Виды токарных станков

Токарные станки необходимы для обработки разных металлических или древесных заготовок. На них делают расточку и обточку цилиндрических, фасонных поверхностей, сверление отверстий, обработку торцов. Токарная группа станков подразделяется на 9 видов, каждый имеет свою конструкцию, свое предназначение, степень автоматизации. На станки можно устанавливать дополнительно устройства, расширяющие их функциональность.

Виды станков

Токарно-винторезный станок

Этот тип станков используется для обработки цветных и черных металлов, нарезания модульной, метрической, дюймовой резьб. Они являются самыми универсальными станками, их применяют как в серийном производстве, так и в единичном. Компоновка данных станков почти однотипная. На примере станка 16К20 можно выделить такие основные элементы:

Станина, которая является основой для всех механизмов;

Шпиндельная (передняя) бабка, состоящая из шпинделя, коробки скоростей и другого;

Коробка подач, передающая движение от шпинделя к суппорту при помощи ходового винта или валика;

Фартук, преобразующий вращение валика или винта в движения поступательного характера суппорта;

Задняя бабка может иметь сверло или развертку для поддержки обрабатываемой детали;

Суппорт, служащий для фиксации режущего инструмента.

Токарно-винторезные станки в зависимости от точности бывают таких видов:

1. нормальной точности;

2. повышенной;

3. высокой;

4. особо высокой;

Этот тип предназначен для обработки габаритных деталей. Такие станки используют для растачивания конических и цилиндрических поверхностей, а также для прорезки канавок, подрезки торцов. Еще на нем можно шлифовать, фрезеровать, нарезать резьбу.

Основным узлом здесь является стол, на котором находится планшайба. Также есть две стойки, соединяющиеся порталом. По этим стойкам передвигается траверса, имеющая два суппорта. Один из которых револьверный, а другой расточный. Первый служит для сверления отверстий, подрезки торцов. А второй суппорт необходим для обработки конических поверхностей, растачивания отверстий.

В зависимости от диаметра планшайбы бывают одностоечные или двухстоечные станки. Первые имеют диаметр до 2000 мм, а другие более 2000 мм.

Лоботокарный станок

Этот вид используется для обработки конических, лобовых, цилиндрических поверхностей. Структура таких станков имеет горизонтальную ось вращения детали.

Токарно - револьверный станок

Такие станки нужны для обточки, подрезки, сверления, развертывания, фасонного точения деталей и заготовок из калиброванного прутка. Такое название он получил из-за способа крепления режущих инструментов, которые закрепляются в специальном держателе, который бывают статическими или приводными. Приводные держатели расширяют функциональность данного типа станков, с помощью него можно сверлить отверстия, нарезать резьбу, фрезеровать.

Есть токарно-револьверные станки с ЧПУ (программным управлением), которые почти не нуждаются в операторе, если его снабдить прутковым податчиком.

Токарно-фрезерный обрабатывающий центр

Этот центр сочетает в себе функции фрезерного и токарного станков. Такое оборудование превышает возможности револьверных станков с помощью фрезерной головы под конус (Capto, HSK). Из-за этого токарный резец можно устанавливать во фрезерную голову, что дает возможность осуществлять точение. Могут ставится резцы с квадратным или специальным хвостовиком. Такие центры используются, как правило, для точения, фрезерования коленвалов и других деталей.

Автомат продольного точения

Такое оборудование необходимо для изготовления мелких деталей из фасонного профиля, калиброванного, холоднотянутого прутка. При этом автомат может работать с разными материалами (легированная сталь, медь и др.). Преимущество автоматов том, что они хороши при серийном производстве. Бывают автоматы с подвижной и неподвижной шпиндельной бабкой. Также бывают револьверные и одношпиндельные. Первые могут выполнять одновременно несколько операций с различными деталями.

Используя токарный станок одной из современных моделей, можно выполнять достаточно большой перечень технологических операций по обработке металла. Но преимущественно на таком оборудовании выполняют обработку наружных и внутренних поверхностей заготовок, имеющих цилиндрическую, коническую и фасонную конфигурацию.

История появления и развития оборудования

По мнению историков, токарные станки (вернее, примитивные прародители подобных устройств) были изобретены и начали использоваться человеком еще в середине VII века до нашей эры. Конечно, такое устройство имело простейшую конструкцию, но позволяло эффективно выполнять обработку изделий из дерева или кости. Для того чтобы произвести такую обработку, в двух центрах, которые монтировались соосно друг с другом, зажималась деталь. Ее вращали вручную, а процесс резания осуществлялся при помощи ручного резца, которым манипулировал отдельный «оператор». Таким образом изделию придавалась требуемая форма и размеры.

Следующим этапом развития, которому подверглось оборудование токарной группы, стало оснащение его приводом, необходимым для придания детали вращательного движения. В качестве такого привода изначально использовалась тетива лука, которую петлей накидывали на обрабатываемое изделие. А чуть позже (в XIV столетии) был изобретен ножной привод для токарного оборудования.

Конструкция такого привода, очень напоминающего приводной механизм ножной швейной машины, состояла из закрепленной консольной деревянной жерди, соединенной с обрабатываемой деталью при помощи прочной веревки. При нажатии ногой на жердь веревка натягивалась, что приводило к вращению заготовки на 1–2 оборота. После того как нога убиралась с жерди, веревка освобождалась и устремлялась вверх, что влекло за собой вращение заготовки в другую сторону.

Несмотря на простую конструкцию, такие токарные станки уже позволяли выполнять обработку с достаточно высоким качеством. Их плюсом являлось и то, что обслуживание устройств было очень простым.

XVI столетия уже имел в своей конструкции люнет и центры, изготовленные из металла, что позволяло использовать его для обработки заготовок, отличающихся сложной конфигурацией. Однако по причине невысокой мощности такого устройства применять его для токарной обработки металлических заготовок было еще нельзя.

Сильный толчок история токарного станка получила в 1700-х годах, когда россиянином Андреем Нартовым было создано устройство, на которое установили механический суппорт. Следует отметить, что именно это новшество послужило сильнейшим толчком в развитии всего оборудования, предназначенного для обработки заготовок из металла. Серьезный вклад в развитие токарных агрегатов внесли французские инженеры, которые к середине XVIII столетия создали устройство, отличающееся высокой универсальностью. Уже к концу этого века во французской промышленности стал использоваться специализированный агрегат, на котором можно было выполнять нарезание резьбы на металлических винтах.

Токарные станки Модсли (нажмите, чтобы увеличить)

По-настоящему прорывным в развитии токарного оборудования принято считать 1794-й год, когда Генри Модсли создал станок, послуживший базой для дальнейшего развития всех токарных агрегатов. Что примечательно, предприятие, основанное Модсли, занималось также производством плашек и метчиков, с помощью которых на его оборудовании выполняли нарезание резьбы.

О том, чтобы автоматизировать токарный станок, стали задумываться в XIX веке, и пальма первенства в этом вопросе принадлежит американским инженерам. Данный процесс шел по пути оснащения агрегатов дополнительными элементами автоматизации, что в итоге привело к созданию первого станка с револьверной головкой. Именно на базе таких устройств в дальнейшем и стали создавать универсальные станки-автоматы, первый из которых (станок Спенсера) был представлен общественности в 1973 году.

Классификация токарного оборудования

Которая была разработана еще в советское время, причисляет такие агрегаты к первой категории оборудования, предназначенного для обработки заготовок из металла. Согласно данной классификации, все виды токарных станков причисляются к одной из следующих категорий:

  • автоматические и полуавтоматические токарные агрегаты с одним шпинделем;
  • многошпиндельные станки: автомат и полуавтомат;
  • револьверные модели;
  • станки отрезной группы;
  • карусельные модели;
  • лобовое и винторезное оборудование;
  • многорезцовые и полировальные агрегаты;
  • специализированные станки, которые могут быть обычными и автоматическими;
  • устройства специального назначения.

По степени точности обработки производятся следующие типы токарных станков:

  • особой точности - С;
  • высокой точности - В;
  • нормальной точности - Н;
  • особо высокой точности - А;
  • повышенной точности - П.

От того, к какой категории принадлежит токарный станок, зависят его функциональные возможности, и, соответственно, сфера применения. Узнать об основных технических возможностях станка можно и по его маркировке, которая включает в себя следующее:

  • начальную цифру «1», свидетельствующую, что это именно токарный станок, а не какой-либо другой;
  • вторую цифру, указывающую на тип, к которому относится токарный агрегат;
  • третью цифру (а в некоторых моделях и четвертую) - это самый основной параметр станка, который характеризует высоту его центров.

