловой инерции! Чем выше тепловая инерция, тем меньшее влияние оказывает резкое изменение температуры наружнего воздуха на стабильность внутренней температуры. Эта зависимость имеет следующий вид:
D <=1,5: Расчётная зимняя температура tн равна температуре наиболее холодных суток обеспеченностью 98%;
1.5 < D < 4: tн равна температуре наиболее холодных суток обеспеченностью 92%;
4 < D < 7: tн равна средней температуре наиболее холодных ТРЁХ суток;
D >7: tн равна средней температуре наиболее холодных ПЯТИ дней обеспеченностью 92%.
Как ни странно, но в этом же документе нету средней температуры наболее холодных трёх суток, но в СНиПе 23-01-99 есть пункт "температура наиболее холодной пятидневки обеспеченностью 98%, я думаю, её вполне можно использовать для расчёта. Табличка слева (как всегда, есть расхождения в документах ). Поясню на примере:
Мы строим каркасный дом в Бресте, и утепляем его 15 см минваты. Тепловая инерционность конструкции D=1,3. Это значит, что во всех расчётах температуру наружного воздуха нам стоит принимать -31°С.
Мы строим дом в Бресте из газобетона толщиной 30 см. D=3,9. Температурные расчёты теперь мы можем проводить для -25°С.
Напоследок мы строим в Бресте дом из пущанского бруса диаметром 30 см. D=9,13. Его инерционность позволяет производить тепловые расчёты для температур не ниже -21°С.
Массивные теплоемкие стены летом могут выполнять функцию пассивного регулятора температуры в помещениях за счет суточной разницы температур. Остывшие за ночь стены охлаждают днем поступающий с улицы жаркий воздух, и наоборот. Такая регуляция полезна, когда среднесуточная температура воздуха комфортна для человека. Но если ночью не слишком прохладно, а днем очень жарко, то без кондиционера в каменном доме уже не обойтись. Зимой массивные наружные стены в качестве регулятора климата абсолютно бесполезны. Зимой холодно днем и ночью. Если дом отапливается не постоянно, а периодически, например, дровами, то в качестве аккумулятора тепла нужна массивная каменная печь, а не кирпичные наружные стены. Чтобы зимой наружные стены стали аккумулятором тепла их нужно хорошо утеплить снаружи! Но тогда летом эти стены уже не смогут быстро охладиться за ночь. Это будет тот же каркасный дом с утеплителем, но с внутренним аккумулятором тепла.
Для наглядной визуализации термических процессов, происходящих в толще однородного материала, я сделал интерактивную флешку, в которой можно подёргать входную и выходную температуры, поменять толщину материала в некоторых пределах и выбрать (из небольшого списка самых интересных с моей точки зрения) сам материал. Часть математики во флешке построена на формулах из СНиП II-3-79 "Строительная теплотехника", и может немного расходится с другими моими же примерами в силу чрезвычайно разнообразных данных по характеристикам одного и того же материала, по разнообразным требованиям к микроклимату от источника к источнику (СНиПы, КТП), и даже с расчётами во всяких методичках в силу произвольного округления как в методичках, так и с моей стороны=) Все расчёты, так сказать, ознакомительные.
1017 27.07.2019 5 мин.Принято считать, что любой песок подходит для проведения строительных работ. Но это не так. Во-первых, необходимо применять только специальные строительные виды. Во-вторых, необходимо учитывать их индивидуальные особенности.
Удельный вес и теплоемкость этого материала играют немаловажную роль при выборе одного из его видов, о них и будет рассказано в этой статье.
Классификация
Его удельные характеристики и зависят от вида материала. Существует несколько его разновидностей. По происхождению подразделяется на природный и искусственный. Первый вид в зависимости от места добычи имеет следующие разновидности:
Карьерный
Карьерный песок добывается в результате разрушения горных пород. Его зерна могут быть от 0,16 до 3,2 мм. Из-за особенностей добычи Получается невысокого качества, так как содержит множество примесей в виде глины и пыли.
Дробленый
Получается за счет разрушения и измельчения горных пород. Этот процесс происходит на специальном оборудовании, поэтому добыча этого песка отражается на его высокой стоимости. Из-за получаемой неправильной формы песчинки хорошо связываются между собой и другими строительными веществами. При добавлении такого материала уменьшается расход бетона.
Применение : Его используют для бетонных конструкций, при заливке дорог и тропинок, а также в качестве наполнителя для сухих смесей.