Расшифровка маркировки токарных станков (нажмите, чтобы увеличить)

Присутствуют в маркировке таких агрегатов и буквенные обозначения, которые определяют его конструктивные особенности: уровень его автоматизации, точности, модификацию, оснащенность системой ЧПУ. К примеру, маркировка модели токарного станка 1И611П расшифровывается следующим образом: буква «И» говорит о том, что это устройство токарно-винторезной группы; буква «П» - станок повышенной точности; высота центров у данной модели соответствует значению 110 мм. Догадаться о том, какой категории перед вами токарный станок, можно и по фото модели.

Типы токарного оборудования

Предназначены для изделий, обрабатывать у которых необходимо несколько поверхностей, используя различные инструменты. Чтобы не выполнять установку и настройку каждого инструмента, на таких станках устанавливаются револьверные головки, в которых может быть предусмотрено два и более гнезда для размещения инструментов. Конечно, обслуживать такой токарный станок значительно сложнее, чем обычную модель, но это полностью компенсируется функциональностью этого агрегата. К примеру, популярными моделями подобных станков являются 1Е316П, 1Г340ПЦ, 1П371, 1А341.

Карусельный станок — одна из разновидностей станков токарной группы

Карусельные станки токарной группы предназначены для выполнения обработки заготовок, характеризующихся небольшой длиной, значительной массой, большим внешним диаметром. К ним относятся габаритные зубчатые колеса, маховики и др. Функциональные возможности таких токарных станков (например, моделей 1512, 1541, 1550, 1Л532 и прочих) позволяют выполнять на них различные : точение, растачивание, прорезывание канавок, обработку торцов и др. А если дооснастить такие токарные агрегаты дополнительными приспособлениями, то они станут еще более универсальными: с их помощью можно будет выполнять некоторые фрезерные операции, нарезать резьбу, осуществлять шлифовку и производить ряд других технологических действий.

Многошпиндельные станки, относящиеся к токарной группе, необходимы для выполнения сложнейших технологических операций в условиях серийного производства. Заготовки, которые можно обрабатывать на таких станках, могут иметь форму труб, шестигранных, квадратных и круглых прутков, фасонного профиля и др. Отличается подобная техника высокой жесткостью своей конструкции и мощным приводом, что позволяет выполнять с ее помощью обработку с высокой производительностью.

Что важно, такая сложная и функциональная техника обслуживается точно так же, как и станок обычной модели. Перечень технологических операций, которые можно выполнять на подобном агрегате, достаточно обширен: растачивание, черновое и фасонное обтачивание, нарезание и накатывание резьбы и др. Наиболее популярными моделями подобного токарного оборудования являются станки 1П365 и 1Б140.

Распространенными моделями станков для токарной обработки, которые завоевали широкую популярность еще во времена СССР, являются токарно-винторезные устройства. Свою популярность такие станки, которые можно встретить не только практически на любом промышленном предприятии, но и в школьных мастерских, завоевали благодаря тому, что с их помощью можно эффективно выполнять большой перечень технологических операций.

Каждый такой станок, вне зависимости от модели, имеет типовую конструкцию, состоящую из однотипных узлов. Наряду со своей функциональностью, токарно-винторезные модели токарных станков отличаются высокой безопасностью, простотой в работе и обслуживании, что и дает возможность использовать их в качестве агрегатов для оснащения школьных мастерских еще со времен СССР. Наиболее известными и популярными моделями такого токарного оборудования являются станки 16К20, 16К50, 16Б16А и 16П16П.

На предприятиях, выпускающих свою продукцию крупными сериями и использующими в производстве заготовки из фасонных профилей и калиброванных прутков, активно применяются токарные автоматы. Такие станки, на которых преимущественно выполняют операции точения в продольном направлении, с одинаковым успехом справляются с обработкой заготовок из различных металлов: сверхтвердых сплавов, мягкой меди и др.

На отечественном рынке токарные станки представлены в основном моделями зарубежных производителей (Япония, Южная Корея и др.). Есть и отдельные модели отечественного производства, например 1М10ДА.

Особенности конструкции станков токарной группы

Все станки, предназначенные для выполнения и других материалов, имеют в своей конструкции типовые конструктивные элементы:

  • станину - несущий элемент токарного агрегата, на котором устанавливаются все элементы его конструкции;
  • фартук (в данном элементе токарного станка происходит преобразование движения валика или ходового винта в перемещение его суппорта);
  • , на которой размещается шпиндель устройства, а в ее внутренней части располагается коробка скоростей;
  • суппорт (в данном элементе станка закрепляется режущий инструмент, также суппорт нужен для того, чтобы обеспечить продольную и поперечную подачу инструмента, совершаемую с заданными параметрами; в конструкции суппорта обязательно присутствует нижняя каретка, а у отдельных моделей их несколько, на верхней из которых крепится держатель для токарного инструмента);
  • коробку подач (при помощи данного конструктивного элемента передается движение от ходового винта или валика на суппорт станка);
  • электрическая часть конструкции станка, включающая в себя приводной электродвигатель, мощность которого у разных моделей станков может серьезно варьироваться, а также элементы, с помощью которых обеспечивается управление электрооборудованием устройства (естественно, данная часть токарного агрегата должна отвечать требованиям безопасности).

Все элементы конструкции станка опираются на две тумбы, которые выполняют несущую функцию, а также обеспечивают размещение заготовки на удобной для оператора высоте. Такие тумбы, отличающиеся массивностью своей конструкции, можно увидеть на фото токарного станка любой модели.

Основная часть конструктивных элементов токарного оборудования унифицирована, что позволяет оперативно и с минимальными затратами выполнять их техническое обслуживание и ремонт.

Токарные станки составляют наиболее многочисленную группу металлорежущих станков и являются весьма разнообразными по размерам и по типам.

Основными размерными характеристиками токарных станков являются:
наибольший допустимый диаметр обрабатываемой детали над станиной ; более часто этот размер выражают высотой центров над станиной, что характеризует наибольший допустимый радиус (полудиаметр) обрабатываемой детали над станиной;
расстояние между центрами , т. е. расстояние, равное наибольшей длине детали, которая может быть установлена на данном станке при смещении задней бабки в крайнее правое положение (без свешивания) при выдвинутой до отказа пиноли.

Все токарные станки по высоте центров могут быть разделены на три группы:
1) мелкие станки - с высотой центров до 150 мм;
2) средние станки - с высотой центров 150 - 300 мм;
3) крупные станки - с высотой центров свыше 300 мм.
Мелкие станки имеют расстояние между центрами не свыше 750 мм, средние - 750, 1000 и 1500 мм, крупные - от 1500 мм и выше.

Наибольшее распространение на машиностроительных заводах имеют средние токарные станки.
По типам различают:
Токарно-винторезные станки , предназначенные для выполнения всех основных токарных работ, включая нарезание резьб резцом при помощи ходового винта; эти станки имеют самое широкое распространение.
Токарные станки, не имеющие ходового винта , применяемые для выполнения разнообразных токарных работ, за исключением нарезания резьбы резцом.
К станкам токарной группы относятся также лобовые и карусельные станки.
Лобовые станки , снабженные планшайбой большого диаметра (до 2 м и более), служат для обтачивания крупных деталей малой длины - шкивов, маховиков, больших колец и т. д.
Карусельные станки имеют вертикальную ось вращения и, следовательно, горизонтальную поверхность планшайбы (стола). Применяются они для обработки деталей большого диаметра и малой длины. Строят их с диаметром стола до 25 м.
При обработке больших партий деталей, которые по конструкции допускают одновременную обработку несколькими резцами, применяют так называемые .
При изготовлении больших партий деталей, имеющих в большинстве случаев осевые отверстия, токарная обработка производится обычно на револьверных станках .
В условиях крупносерийного и массового производства револьверные станки вытесняются более производительными токарными автоматами и полуавтоматами .
Кроме того, в машиностроении применяют различные специальные токарные станки , предназначенные для обработки какого-нибудь определенного рода деталей - коленчатых валов, прокатных валиков, паровозных и вагонных осей, бандажей и колес, кулачковых валиков и т. д.

Токарные станки каждого типа в зависимости от размеров обрабатываемых деталей и особенностей конструкции отдельных узлов и элементов различаются по моделям. Каждой модели станка присвоен определенный шифр, например 1616, 1А62, 1К62 и т. п.

В настоящее время отечественные станкостроительные заводы выпускают большое количество различных токарно-винторезных станков.

2. Токарно-винторезный станок модели 1А62

Токарно-винторезный станок 1А62 производства завода «Красный пролетарий» (рис. 35) является одним из наиболее распространенных станков на наших машиностроительных заводах.

Высота центров над станиной 200 мм. Расстояние между центрами 750, 1000 и 1500 мм. Наибольший диаметр точения над станиной 400 мм, над суппортом 210 мм. Наибольший диаметр прутка, проходящего через отверстие шпинделя, 37 мм. Количество рабочих скоростей шпинделя 24.
Пределы чисел оборотов в минуту при рабочем ходе от 11,5 до 1200.
Продольные подачи суппорта в миллиметрах на один оборот шпинделя 0,08-1,59. Мощность электродвигателя 7 квт.

Управление станком . На рис. 35 показаны органы управления станком 1А62 и указаны назначения всех рукояток, маховичков и рычагов.

Включение электродвигателя производится нажатием кнопки «Пуск», а остановка - нажатием кнопки «Стоп» кнопочной станции 5, расположенной на станине, под передней бабкой. Включение вращения шпинделя производится рукоятками 17 или 11, управляющими пусковой фрикционной муфтой. Если рукоятку 11 повернуть вверх, шпиндель начнет вращаться (прямой ход); если же рукоятку 11 установить в среднее положение, вращение шпинделя выключается. Чтобы изменить направление вращения шпинделя, нужно рукоятку 11 опустить вниз.

Для изменения числа оборотов шпинделя служат рукоятки 1, 3 и 4, устанавливаемые в различные положения; эти рукоятки управляют набором зубчатых колес коробки скоростей (рис. 35, б).

Рукоятка 2 служит для увеличения шага резьбы в 4 и в 16 раз. Изменение величины подачи, а также установку шага резьбы производят при помощи рукояток 25, 20, 18 и 24. К коробке подачи прикреплена табличка, на которой указано, какая подача или какой шаг резьбы соответствует различным положениям этих рукояток.

Для включения ходового винта (при нарезании резьбы) или ходового вала (при продольном или поперечном точении) служит рукоятка 23. Маховичок 15 служит для перемещения каретки суппорта вручную. Включение продольной или поперечной подачи производится рукояткой 14. Направление хода суппорта при точении изменяется рукояткой 16. Рукоятка 12 служит для включения и выключения гайки ходового винта. Рукоятки 14 и 12 сблокированы: одновременное их включение невозможно. Для включения и выключения механической подачи служит рукоятка 13, расположенная на передней стенке фартука. Рукоятка 6 служит для поперечной подачи суппорта вручную, рукоятка 8 - для ручного перемещения верхней части суппорта.


Для поворота и закрепления резцовой головки резцедержателя служит рукоятка 7.

Рукояткой 9 производят закрепление пиноли задней бабки, маховичком 10 - передвижение пиноли.

На рис. 36а показана кинематическая схема станка 1А62.

Привод главного движения . Электродвигатель (мощность 7 квт, п = 1440 об/мин) через клиноременную передачу со шкивами d130 и d250 мм приводит во вращение приводной вал I коробки скоростей. На валу I сидит сдвоенная фрикционная пластинчатая муфта М, при помощи которой осуществляется пуск, останов и изменение направления вращения шпинделя при включенном электродвигателе. Если сжать пластины левой половины муфты М, то получит вращение блок 1 с зубчатыми колесами г = 56 и z = 51, осуществляющий рабочее вращение шпинделя. При сжатии пластин правой половины муфты М получает вращение колесо z = 50, осуществляющее обратное вращение шпинделя.

С зубчатыми колесами z = 56 и z = 51 блока / могут сцепляться соответственно колеса z = 34 и z = 39 блока 2, который можно передвигать вдоль шлицевого вала II. Таким образом, валу II можно передавать два различных числа оборотов в минуту.

От вала II через зубчатые колеса z = 28, z = 20 и z = 36 и передвигаемый блок 3 с колесами z = 44, z = 52 и z = 36 вращение передается валу III, благодаря чему этот вал может получить 2x3 = 6 разных чисел оборотов в минуту.

Если при помощи кулачковой муфты К, сидящей на шпинделе, включить зубчатое колесо z = 50, свободно сидящее на шпинделе VI слева, то вращение от вала III передается непосредственно шпинделю через колеса z = 50 и z = 50, благодаря чему он может получить шесть разных чисел оборотов в минуту. Если же при помощи муфты К включить колесо z = 64, сидящее на шпинделе справа, то вращение от вала III через неподвижно сидящие на нем зубчатые колеса z = 20 и z = 50 может передаваться на передвигаемый по валу IV блок 4, состоящий из двух колес z = = 80 и z = 50, благодаря чему вал IV может иметь 2x3x2=12 различных чисел оборотов в минуту.

Блок 5 с колесами z = 20 и z = 50, передвигаемый по валу IV, передает вращение колесам z = 80 или z = 50, неподвижно сидящим на валу V. Этот вал может иметь 2x3x2x2 = 24 разных числа оборотов в минуту.

От вала V через косозубое колесо z = 32 вращение передается косозубому колесу z - 64, сидящему на шпинделе. Таким образом, шпиндель может получить 6 + 24 = 30 скоростей, из которых разных скоростей будет 24, а остальные шесть - повторяющиеся.

Изменение чисел оборотов шпинделя производится тремя рукоятками 1, 3 и 4, расположенными с передней стороны коробки скоростей (cм. рис. 35, а и б). Числа оборотов шпинделя в минуту, получающиеся при различных положениях этих рукояток, приведены в паспорте станка (см. приложение 1, стр. 298).

Рукоятка 1 наглухо соединена с диском (см. рис. 35, б), на котором по четырем концентрическим окружностям указаны числа оборотов шпинделя в минуту:
на первой окружности - 370, 610, 765, 460, 1200, 955;
на второй окружности - 185, 305, 380, 230, 600, 480;
на третьей окружности - 46, 76, 96, 58, 150, 120;
на четвертой окружности - 12, 19, 24, 15, 38, 30.

Над диском расположена неподвижная рамка с радиально расположенным окошком. Когда поворачивают рукоятку 1, то вместе с ней поворачивается диск, и в окошке появляются очередные четыре числа, обозначенные на диске.

На боковых стенках рамки, на уровне каждой окружности диска, имеются кружочки, закрашенные четырьмя различными цветами: у первой окружности - белым , у второй - голубым , у третьей - оранжевым и у четвертой - зеленым .

Рукоятка 3 может устанавливаться в два крайних положения - крайнее правое и крайнее левое. На корпусе бабки у крайнего правого положения имеются три кружочка, окрашенные в голубой, оранжевый и зеленый цвета; у крайнего левого положения имеется кружочек, окрашенный в белый цвет . Рукоятка 4 имеет четыре положения, причем каждому из них соответствует кружочек, окрашенный соответственно в голубой, оранжевый, зеленый и белый цвета.

Для настройки станка на нужное число оборотов поворачивают рукоятку 1 с таким расчетом, чтобы в окошке неподвижной рамки появилось число, соответствующее нужному числу оборотов шпинделя. Цвет кружочка, расположенного на боковой стенке у нужного числа оборотов, покажет, в какое положение нужно повернуть рукоятку 4 (причем цвета кружочков у рукоятки 1 и рукоятки 4 должны быть одинаковые).

Рукоятка 3 устанавливается в крайнее правое положение при любом цвете на рамке рукоятки 1, кроме белого цвета. Если на рамке рукоятки 1 у нужного числа оборотов появится белый цвет, рукоятку 3 поворачивают в крайнее левое положение, т. е. к кружочку, окрашенному белым цветом.

Допустим, требуется настроить станок на скорость шпинделя, равную 185 об/мин. Для этого поворачиваем рукоятку 1 до появления в рамке чисел 12, 46, 185, 370, как показано на рис. 35, б. На рамке возле числа 185 замечаем кружок, окрашенный в голубой цвет, следовательно, рукоятку 4 поворачиваем также до положения, соответствующего кружку голубого цвета, а рукоятку 3 поворачиваем в крайнее правое положение, соответствующее голубому, оранжевому и зеленому кружкам.

Допустим, требуется настроить станок на 1200 оборотов шпинделя в минуту. Устанавливаем рукоятку 1 до появления в рамке числа 1200. На боковой стенке рамки у этого числа окажется кружок, окрашенный в белый цвет . Следовательно, рукоятку 4 нужно установить в положение, соответствующее кружку белого цвета, а рукоятку 3 повернуть в крайнее левое положение.