Вышеперечисленные разновидности песка различаются окраской. Так, карьерный имеет желтый и коричневый оттенок, а речной встречается кремового и серого цвета.
Искусственный
Считается таковым, потому как проходит специальную обработку, после которой получается материал, отличающийся по свойствам от своего оригинала. Создается дроблением природных камней.
Кварцевый
Является самым востребованным из всех искусственных видов. Его получают в результате измельчения белого кварца. После определенной обработки производится однородный состав без примесей. Эта его особенность дает возможность рассчитать точные размеры будущей конструкции.
Применение : кварцевый вид широко используется в отделочных и декоративных работах, иногда его добавляют при создании цементного раствора, но это происходит крайне редко. Обычно он входит в состав красок, шпатлевки и дренажных фильтров.
Существует также формовочный песок, его используют во время формовки в металлических моделях.
Определение величины
Это величина равна массе, помещающейся в единице объема. Проще говоря – плотность. Чаще всего в справочной литературе измеряется в г/см 3 или кг/ м 3 .
Удельный вес песка зависит от количества, содержащихся в нем примесей и влУажности материала. Большое содержание воды увеличивает удельный вес, приходящийся на единицу объема. Также этот показатель будет зависеть от места хранения песка, которое бывает:
- естественного залегания;
- расположение материала насыпом;
- искусственного уплотнения.
Один и тот же вид песка при этих условиях будет иметь разные значения.
По ГОСТ 8736-77 указано, что удельный вес строительного песка может колебаться от 1150 до 1700 кг/м 3 .
В таблице для примера приведено несколько значений отдельных его разновидностей.
Вид песка | Удельный вес в кг/1 м 3 |
Речнойнамывнойуплотнительный | 1200-1700 |
1650 | |
1590 | |
Карьерный | 1500 |
Морской | 1620 |
Кварцевый | 1600-1700 |
Мокрый | 1920 |
Теплоемкость
Это способность материала принимать, накапливать и удерживать энергию. Теплоемкость является показателем теплофизических свойств песка. Способность нагреваться зависит от химического состава, структуры и количества применяемого материала. Поэтому общий показатель будет зависеть от его сухости. Важен для цементных составов и при бетонировании стен.
Разновидность песка | Удельная теплоемкость в кДж/кг на 1 0 |
Мокрый кварцевый | 2,09 |
Речной сухой | 0,8 |
Карьерный | 0,84 |
Морской |
Кирпич - ходовой стройматериал в строительстве зданий и сооружений. Многие различают только красный и белый кирпич , но его виды намного разнообразнее. Они различаются как внешне (форма, цвет, размеры), так и такими свойствами, как плотность и теплоемкость.
Традиционно различают керамический и силикатный кирпич, которые имеют различную технологию изготовления. Важно знать, что плотность кирпича, его удельная теплоемкость и у каждого вида может существенно отличаться.
Керамический кирпич изготавливается из с различными добавками и подвергается обжигу. Удельная теплоемкость керамического кирпича равна 700…900 Дж/(кг·град) . Средняя плотность керамического кирпича имеет значение 1400 кг/м 3 . Преимуществами этого вида являются: гладкая поверхность, морозо- и водоустойчивость, а также стойкость к высоким температурам. Плотность керамического кирпича определяется его пористостью и может находится в пределах от 700 до 2100 кг/м 3 . Чем выше пористость, тем меньше плотность кирпича.
Силикатный кирпич имеет следующие разновидности: полнотелый, пустотелый и поризованный, он имеет несколько типоразмеров: одинарный, полуторный и двойной. Средняя плотность силикатного кирпича составляет 1600 кг/м 3 . Плюсы силикатного кирпича в отличной звуконепроницаемости. Даже если прокладывать тонкий слой из такого материала, звукоизоляционные свойства останутся на должном уровне. Удельная теплоемкость силикатного кирпича находится в пределах от 750 до 850 Дж/(кг·град) .