Привод движения подачи . Движение подачи осуществляется следующим образом (см. рис. 36а). Широкое зубчатое колесо z = 50, являющееся частью муфты K и сидящее на шпинделе на направляющей шпонке, сцепляется с передвижным колесом z = 50, сидящим на валу VII. На левом конце вала VII сидят на шпонке два колеса z = 38 и z = 38, которые передают вращение валу VIII по схеме или (реверс).

С вала VIII движение передается на вал IX через колеса гитары (при точении и нарезании метрических и дюймовых резьб) или через колеса (при нарезании модульных резьб).

Дальнейшая передача вращения коробке подач (см. рис. 366) осуществляется по следующим трем направлениям:

Первое направление (используется при точении и при нарезании метрических и модульных резьб). От вала IX вращение передается валу X при сцеплении зубчатого колеса z = 25 с колесом 2 = 36, как показано на рис. 36б. Далее от вала X вращение передается на вал XI через одно из восьми зубчатых колес зубчатого конуса, закрепленного на валу X, посредством накидного колеса z = 34 и колеса z = 28, сидящего на скользящей шпонке на валу XI. Таким образом, вал XI может иметь восемь различных чисел оборотов в минуту.

От вала XII вращение передается на вал XIII при помощи блока 6 из двух зубчатых колес, передвигаемого по валу XII. При передвижении блока 6 влево, как показано на рис. 36б, вращение на вал XIII передается через зубчатые колеса z = 28 и z = 56, а при передвижении вправо - через колеса z = 42 и z = 42.

Таким образом, вал XIII получает 8x2 = 16 различных чисел оборотов в минуту.

От вала XIII вращение передается на вал XIV через колеса z= 56 и z = 28 либо через колеса z = 28 и z = 56. Следовательно, вал XIV получает 8 X 2 X 2 = 32 различных числа оборотов в минуту. Передвигая колесо z = 28 по валу XIV вправо и сцепляя его с колесом А внутреннего зацепления, играющим роль кулачковой муфты, передаем вращение ходовому винту XV. При передвижении того же колеса г = 28 по валу XIV влево сцепляем его с колесом-муфтой Б, сидящим на ходовом валу XVI, и передаем движение этому валу.


Второе направление (используется при точении и нарезании дюймовых резьб). От вала IX вращение передается непосредственно на вал XI (см. рис. 366) при передвижении зубчатого колеса z = 25 вправо, при этом его зубья входят во впадины колеса В внутреннего зацепления, закрепленного на левом конце вала XI и являющегося в данном случае просто кулачковой муфтой. От этого вала вращение передается на вал X через колесо z = 28 и накидное колесо z = 34, которое в свою очередь может сцепляться с одним из восьми колес зубчатого конуса, закрепленного на валу X. Таким образом, вал X может иметь восемь различных чисел оборотов в минуту. Далее с вала X вращение передается на вал XII через колеса z = 36 и z = 25 при передвижении колеса z = 25 по валу XII в левое положение.

Дальнейшая передача вращения от вала XII к ходовому винту X V или ходовому валу XVI осуществляется так же, как и по первому способу, описанному выше.

От ходового вала XVI движение передается либо реечному колесу z=12 (см. рис. 36а и Збв), либо ходовому винту поперечной подачи XXI с шагом t 2 = 5 мм.

Движение продольной подачи идет через фартук (рис. 36в) по следующей схеме: от ходового вала XVI через реверсирующий механизм или на вал XVIII, далее через червячную передачу (четырехзаходный червяк и червячное колесо z = 30) на вал XIX и затем через цилиндрические колеса к реечному колесу z = 12.

Вращение винту поперечной подачи XXI передается по следующей схеме: от ходового вала XVI через реверсирующий механизм на вал XVIII, затем через червячную передачу на цилиндрические колеса и поперечный винт.

Третье направление . От вала IX вращение передается непосредственно через валы XI и XIV. Передача вращения ходовому винту по указанному способу производится при нарезании резьб повышенной точности; нужный шаг резьбы подбирают при помощи сменных колес гитары.

Падающий червяк . Четырехзаходный червяк в фартуке станка 1А62 автоматически выключается, когда чрезмерно возрастает сопротивление движению суппорта, например, в момент соприкосновения его с продольным или поперечным упорами либо вследствие внезапной перегрузки резца от случайных препятствий. Это устройство называется падающим червяком, потому что при перегрузке червяк выпадает из зубьев червячного колеса, и дальнейшее перемещение суппорта прекращается.

Устройство падающего червяка показано на рис. 37. Червяк 3 свободно сидит на валу 12, который при помощи шарнирной муфты 2 соединен с валом 1, получающим вращение от ходового вала. Червяк 3 с правой стороны имеет муфту 5 со скошенными торцовыми кулачками. Этими кулачками она сцепляется с другой половиной муфты 7, которая может скользить по шлицам вала 12. Пружина 9 прижимает муфту 7 к скошенным кулачкам муфты 5, благодаря чему червяк приводится во вращение от вала 1. Червяк, в свою очередь, передает вращение червячному колесу 4 (z = 30), от которого приводятся в движение механизмы продольной и поперечной подач суппорта.


Когда суппорт встречает какое-либо препятствие на своем пути, нагрузка на червячное колесо 4 сильно возрастает. В соответствии с этим будет возрастать сопротивление вращению червяка 3. Когда сопротивление выйдет за пределы допустимого, правая половина муфты 7, продолжающая вращаться, начнет отходить вправо, сжимая пружину 9. Перемещаясь вправо, муфта 7 отодвинет кронштейн 10, который при помощи планки 8 поддерживает червяк в зацеплении с червячным колесом (рис. 37, а). При отодвигании кронштейна 10 вправо (рис. 37, б) червяк, не поддерживаемый больше планкой 8, под действием собственного веса падает вниз, выходит из зацепления с червячным колесом z = 30, и подача прекращается.

Включение червяка производится поворотом рукоятки, заклиненной на валу 11.

Необходимо, однако, иметь в виду, что это предохранительное устройство действует только при работе от ходового вала . Поэтому при нарезании резьбы от ходового винта нельзя пользоваться жесткими упорами.

Механическая блокировка подач . Как указывалось выше, для предупреждения неправильных включений, которые могут привести к поломке станка, инструмента или ранению рабочего, в механизмах токарных станков обычно имеются блокировочные устройства. Конструкции блокировочных устройств токарных станков весьма разнообразны.


На рис. 38 показана схема блокировочного механизма, расположенного в фартуке токарно-винторезного станка 1А62. Механизм блокировки устроен следующим образом. Рукоятка А, закрепленная на винте XXII с большим шагом резьбы, служит для перемещения гайки Б с вилкой Д. Эта вилка, передвигая зубчатое колесо z = 24 вдоль вала XXIII, сцепляет его либо с колесом z = 50 при включении продольной подачи, либо с колесом z = 65 при включении поперечной подачи (см. рис.)36в.

При среднем положении колеса z = 24, как показано на рис. 38, ни продольная, ни поперечная подачи не включены. В этом случае гайка Б находится в таком положении, при котором выступ втулки В свободно проходит через прорезь гайки Б и, таким образом, вал XXIV можно вращать в любом направлении. Вращением вала XXIV с помощью рукоятки Г производится включение ма-точяой гайки. Таким образом, при выключенной подаче от ходового вала можно, вращая рукояткой Г вал XXIV, включать замок маточной гайки. При запертом замке положение I (на рис. 38, справа) выступ втулки В входит в вырез гайки Б и не позволяет перемещать ее ни в ту, ни в другую сторону, т. е. не позволяет включить подачу от ходового вала.

При открытом замке (положение II на рис. 38, справа) выступ втулки В выходит из выреза гайки Б и позволяет, перемещая ее включать подачу от ходового вала. При этом выступы сместившейся гайки Б не позволяют повернуть рукоятку Г влево и замкнуть замок ходового винта.

3. Смазка станка

Для надежной работы станка требуется своевременная смазка всех его трущихся частей. Схема смазки станка 1А62 показана на рис. 39; места смазки указаны цифрами.

Смазка трущихся деталей коробки скоростей производится машинным маслом марки Л методом разбрызгивания. Для этого в корпус коробки заливают такое количество масла, чтобы наиболее низко расположенное зубчатое колесо было немного погружено в него. Вращаясь, колесо разбрызгивает масло, которое попадает на другие зубчатые колеса и в подшипники коробки скоростей. На передней стенке корпуса передней бабки имеется окошечко маслоуказателя (контрольный глазок), показывающее нормальный уровень масла в коробке скоростей.