Значения плотности кирпича различных видов и его удельной (массовой) теплоемкости при различных температурах представлены в таблице:
Вид кирпича | Температура, °С |
Плотность, кг/м 3 |
Теплоемкость, Дж/(кг·град) |
---|---|---|---|
Трепельный | -20…20 | 700…1300 | 712 |
Силикатный | -20…20 | 1000…2200 | 754…837 |
Саманный | -20…20 | - | 753 |
Красный | 0…100 | 1600…2070 | 840…879 |
Желтый | -20…20 | 1817 | 728 |
Строительный | 20 | 800…1500 | 800 |
Облицовочный | 20 | 1800 | 880 |
Динасовый | 100 | 1500…1900 | 842 |
Динасовый | 1000 | 1500…1900 | 1100 |
Динасовый | 1500 | 1500…1900 | 1243 |
Карборундовый | 20 | 1000…1300 | 700 |
Карборундовый | 100 | 1000…1300 | 841 |
Карборундовый | 1000 | 1000…1300 | 779 |
Магнезитовый | 100 | 2700 | 930 |
Магнезитовый | 1000 | 2700 | 1160 |
Магнезитовый | 1500 | 2700 | 1239 |
Хромитовый | 100 | 3050 | 712 |
Хромитовый | 1000 | 3050 | 921 |
Шамотный | 100 | 1850 | 833 |
Шамотный | 1000 | 1850 | 1084 |
Шамотный | 1500 | 1850 | 1251 |
Необходимо отметить еще один популярный вид кирпича – облицовочный кирпич. Он не боится ни влаги, ни холодов. Удельная теплоемкость такого кирпича составляет величину 880 Дж/(кг·град). Облицовочный кирпич имеет оттенки от ярко-желтого до огненно-красного. Таким материалом можно производить и отделочные и облицовочные работы. Плотность кирпича этого вида имеет величину 1800 кг/м 3 .
Стоит отметить отдельный класс кирпичей - огнеупорный кирпич. К этому классу относятся динасовый, карборундовый, магнезитовый и шамотный кирпич. Огнеупорный кирпич достаточно тяжел - плотность кирпича этого класса может достигать значения 2700 кг/м 3 .
Наименьшей теплоемкостью при высоких температурах обладает карборундовый кирпич - она составляет величину 779 Дж/(кг·град) при температуре 1000°С. Кладка из такого кирпича прогревается намного быстрее, чем из шамотного, но хуже держит тепло.
Огнеупорный кирпич применяется, при строительстве печей, с рабочей температурой до 1500°С. Удельная теплоемкость огнеупорного кирпича существенно зависит от температуры. Например, удельная теплоемкость шамотного кирпича имеет величину 833 Дж/(кг·град) при 100°С и 1251 Дж/(кг·град) при 1500°С.
Источники:
- Франчук А.У. Таблицы теплотехнических показателей строительных материалов , М.: НИИ строительной физики, 1969 - 142 с.
- Таблицы физических величин. Справочник. Под ред. акад. И.К. Кикоина. М.: Атомиздат, 1976. - 1008 с. строительной физики, 1969 - 142 с.
- Промышленные печи. Справочное руководство для расчетов и проектирования. 2–е издание, дополненное и переработанное, Казанцев Е.И. М., «Металлургия», 1975.- 368 с.
Принято считать, что любой песок подходит для проведения строительных работ . Но это не так. Во-первых, необходимо применять только специальные строительные виды . Во-вторых, необходимо учитывать их индивидуальные особенности.
Удельный вес и теплоемкость этого материала играют немаловажную роль при выборе одного из его видов, о них и будет рассказано в этой статье.
Его удельные характеристики зависят от вида материала. Существует несколько его разновидностей. По происхождению подразделяется на природный и искусственный. Первый вид в зависимости от места добычи имеет следующие разновидности:
Карьерный
Карьерный песок добывается в результате разрушения горных пород. Его зерна могут быть от 0,16 до 3,2 мм. Из-за особенностей добычи Получается невысокого качества, так как содержит множество примесей в виде глины и пыли.
Дробленый
Получается за счет разрушения и измельчения горных пород. Этот процесс происходит на специальном оборудовании, поэтому добыча этого песка отражается на его высокой стоимости. Из-за получаемой неправильной формы песчинки хорошо связываются между собой и другими строительными веществами. При добавлении такого материала уменьшается расход бетона.
Применение : Его используют для бетонных конструкций, при заливке дорог и тропинок, а также в качестве наполнителя для сухих смесей.
Вышеперечисленные разновидности песка различаются окраской. Так, карьерный имеет желтый и коричневый оттенок, а речной встречается кремового и серого цвета.
Искусственный
Считается таковым, потому как проходит специальную обработку, после которой получается материал, отличающийся по свойствам от своего оригинала. Создается дроблением природных камней.