В коробке скоростей станка 1А62 масло непрерывно подается в передний подшипник шпинделя и фрикционную муфту по трубкам от плунжерного насоса, задний же подшипник шпинделя имеет фитильную смазку. Насос засасывает масло из масляной ванны коробки скоростей и пропускает его через пластинчатый фильтр, где масло очищается. За исправной работой насоса и фильтра токарь должен следить через окошечко маслоуказателя.

Смену масла в коробке скоростей необходимо производить раз в 1-1 1/2 месяца. После спуска отработанного масла через сливной патрубок коробку скоростей и фитили промывают бензином или чистым керосином. При заливке необходимо предварительно профильтровать масло через сетку.

Смазка шариковых подшипников приводного шкива 12 производится техническим вазелином. Раз в год эти подшипники необходимо прочистить и наполнить свежим вазелином.

Подшипники и зубчатые колеса коробки подач смазываются машинным маслом марки Л, заливаемым до уровня маслоуказателя.

Механизм коробки подач смазывается разбрызгиванием масла зубчатыми колесами и, кроме того, при помощи фитилей, заложенных в трубках. Масло подается из резервуаров, находящихся в верхней части корпуса коробки подач под крышкой. Заполнение маслом этих резервуаров производится по мере надобности. Промывают фитили одновременно с коробкой скоростей.

Такой же фитильной смазкой из резервуаров, расположенных в верхней части фартука, смазываются трущиеся детали фартука . Масло в эти резервуары заливают раз в смену через отверстия 21 и 22 (см. рис. 39) в каретке. Смазка падающего червяка производится маслом, заливаемым в корпус фартука через отверстие во фланце 7 до нижнего края этого отверстия.

Каретка и части суппорта смазываются с помощью масленок 14-19 и 23-25. Такие же две масленки 26 и 27 предусмотрены для смазки пиноли, винта и подшипника задней бабки. Опоры ходового винта, ходового вала и вала переключения смазываются через масленки 3, 4, 9 и 10 машинным маслом марки Л раз всмену.

Подшипник вертикального валика механизма переключения смазывается через масленку 13 раз в неделю машинным маслом марки Л.

Кроме того, на станке 1А62 имеются колпачковые масленки 2 для смазки подшипников гитары и масленки 5 и 6 для смазки подшипников зубчатых колес реверса в фартуке. Масленки эти пополняются техническим вазелином раз в пять дней.

Один раз в смену перед началом работы необходимо смазывать машинным маслом из ручной масленки направляющие станины и суппорта. После смазки для равномерного распределения ее по всей поверхности направляющих нужно вручную переместить каретку вдоль станины вперед и назад несколько раз. Перед нарезанием резьбы резцом необходимо смазывать из ручной масленки резьбу ходового винта 8 по всей его длине.

4. Токарно-винторезный станок модели 1К62

Универсальный токарно-винторезный станок 1К62 (рис. 40) выпускается заводом «Красный пролетарий» им. А. И. Ефремова взамен станка 1А62 и предназначен, как и последний, для выполнения самых разнообразных токарных работ, в том числе и для нарезания всевозможных резьб: метрической, дюймовой, модульной и других.

Техническая характеристика станка . Высота центров над станиной 215 мм. Расстояние между центрами 710, 1000 и 1400 мм. Наибольший диаметр точения над станиной 400 мм. Наибольший диаметр точения над нижней частью суппорта 220 мм. Наибольший диаметр обрабатываемого прутка, проходящего через отверстие шпинделя, 42 мм. Конус передней части отверстия в шпинделе - Морзе № 6. Наибольшая длина точения 640, 930 и 1330 мм. Количество рабочих скоростей шпинделя 24. Пределы чисел оборотов шпинделя в минуту при рабочем ходе от 12,5 до 2000. Предел продольных и поперечных подач 0,075-4,46 мм/об.
Шаги нарезаемых резьб: а) метрической - от 1 до 12 мм; б) дюймовой- от 2 до 24 ниток на 1"; в) модульной -от 0,51pi до 48pi мм. Увеличение шага резьб в 8 и 32 раза.
Мощность главного электродвигателя 10 квт. Число оборотов электродвигателя 1450 об/мин.

Станок 1К62 предназначен для использования в механических, инструментальных и ремонтных цехах и отличается значительной мощностью (N = 10 квт) и высокой быстроходностью шпинделя (n макс =2000 об/мин), что позволяет наиболее полно использовать режущие свойства современного твердосплавного инструмента. Кроме того, станок 1К62 приспособлен для производительной обработки с большими подачами (s макс = 4,46 мм/об).

На рис. 40 дан общий вид станка 1К62 и показаны органы управления.

Основные особенности токарно-винторезного станка 1К62 заключаются в следующем. Коробка скоростей имеет 24 различные скорости вращения шпинделя (от 12,5 до 2 тысяч оборотов в минуту) при прямом ходе 1 и 12 скоростей при обратном (ускоренном) ходе. Управление скоростями ведется при помощи рукояток 1 и 4 (см. рис. 40), согласно таблице на стр. 62. Скорости станка 1К62 увеличены по сравнению со станком 1А62 почти в 1,7 раза.

Практически вследствие повторения, одного из чисел оборотов (n = 630 об/мин) в станке 1К62 имеется только 23 различные скорости вращения шпинделя.

Для пуска и останова главного электродвигателя на станке имеется кнопочная станция 17, смонтированная на правой верхней части суппорта.

Число подач суппорта 48, от 0,075 до 4,46 мм/об. Переключения коробки подач на шаг резьбы и подачу осуществляется всего лишь двумя рукоятками 22 и 23 (вместо пяти рукояток, имеющихся на станке 1А62).

Управление ходами каретки и суппорта осуществляется одной рукояткой 10, расположенной с правой стороны фартука. Особенность этой рукоятки заключается в том, что с направлением ее поворота совпадает направление подачи резца: наклоняя рукоятку 10 от себя, включаем поперечную подачу по направлению к центру; наклоняя рукоятку 10 на себя, получаем поперечную подачу от центра; при наклоне рукоятки 10 влево суппорт перемещается к передней бабке, при наклоне вправо - к задней бабке.


Рукояткой 10 производится также быстрое перемещение суппорта с резцом в тех же четырех направлениях. Для этих целей следует нажать кнопку, встроенную в шарик рукоятки 10, которая и включит электродвигатель для ускоренного перемещения суппорта.


Задняя бабка станка 1К62 при выполнении сверлильных работ может получать механическую подачу от суппорта, благодаря чему увеличивается производительность и облегчаются условия труда.

Для защиты рабочего от сходящей стружки на станке имеется специальный экран с козырьком из небьющегося стекла.

Для обработки деталей сложного профиля на станке имеется особое - устройство - гидрокопировальный суппорт.

На станке 1К62 в фартуке имеется кулачковая предохранительная муфта для автоматического выключения подачи, когда суппорт встретит неподвижно закрепленный упор.

5. Многорезцовые токарные станки

При изготовлении больших партий деталей ступенчатой формы, допускающих обработку одновременно несколькими резцами, применяют многорезцовые токарные станки (рис. 41).

Принцип работы многорезцовых станков заключается в том, что обработка на.этих станках производится одновременно несколькими резцами, расположенными в нескольких суппортах.

Суппорты многорезцовых станков снабжены специальными блочными резцедержателями, позволяющими закреплять одновременно по нескольку резцов в каждом.

При работе на многорезцовых станках значительно сокращается длина рабочего хода суппорта и, следовательно, уменьшается машинное время.

6. Револьверные станки

В серийном производстве однородных деталей, имеющих в большинстве случаев осевые отверстия, токарная обработка производится обычно на револьверных станках.

Револьверный станок представляет собой видоизменение обычного токарного станка и отличается от него наличием револьверной головки, устанавливаемой вместо задней бабки. В револьверной головке и боковом резцедержателе можно закрепить большое количество различных режущих инструментов и производить почти все токарные работы.

Преимущества револьверных станков по сравнению с токарными заключаются в следующем:
1. Сокращается вспомогательное время на смену и установку инструмента, на измерение обрабатываемой детали во время работы (при работе по упорам).
2. В возможности сокращения машинного времени за счет одновременной обработки детали от револьверной головки и бокового суппорта.