Кварцевый
Является самым востребованным из всех искусственных видов. Его получают в результате измельчения белого кварца. После определенной обработки производится однородный состав без примесей. Эта его особенность дает возможность рассчитать точные размеры будущей конструкции.
Применение : кварцевый вид широко используется в отделочных и декоративных работах , иногда его добавляют при создании цементного раствора , но это происходит крайне редко. Обычно он входит в состав красок, шпатлевки и дренажных фильтров.
Существует также формовочный песок, его используют во время формовки в металлических моделях.
Определение величины
Это величина равна массе, помещающейся в единице объема. Проще говоря - плотность. Чаще всего в справочной литературе измеряется в г/см 3 или кг/ м 3 .
Удельный вес песка зависит от количества, содержащихся в нем примесей и влУажности материала. Большое содержание воды увеличивает удельный вес, приходящийся на единицу объема. Также этот показатель будет зависеть от места хранения песка, которое бывает:
- естественного залегания;
- расположение материала насыпом;
- искусственного уплотнения.
Один и тот же вид песка при этих условиях будет иметь разные значения.
По ГОСТ 8736-77 указано, что удельный вес строительного песка может колебаться от 1150 до 1700 кг/м 3 .
В таблице для примера приведено несколько значений отдельных его разновидностей.
Вид песка | Удельный вес в кг/1 м 3 |
Речнойнамывнойуплотнительный | 1200-1700 |
1650 | |
1590 | |
Карьерный | 1500 |
Морской | 1620 |
Кварцевый | 1600-1700 |
Мокрый | 1920 |
Теплоемкость
Это способность материала принимать, накапливать и удерживать энергию. Теплоемкость является показателем теплофизических свойств песка. Способность нагреваться зависит от химического состава, структуры и количества применяемого материала. Поэтому общий показатель будет зависеть от его сухости. Важен для цементных составов и при бетонировании стен.
Разновидность песка | Удельная теплоемкость в кДж/кг на 1 0 |
Мокрый кварцевый | 2,09 |
Речной сухой | 0,8 |
Карьерный | 0,84 |
Морской | 0,88 |
Строительный песок является универсальным материалом, без которого не обходится ни одно строительство. Это экологически чистое составляющее растворов и смесей. Устойчив к горению и не подвержен гниению. При выборе его вида с высокой удельной теплопроводностью бетонная конструкция с ним станет аккумулировать тепло и в помещении будет создан оптимальный микроклимат. Это состояние может сохраняться достаточно длительное время. Использование песка с высоким показателем удельного веса поможет сэкономить на цементе.
Способность материала удерживать тепло оценивается его удельной теплоемкостью , т.е. количеством тепла (в кДж), необходимым для повышения температуры одного килограмма материала на один градус. Например, вода имеет удельную теплоемкость, равную 4,19 кДж/(кг*K). Это значит, например, что для повышения температуры 1 кг воды на 1°K требуется 4,19 кДж.
Материал | Плот- ность, кг/м 3 |
Тепло- емкость, кДж/(кг*K) |
Коэффи- циент тепло- провод- ности, Вт/(м*K) |
Масса ТАМ для тепло- аккумули- рования 1 ГДж теплоты при Δ= 20 K, кг |
Отно- ситель- ная масса ТАМ по отно- шению к массе воды, кг/кг |
Объем ТАМ для тепло- аккумули- рования 1 ГДж теплоты при Δ= 20 K, м 3 |
Отно- ситель- ный объем ТАМ по отно- шению к объему воды, м 3 /м 3 |
---|---|---|---|---|---|---|---|
Гранит, галька | 1600 | 0,84 | 0,45 | 59500 | 5 | 49,6 | 4,2 |
Вода | 1000 | 4,2 | 0,6 | 11900 | 1 | 11,9 | 1 |
Глауберова соль (декагидрат сульфата натрия) | 14600 1300 |
1,92 3,26 |
1,85 1,714 |
3300 | 0,28 | 2,26 | 0,19 |
Парафин | 786 | 2,89 | 0,498 | 3750 | 0,32 | 4,77 | 0,4 |
Для водонагревательных установок и жидкостных систем отопления лучше всего в качестве теплоаккумулирующего материала применять воду, а для воздушных гелиосистем - гальку, гравий и т.п. Следует иметь в виду, что галечный теплоаккумулятор при одинаковой энергоемкости по сравнению с водяным теплоаккумулятором имеет в 3 раза больший объем и занимает в 1,6 раза большую площадь. Например, водяной теплоаккумулятор диаметром 1,5 м и высотой 1,4 м имеет объем 4,3 м 3 , в то время как галечный теплоаккумулятор в форме куба со стороной 2,4 м имеет объем 13,8 м 3 .
Плотность аккумулирования теплоты в значительной степени зависит от метода аккумулирования и рода теплоаккумулирующего материала. Она может быть аккумулирована в химически связанном виде в топливе. При этом плотность аккумулирования соответствует теплоте сгорания, кВт*ч/кг:
- нефть - 11,3;
- уголь (условное топливо) - 8,1;
- водород - 33,6;
- древесина - 4,2.
При термохимическом аккумулировании теплоты в цеолите (процессы адсорбции - десорбции) может аккумулироваться 286 Вт*ч/кг теплоты при разности температур 55°C. Плотность аккумулирования теплоты в твердых материалах (скальная порода, галька, гранит, бетон, кирпич) при разности температур 60°C составляет 14 17 Вт*ч/кг, а в воде - 70 Вт*ч/кг. При фазовых переходах вещества (плавление - затвердевание) плотность аккумулирования значительно выше, Вт*ч/кг:
- лед (таяние) - 93;
- парафин - 47;
- гидраты солей неорганических кислот - 40 130.
К сожалению, лучший из приведенных в таблице 2 строительных материалов - бетон, удельная теплоемкость которого составляет 1,1 кДж/(кг*K), удерживает лишь ¼ того количества тепла, которое хранит вода того же веса. Однако плотность бетона (кг/м 3) значительно превышает плотность воды. Во втором столбце таблицы 2 приведены плотности этих материалов. Умножив удельную теплоемкость на плотность материала, получим теплоемкость на кубический метр. Эти величины приведены в третьем столбце таблицы 2. Следует отметить, что вода, несмотря на то, что обладает наименьшей плотностью из всех приведенных материалов, имеет теплоемкость на 1 м 3 выше (2328,8 кДж/м 3), чем остальные материалы таблицы, в силу ее значительно большей удельной теплоемкости. Низкая удельная теплоемкость бетона в значительной степени компенсируется его большой массой, благодаря которой он удерживает значительное количество тепла (1415,9 кДж/м 3).
Общая тепловая емкость песчаной горной породы использующейся в качестве строительного материала. Что такое коэффициент "С": (уд.) удельная теплоемкость ПЕСКА (песчаного материала). Чем отличаются эти виды теплофизических характеристик природного мелкозернистого материала, почему нельзя обойтись одним физическим параметром, описывающим тепловые свойства и зачем понадобилось вводить коэффициент "умножать сущности, усложняя жизнь нормальным людям"?
Не удельной, а общей тепловой емкостью, в общепринятом физическом смысле, называется способность вещества нагреваться. По крайней мере так говорит нам любой учебник по теплофизике - это классическое определение теплоемкости (правильная формулировка). На самом деле это интересная физическая особенность. Мало знакомая нам по бытовой жизни "сторона медали". Оказывается, что при подведении тепла извне (нагреве, разогреве), не все вещества одинаково реагируют на тепло (тепловую энергию) и нагреваются по разному. Способность ПЕСКА кварцевого намывного природного получать, принимать, удерживать и накапливать (аккумулировать) тепловую энергию называется теплоемкостью ПЕСКА речного . А сама, является физической характеристикой горной породы, описывающей теплофизические свойства строительной песчаной смеси . При этом, в разных прикладных аспектах, в зависимости от конкретного практического случая, для нас важным может оказаться что-то одно. Например: способность вещества принимать тепло или способность накапливать тепловую энергию или "талант" удерживать ее. Однако, не смотря на некоторую разницу, в физическом смысле, нужные нам свойства будут описаны теплоемкостью песчаного материала .
Небольшая, но очень "гадкая загвоздка" имеющая принципиальный характер заключается в том, что способность нагреваться - тепловая емкость мелкозернистой песчаной породы , непосредственно связана не только с химическим составом , молекулярной структурой вещества, но и с его количеством (весом, массой, объемом). Из-за такой "неприятной" связи, общая теплоемкость песчаного материала становится слишком неудобной физической характеристикой вещества. Так как, один измеряемый параметр, одновременно описывает "две разные вещи". А именно: действительно характеризует теплофизические свойства ПЕСКА , однако, "попутно" учитывает еще и его количество. Формируя своеобразную интегральную характеристику, в которой автоматически связана "высокая" теплофизика и "банальное" количество вещества (в нашем случае: строительного сыпучего материала).