На рис. 42 показан в общем виде револьверный станок произ водства завода им. Орджоникидзе, на котором можно производить патронные и прутковые работы. Револьверная головка 2 расположена на суппорте 1 и перемещается вдоль станины. Револьверная головка вращается вокруг вертикальной оси и имеет ряд отверстий для закрепления режущего инструмента.

В револьверных станках других моделей револьверная головка вращается вокруг горизонтальной оси.

Резцовая головка 4, расположенная на суппорте 3, предназначена для выполнения как продольного, так и поперечного точения.

Рабочие перемещения револьверной и резцовой головок управляются упорами, ограничивающими продольное и поперечное перемещение инструментов.

7. Токарные автоматы

В крупносерийном и массовом производствах для токарной обработки применяют токарные автоматы и полуавтоматы.


Автоматами называются станки, на которых, после того как станок налажен, обработка производится без непосредственного участия рабочего.

Все движения в этих станках (установка и закрепление детали, подвод и отвод инструмента, переключение механизмов станка и др.) производятся автоматически. В обязанности рабочего, обслуживающего автомат, входит периодическая загрузка станка материалом, периодический контроль качества изготовляемых деталей, общее наблюдение за работой автомата.

Токарные автоматы подразделяются на одношпиндельные и многошпиндельные .

Одношпиндельные токарные автоматы могут обрабатывать детали из прутка или из штучных заготовок.

На рис. 43 показана кинематическая схема одношпиндельного пруткового токарного автомата.

Управление работой автомата осуществляется распределительным валом 3, на котором закреплены барабаны и кулачки, приводящие в движение различные части автомата. Так, барабан 2 управляет подачей прутка, барабан 1 - зажимом прутка, кулачок 7 - перемещением поперечных салазок 6 суппорта, барабан 5 - перемещением суппорта 4 продольной подачи. Деталь окончательно изготовляется в течение одного оборота распределительного вала 3.

Полуавтоматами называются станки, отличающиеся от автоматов лишь тем, что снятие готовой детали и установка новой заготовки производятся рабочим, обслуживающим станок. Обработка же деталей производится, как и у автомата, без участия рабочего. К станкам, работающим по полуавтоматическому циклу, относятся современные многорезцовые токарные станки.

8. Приводы токарных станков

По способу передачи станку движения от источника энергии приводы станка можно подразделить на два типа - индивидуальный и групповой.

У современных станков применяется индивидуальный привод : каждый станок приводится в движение собственным электродвигателем. Электродвигатель можно расположить на задней стенке станины, как это сделано у станка 1А62 (см. рис. 2, б), или внутри левой ножки (тумбы) станка, как это имеет место в станке 1К62. Последний способ очень удобен, так как электродвигатель не занимает добавочного места в цехе, не мешает рабочему и, кроме того, весь привод защищен от пыли, грязи и попадания стружки.

9. Правила ухода за токарным станком

Чистка станка . Ежедневно, по окончании смены, станок нужно очистить от стружки, а направляющие станины и суппорта- от эмульсии и грязи, протереть насухо концами и смазать тонким слоем смазки.

Конические отверстия шпинделя передней бабки и пиноли задней бабки перед закреплением в них инструмента или центра нужно тщательно очистить от грязи. Эти отверстия всегда должны быть чистыми и не иметь вмятин и забоин. От их исправного состояния зависит точность работы станка.

Смазка станка . Важнейшее правило ухода за станком- своевременная смазка всех трущихся частей станка. Подробно условия смазки станка приведены на стр. 58-60.

Уход за приводными ремнями . Необходимо постоянно следить, чтобы на приводные ремни не попадали смазочные материалы: засаленный ремень начинает проскальзывать по шкиву, плохо тянет и быстро срабатывается. Натяжение ремня не должно быть слишком тугим или слишком свободным. В первом случае будут сильно изнашиваться и нагреваться подшипники, во втором случае ремень будет проскальзывать.

Особое внимание необходимо уделять правильности установки и действия ограждений и предохранительных приспособлений у движущихся и вращающихся частей станка. Их следует всегда содержать в исправности и не снимать во время работы станка.

10. Паспорт токарного станка

Для наиболее рационального использования токарного станка необходимо располагать его основными данными. Для этого на каждый станок составляется паспорт, содержащий все сведения, необходимые для полной и точной характеристики станка.

В паспорте помещаются общие сведения, характеризующие тип станка, модель, назначение, завод-изготовитель и т. д. В паспорте приводятся основные размеры станка, наибольшие размеры обрабатываемых на нем деталей, размеры мест крепления инструмента и данные о суппорте, шпинделе и задней бабке. Затем указываются прилагаемые к станку принадлежности и приспособления, служащие для закрепления деталей и инструмента, для настройки и обслуживания станка и для специальных работ.

Далее в паспорте приводятся кинематическая схема станка и данные о зубчатых и червячных колесах, червяках, винтах и др., а также приводятся, данные, относящиеся к механизму главного движения и механизму подач, а именно: положения рукояток и соответствующие им числа оборотов шпинделя в минуту; наибольшие допустимые крутящие моменты на шпинделе; мощности на шпинделе; сменные зубчатые колеса гитары; подачи на один оборот шпинделя; допускаемые нагрузки наиболее слабых звеньев станка и т. д.

В паспорте указывается тип и характеристика электродвигателя, характеристика ремней, подшипников шпинделя,- фрикционной муфты и др.

В паспорте дается эскиз станка и указывается назначение каждой из рукояток управления.

Сведения об изменениях, произведенных в станке в связи с применением передовых методов работы (замена электродвигателя, шкивов зубчатых колес, увеличение ширины ремней, замена плоских ремней клиновидными, улучшение смазки подшипников, применение шариковых подшипников взамен подшипников скольжения и др.), вносятся в паспорт.

В приложении 1 в качестве примера приведен паспорт токарно-винторезного станка модели 1А62 производства завода «Красный пролетарий» (паспорт приведен в неполном виде).


Контрольные вопросы 1. Какими основными размерами характеризуются токарные станки?
2. Дайте краткую характеристику станка 1А62.
3. Назовите по схеме (см. рис. 35) назначение рукояток управления станком.
4. Для чего служат кинематические схемы?
5. Расскажите по кинематической схеме устройство коробки скоростей станка 1А62.
6. Расскажите по кинематической схеме устройство коробки подач станка 1А62.
7. Расскажите по кинематической схеме устройство фартука станка 1А62.
8. Для чего служит падающий червяк?
9. Для чего служит механизм блокировки? Как работает блокировочный механизм, показанный на рис. 38?
10. Перечислите правила ухода за токарным станком.
11. Какой станок называется лобовым? Чем он отличается от обычного токарного станка?
12. Чем отличается карусельный станок от лобового? В чем его преимущества?
13. В каких случаях применяют многорезцовые токарные станки?
14. Чем отличается револьверный станок от токарного? В чем его преимущества?
15. Какие станки называются автоматическими? Чем они отличаются от полуавтоматических станков?

Ни одно современное предприятие, занимающее определенную нишу в машиностроении или другой отрасли промышленности, не может обойтись без станков. И совершенно не важно – крупный завод или частная фирма – в любом случае на производстве нужны станки по металлу.

Однако сразу стоит отметить, что на сегодняшний день станки для работы с металлом имеют множество различных видов и типов, оборудование отличается между собой по функционалу, а также индивидуальному опционному наполнению. Эти и некоторые другие факторы позволяют нам определить виды металлообрабатывающих станков по характеристикам и основным признакам.

Начнем с азов. Среди других промышленных агрегатов главным отличием станков является наличие станины, на верхней поверхности которой, собственно, и устанавливается главный рабочий «орган». Металлообрабатывающим элементом может являться небольшой абразивный круг, алмазная коронка и даже сверло – все зависит от того, какую операцию необходимо выполнить. Зачастую общий вид металлообрабатывающего станка представлен массивной конструкцией с электродвигателем, платформой подачи, разнообразными фиксаторами, рабочей оснасткой и прочими элементами. Стоит заметить, что станки для дома (бытовые) и домашних мастерских выглядят намного скромнее, нежели промышленные агрегаты, используемые на предприятиях. Да и в последнее время станки уже выпускают не только стационарные. Сегодня можно встретить и мобильные настольные станки по металлу, а также мини-станки по металлу. Причем даже сами производители не всегда четко могут определить грань между малогабаритным компактным станком и ручным электроинструментом.

Одним из наиболее ярких представителей категории мобильных металлообрабатывающих агрегатов является настольный токарный станок по металлу. Конечно, купить настольные станки по металлу легче, так как их стоимость на порядок меньше, чем на стационарные аналоги, но при этом их компактность и отсутствие определенных органов обработки и управления не дает возможности поставить их в один ряд с крупногабаритным оборудованием.

Токарные станки

Наверное, это одна из популярнейших категорий металлообрабатывающих станков. Токарный станок по металлу способен выполнять практически весь спектр операций, связанных с обточкой деталей. На таком станке можно корректировать формы металлических заготовок, которые имеют свои тела вращения, а также осуществлять проточку пазов, резку и в некоторых случаях даже сверление. Подытожив, можно сделать вывод, что токарные станки служат для обработки заготовок в форме тел вращения. При этом в процессе обточки заготовки она приобретает цилиндрическую или коническую форму.
На данный момент существуют различные виды токарных станков, применяемых в разнообразных областях промышленности. К примеру, в деревообрабатывающей промышленности используются крупногабаритные токарные станки для создания пиломатериала округлой формы, а для личного использования применяются токарные мини-станки по металлу, которые компактно размещаются в частном доме или гараже.

Распиловочные станки

К этой относятся агрегаты, способные распилить заготовку на несколько частей. К таким режущим агрегатам относится ленточнопильный станок по металлу, а также циркулярный отрезной станок по металлу. Циркулярные устройства осуществляют только поперечный распил заготовок, делается это обычно в поточном режиме. Такие модели станков активно используются в домашнем хозяйстве, так как их операционные возможности являются весьма востребованными.
могут выполнять продольный распил заготовки. К примеру, однопильный ленточный станок может разрезать заготовку вдоль на две одинаковые части, а двупильный агрегат сможет «поделить» заготовку в двух уровнях, таким образом, разрезав ее на три части.

Фрезерные станки

Ориентированы на создание профилей определенного вида. Зачастую фрезеровка используется для обработки плоских заготовок путем снятия кромок на заданную высоту. Такие станки применяются как для обработки дерева, так и для работы по металлу. В деревянном производстве с помощью одного фрезера выпускают полноценные строительные материалы – шипы, вагонку, плинтусы и т.д.

Станки для сверления отверстий

Не менее востребованы в домашних мастерских, а также на производстве . С их помощью с легкостью можно создать сквозное или глухое отверстие. Данные станки, в отличие от обычных электродрелей, обеспечивают более точное сверление. Кроме того, сверлильные станки гораздо мощнее, что позволяет проделывать с их помощью отверстия большого диаметра. Самыми распространенными считаются с верхним расположением шпинделя. В отдельную категорию стоит выделить сверлильно-долбежные станки, которые, помимо сверлильных операций, могут выполнять и некоторые фрезерные действия. Но так как это все-таки сверлильный станок, то фрезеровка на нем получается не совсем традиционной, а несколько узконаправленной.

Достаточно широкий ассортимент станочных агрегатов представлен в сегменте оборудования для поверхностной обработки заготовок и деталей. Обобщенно такие операции позиционируются как шлифовочные, но, стоит заметить, что это лишь часть функций, которые могут выполнять такие агрегаты. Тип обработки, который будет выполнять какая-то конкретная машина, зависит только от ее конструкционного исполнения.

Классификация станков по возможному материалу обработки

Все производственные станки разделяются по своим техническим характеристикам, исходя из материала заготовок, которые они будут обрабатывать. Так, металл и древесина считаются основными материалами, с которыми работает станочное оборудование. Для работы с деревянными заготовками подходят станки с более слабыми показателями мощностями. Но, с другой стороны, деревообрабатывающие станки должны обеспечиваться более гибкими настройками по операциям. Что касается станков для металлообработки, то они требуют более высокой мощности и надежной элементной базы. Наиболее популярными считаются токарные, фрезерные и сверлильные станки.

Классификация станков по типу управления

Станки с ручным управлением постепенно уходят в прошлое. Конечно, сейчас купить токарный станок по металлу с ручным управлением легко, но их приобретают все реже и используются они зачастую в небольших мастерских для производства штучных деталей. В то же время, крупные предприятия стремятся переориентировать свои мощности на автоматизированные установки. К этому сегменту относятся различные станки, отличающиеся своим уровнем автоматизации. Одним из наиболее востребованных считается станок с ЧПУ по металлу, с помощью которого можно выставить высокоточные настройки обработки.

Заключение

Большинство станков, активно применяющихся как в промышленности, так и в частном использовании – это агрегаты для выполнения механической обработки. Сверление, шлифовка, торцовка, резка – для выполнения этих операций используются различные металлические насадки, которые можно спокойно приобрести в специализированных магазинах. На сегодняшний день купить станки по металлу довольно-таки просто. Рынок заполнен как новым оборудованием, так и б/у. Главное знать, как работать на них. Цена на станки по металлу зависит от их комплектации, а также от производственной направленности. Важно знать, что покупая любой станок, практически всегда приходится дополнительно приобретать резцы для станка по металлу, цены на эти изделия зависят напрямую от их качества. Отдельно хочется сказать о станках с ЧПУ – за этими обрабатывающими агрегатами будущее, так как они высокоточно выполняют заданные работы и при этом практически не нуждаются в участии человека. Единственное, что до сих пор сдерживает большинство предприятий от перехода на современное оборудование – это высокая цена на токарный станок по металлу с ЧПУ и сложность организации работы с таким современным оборудованием.

Металлорежущие станки с программным управлением представляют собой самую разнообразную и совершенную группу машин, в которой широко используются средства автоматики и электроники, электрические, механические, гидравлические, пневматические и другие устройства. Тип станка определяется выбранным технологическим процессом механической обработки, схемой резания и применяемым инструментом. Схемы резания определяют кинематические связи между инструментом и заготовкой, при этом должны быть обеспечены необходимые требования чертежа: точность и заданная шероховатость обработки поверхности, а также производительность и экономичность обработки. Настройка станка заключается не только в сообщении его исполнительным органам согласованных взаимосвязанных движений, но и в задании наивыгоднейших режимов резания. Процесс обработки (цикл) записывают в программоносителе станка, при этом корректируют режимы резания, учитывая характеристики станка. Рекомендуемые скорость резания, сила и мощность резания определяют по известным эмпирическим формулам из курса «Резание металлов» или по специальным картам технологических нормативов, имеющимся, например, в работе. Снятие стружки на станках осуществляется рабочими движениями, к которым относятся главное движение и движения подачи.

В токарных, сверлильных, фрезерных, шлифовальных станках главное движение - вращательное, в строгальных, долбежных, протяжных станках - возвратно-поступательное. Главное движение сообщается инструменту (например, во фрезерных, сверлильных, поперечно-строгальных станках) или заготовке (например, в токарных, продольно-строгальных станках). Движение подачи сообщается инструменту или заготовке. Для обработки некруглых отверстий любой формы в токонепроводящих материалах, обладающих высокой твердостью, применяют ультразвуковые станки, в которых инструмент имеет колебательное движение высокой частоты вдоль своей оси.

В каждом станке имеются и вспомогательные движения. К ним относятся движения: транспортирования и закрепления заготовки, подвода и отвода инструмента, включения, выключения, переключения скоростей и подач и т. д. Если рабочие движения автоматизированы, то вспомогательные движения можно осуществлять как автоматически, так и вручную. В некоторых станках для получения заданной формы и конфигурации детали используют дополнительные формообразующие движения, кинематически связанные с основными движениями станка (например, движение образования винтовой поверхности при фрезеровании резьб, движение обката при нарезании зубчатых колес, червяков, шлицевых валов в зубообрабатывающих станках). Основные типы, параметры станков и размеры станков с ЧПУ должны соответствовать требованиям ГОСТ 21608-76-ГОСТ 21613-76. В стандартах указаны направления координатных осей, дискретность задания перемещений по осям, конусности шпинделей.

Некоторые виды станков и направления движений рабочих органов представлены на рис. 1.

Токарные станки (рис. 1, а). Ось X перпендикулярна оси шпинделя, ось Z параллельна ей.

Фрезерные станки (рис. 1, б). Обрабатываемая заготовка устанавливается на столе станка и совершает движения формообразования по трем координатам X, У и Z или по двум координатам X и Y, а по третьей координате движение осуществляет инструмент, установленный в шпинделе станка.

Сверлильные станки (рис. 1, в). В станках вместо привычных форм шпинделей появились револьверные головки для автоматической смены инструмента, крестовые столы и инструментальные магазины.

Горизонтально-расточные и координатно-расточные станки (рис. 1, г) с инструментальным магазином объединили в себе эксплуатационные качества целого ряда станков обычного исполнения.