Ну зачем нам нужны такие теплофизические характеристики сыпучего материала, у которых явно прослеживается "неадекватная психика"? С точки зрения физики, общая теплоемкость песчаной породы (самым неуклюжим способом), пытается не только описать количество тепловой энергии способной накопиться в мелкозернистом строительном материале, но и "попутно сообщить нам" о количестве кварцевого ПЕСКА . Получается абсурд, а не внятная, понятная, стабильная, корректная теплофизическая характеристика песчаной горной породы . Вместо полезной константы, пригодной для практических теплофизических расчетов , нам "подсовывают" плавающий параметр, являющийся суммой (интегралом) количества тепла принятого ПЕСКОМ и его массой или объемом мелкозернистой горной породы.
Спасибо конечно, за такой "энтузиазм", однако количество ПЕСКА речного намывного я могу измерить и самостоятельно. Получив результаты в гораздо более удобной, "человеческой" форме. Количество ПЕСКА кварцевого сухого мне хотелось бы не "извлекать" математическими методами и расчетами по сложной формуле из общей теплоемкости песчаного материала для строительных работ , при различных температурах, а узнать вес (массу) в граммах (гр, г), килограммах (кг), тоннах (тн), кубах (кубических метрах , кубометрах, м3), литрах (л) или миллилитрах (мл). Тем более, что умные люди давно придумали вполне подходящие для этих целей измерительные инструменты. Например: весы или другие приборы.
Особенно "раздражает плавающий характер" параметра: общая теплоемкость ПЕСКА строительного . Его нестабильное, переменчивое "настроение". При изменении "размера порции или дозы", теплоемкость ПЕСКА при различных температурах сразу меняется. Больше количество горной породы, физическая величина, абсолютное значение теплоемкости песчаного материала - увеличивается. Меньше количество горной породы, значение тепловой емкости песчаной смеси уменьшается. "Безобразие" какое-то получается! Другими словами, то что мы "имеем", ни как не может считаться константой, описывающей теплофизические характеристики ПЕСКА при различных температурах . А нам желательно "иметь" понятный, постоянный коэффициент, справочный параметр, характеризующий тепловые свойства кварцевой песчаной смеси, без "ссылок" на количество сыпучего строительного материала (вес, массу, объем). Что делать?
Здесь нам на помощь приходит очень простой, но "очень научный" метод. Он сводится к не только к приставе "уд. - удельная" , перед физической величиной, но к изящному решению, предполагающему исключение из рассмотрения количества вещества. Естественно, "неудобные, лишние" параметры: массу или объем ПЕСКА кварцевого исключить совсем невозможно. Хотя бы по той причине, что если не будет количества намывной песчаной смеси, то не останется и самого "предмета обсуждения". А вещество должно быть. Поэтому, мы выбираем некоторый условный стандарт массы сыпучей породы или объема песчаного материала, который можно считать единицей, пригодной для определения величины нужного нам коэффициента "С". Для веса ПЕСКА кварцевого мытого , такой единицей массы песчаной смеси, удобной в практическом применении, оказался 1 килограмм (кг).
Теперь, мы нагреваем один килограмм ПЕСКА на 1 градус, а количество тепла (тепловой энергии) , нужное нам для того чтобы нагреть сыпучий песчаный материал на один градус - это и есть наш корректный физический параметр , коэффициент "С" , хорошо, достаточно полно и понятно описывающий одно из теплофизических свойств ПЕСКА при различных температурах . Обратите внимание на то, что теперь мы имеем дело с характеристикой описывающей физическое свойство вещества, но не пытающейся "дополнительно поставить нас в известность" о его количестве. Удобно? Нет слов. Совершенно другое дело. Кстати, теперь мы уже говорим не про общую тепловую емкость песчаной смеси . Все изменилось. ЭТО УДЕЛЬНАЯ ТЕПЛОЕМКОСТЬ ПЕСКА речного мытого , которую иногда называют по другому. Как? Просто МАССОВАЯ ТЕПЛОЕМКОСТЬ ПЕСКА кварцевого . Удельная (уд.) и массовая (м.) - в данном случае: синонимы, они и означают здесь нужный нам коэффициент "С" .