Многооперационные станки (рис. 1, д) обеспечивают выполнение многих технологических операций при обработке сложных деталей с разных сторон без их перебазирования и, как правило, с автоматической сменой инструмента. Использование многооперациоиных станков позволяет упростить технологический процесс изготовления деталей: обработку можно вести за один уставов. Производительность труда на многооперационных станках в 4 - 10 раз выше, чем на универсальных.

Основные детали и механизмы станков. Можно назвать три основные группы узлов, определяющих вид, размеры и тип станка.

  • Корпусные (базовые) узлы - станины, стойки, колонны, поперечины, которые определяют основу станка и взаимное расположение всех узлов.
  • Узлы для закрепления заготовки - стол, передняя и задняя бабки или ползун, которые определяют характер движения обрабатываемой детали.
  • Узел закрепления инструмента (позиционер) - суппорт, револьверная головка, бабка инструментального шпинделя, которые определяют расположение по отношению к обрабатываемой детали и характер движения инструмента. В современных станках широко применяют унифицированные узлы, блоки, модульные конструкции, которые используют в станках разного назначения! токарных, фрезерных, сверлильных и в других, что удешевляет производство станков, их эксплуатацию и ремонт. Назовем основные унифицированные узлы: автоматические коробки скоростей (АКС), механические вариаторы, комплектные электроприводы с асинхронными электродвигателями и электродвигателями постоянного тока, электромагнитные и тормозные муфты, передачи винт-гайка качения, беззазорные редукторы, гидростатические передачи, гидропанели, системы смазывания и охлаждения, инструментальные головки и блоки, револьверные головки, резцедержатели, устройства управления ЧПУ, устройства наладки инструментов вне станка и др.

Рабочие органы управления станков с ЧПУ выполняют в вида электрических кнопок, тумблеров, переключателей. Эти органы совместно с сигнализирующей аппаратурой позволяют выполнять работы как в автоматическом (от программоносителя), так и в ручном режимах, и наблюдать за правильностью выполнения работ. Обычно станок с ЧПУ имеет два или три пульта управления. Один размещается на системе ЧПУ, второй (оперативный) располагается вблизи рабочих органов, третий пульт служит для включения станка и основных его систем, он может быть расположен вдали от рабочих органов станка.

Исполнительные механизмы приводов подач станков с ЧПУ предназначены для реализации точных перемещений рабочих органов на значительные расстояния, содержат замкнутые зубчатореечные, зубчато-червячные и шарико-винтовые передачи, в которых с помощью разветвленных кинематических цепей и нагрузочных устройств (суппортов, салазок, столов, стоек) обеспечивается их неразмыкание, автоматическая силовая выборка зазоров.

Перспективы развития станков с программным управлением. В одиннадцатой пятилетке будет продолжаться опережающий выпуск’станков’с ЧПУ. Технический уровень станков с ЧПУ повышается в результате применения базовых конструкций и соответствующей номенклатуры комплектного оборудования систем ЧПУ, модульных конструкций, стандартных и унифицированных узлов. Требования точности и повышение производительности, для обеспечения которых необходимы жесткость, виброустойчивость, быстроходность, долговечность, в современных высокопроизводительных станках достигаются применением пластиковых и гидростатических направляющих, портальных конструкций станин. Применение вертикальных компоновок станков (вместо горизонтальных) способствует уменьшению занимаемых площадей и лучшему удалению стружки из зоны резания.

Развитие программного управления будет идти по пути создания и более простых станков с упрощенными устройствами ЧПУ, а также с применением самоприспособляющихся (адаптивных) систем управления.

Современные станки должны быть приспособлены для работы в автоматических линиях. Промышленные роботы (манипуляторы) обеспечат погрузку, разгрузку, транспортирование и контроль на автоматизированных участках, управляемых от ЭВМ. Технологичность конструкций, удобство обслуживания, безопасность работы на станках, быстрота и удобство регулировок обеспечат высокие экономические и эксплуатационные характеристики станков.

Программное управление и системное проектирование электроприводов станков на базе интегральной технологии и больших интегральных схем позволяют создавать микро-ЭВМ (микропроцессор МП), состоящую из оперативного и управляющего устройств, предназначенную для автоматического выполнения последовательности операций по записанной в оперативной памяти программе, которая может изменяться. Программное управление обеспечивает логическую гибкость, т. е. возможность использовать МП для выполнения различных функций во многих областях, с изменением программы работы изменяется функционирование процессора.

Электроприводы станков с устройствами автоматики также будут охватывать широкий круг разнообразных простейших контролеров, необходимых для управления относительно несложными объектами, например, измерительными приборами и промышленными роботами, автоматизированными устройствами технического диагностирования станочного оборудования, что удешевит ремонт и эксплуатацию станков.

Современная техника требует от рабочего повышенной реакции, продуманности действий и, следовательно, значительного нервного напряжения. Поэтому на станкостроительных заводах уделяется повышенное внимание эргономике и архитектуре станков, т. е. созданию станков с совершенными внешними формами, окраской, удобным расположением механизмов управления и сигнализации.

Выполнение требований эргономики и технической эстетики способствует сохранению здоровья трудящихся и росту производительности труда. Поэтому большое внимание уделяется хорошей организации рабочего места, удобному расположению инструмента, созданию доступа к рычагам, кнопкам и другим органам управления машиной. Все это в конечном итоге способствует повышению работоспособности рабочего, безопасности работы и созданию хорошего настроения.

Станки с ЧПУ принято классифицировать по поколениям. Станки каждого поколения могут иметь право на существование исходя из экономической целесообразности. Станки первого поколения - универсальные, станки второго поколения представляют собой конструкции, специально разработанные для ЧПУ, и станки третьего поколения характеризуются возможностью обеспечения комплексной обработки.

Устройства ЧПУ станков характеризуют и по применяемой элементной базе, программоносителю, структуре устройства и приводу подач. При этом одно и то же устройство может быть отнесено к различным поколениям в зависимости от принятого классификационного признака. По признаку элементной базы, различают следующие четыре поколения: 1 - на полупроводниковых схемах; 2 - на интегральных схемах малой интеграции; 3 - на интегральных схемах средней интеграции (СИС - средние интегральные схемы); 4 - на интегральных схемах большой интеграции (БИС).

По признаку программоносителя различают три поколения:

  • 1 - магнитная лента с записью программы унитарным кодом или фазомодулированным сигналом;
  • 2 - перфолента пятидорожковая с записью программы в коде БЦК-5;
  • 3 - перфолента восьмидорожковая с записью программы в коде ISO.

По признаку структуры различают три поколения:

  • 1 - автономное устройство с постоянной структурой NC (Numerat Control);
  • 2 - автономное устройство с переменной структурой CNC (Computer Numerat Control);
  • 3 - центральная ЭВМ с периферийными устройствами DNC (Direct Numerat Control) - управление от одной ЭВМ.

По признаку привода подач различают следующие поколения: 1 - привод с максимальной частотой до 1000 Гц (шаговый с электродвигателями постоянного тока); 2 - шаговый с максимальной частотой 8000 Гц, частота приемистости (частота наброса) 2000 Гц; 3 - шаговый с максимальной частотой 16 000 Гц; 4 - привод от высокомоментных электродвигателей постоянного тока с тиристорными преобразователями и силовыми шаговыми электродвигателями с максимальной частотой 16 000 Гц.

Повышение частоты обеспечивает повышение скорости перемещения рабочих органов станка, а, следовательно, производительности. Повышение точности обработки обеспечивают уменьшением дискретности. В устройствах ЧПУ с приводом подачи четвертого поколения обеспечены дискретность 0,001 мм и скорость быстрого перемещения 10 м/мин. Однако известны устройства подачи при дискретности 0,001 мм и скорости быстрого перемещения до 20 м/мин.

Устройства с постоянной структурой выпускают для различных групп станков: токарных («Контур-2ПТ», Н-22), фрезерных («Контур-ЗП», Н-33), координатно-расточных («Размер-2М», П-33), шлифовальных (Ш-111М, П-111), электроэрозионных («Контур-2П-67»). Эти устройства имеют ввод кодированной программы на перфоленте.

Устройства с переменной структурой возникли позднее. Устройства с переменной структурой строятся на основе микро-ЭВМ либо микропроцессоров (класса СNС). Важной особенностью систем СNС является возможность хранения всей управляющей программы в памяти. Это позволяет выполнять редактирование программы непосредственно у станка.