Таблица 1. Коэффициент: удельная теплоемкость ПЕСКА (уд.). Массовая тепловая емкость ПЕСКА речного. Справочные данные для сыпучих строительных материалов естественного происхождения: горная порода , песчаная смесь.
В строительстве очень важной характеристикой является теплоемкость строительных материалов. От нее зависят теплоизоляционные характеристики стен постройки, а соответственно, и возможность комфортного пребывания внутри здания. Прежде, чем приступить к ознакомлению с теплоизоляционными характеристиками отдельных строительных материалов, необходимо понять, что собой представляет теплоемкость и как она определяется.
Удельная теплоемкость материалов
Теплоемкость – это физическая величина, описывающая способность того или иного материала накапливать в себе температуру от нагретой окружающей среды. Количественно удельная теплоемкость равна количеству энергии, измеряемой в Дж, необходимой для того, чтобы нагреть тело массой 1 кг на 1 градус.
Ниже представлена таблица удельной теплоемкости наиболее распространенных в строительстве материалов.
- вид и объем нагреваемого материала (V);
- показатель удельной теплоемкости этого материала (Суд);
- удельный вес (mуд);
- начальную и конечную температуры материала.
Теплоемкость строительных материалов
Теплоемкость материалов, таблица по которой приведена выше, зависит от плотности и коэффициента теплопроводности материала.
А коэффициент теплопроводности, в свою очередь, зависит от крупности и замкнутости пор. Мелкопористый материал, имеющий замкнутую систему пор, обладает большей теплоизоляцией и, соответственно, меньшей теплопроводностью, нежели крупнопористый.
Это очень легко проследить на примере наиболее распространенных в строительстве материалов. На рисунке, представленном ниже, показано каким образом влияет коэффициент теплопроводности и толщина материала на теплозащитные качества наружных ограждений.
Из рисунка видно, что строительные материалы с меньшей плотностью обладают меньшим коэффициентом теплопроводности.
Однако так бывает не всегда. Например, существуют волокнистые виды теплоизоляции, для которых действует противоположная закономерность: чем меньше плотность материала, тем выше будет коэффициент теплопроводности.
Поэтому нельзя доверять исключительно показателю относительной плотности материала, а стоит учитывать и другие его характеристики.
Сравнительная характеристика теплоемкости основных строительных материалов
Для того, чтобы сравнить теплоемкость наиболее популярных строительных материалов, таких дерево, кирпич и бетон, необходимо рассчитать величину теплоемкости для каждого из них.
В первую очередь нужно определиться с удельной массой дерева, кирпича и бетона. Известно, что 1 м3 дерева весит 500 кг, кирпича – 1700 кг, а бетона – 2300 кг. Если мы берем стенку, толщина которой составляет 35 см, то путем нехитрых расчетов получим, что удельная масса 1 кв.м дерева составит 175 кг, кирпича – 595 кг, а бетона – 805 кг.
Далее выберем значение температуры, при которой будет происходить накопление тепловой энергии в стенах. Например, это будет происходить в жаркий летний день с температурой воздуха 270С. Для выбранных условий рассчитываем теплоемкость выбранных материалов:
- Стена из дерева: С=СудхmудхΔТ; Сдер=2,3х175х27=10867,5 (кДж);
- Стена из бетона: С=СудхmудхΔТ; Сбет=0,84х805х27= 18257,4 (кДж);
- Стена из кирпича: С=СудхmудхΔТ; Скирп=0,88х595х27= 14137,2 (кДж).
Из произведенных расчетов видно, что при одинаковой толщине стены наибольшим показателем теплоемкости обладает бетон, а наименьшим – дерево. О чем это говорит? Это говорит о том, что в жаркий летний день максимальное количество тепла будет накапливаться в доме, выполненном из бетона, а наименьшее – из дерева.
Этим объясняет тот факт, что в деревянном доме в жаркую погоду прохладно, а в холодную погоду тепло. Кирпич и бетон легко накапливают в себе достаточно большое количество тепла из окружающей среды, но так же легко и расстаются с ним.
Теплоемкость и теплопроводность материалов
Теплопроводность – это физическая величина материалов, описывающая способность проникновения температуры с одной поверхности стены на другую.
Для создания комфортных условий в помещении необходимо, чтобы стены обладали высоким показателем теплоемкости и низким коэффициентом теплопроводности. В этом случае стены дома будут в состоянии накапливать тепловую энергию окружающей среды, но при этом препятствовать проникновению теплового излучения внутрь помещения.