Обыкновенные и десятичные дроби и действия над ними. Действия с десятичными дробями
В данной статье мы с Вами разберемся, что такое десятичная дробь, какие у нее есть особенности и свойства. Поехали! 🙂
Десятичная дробь является частным случаем обыкновенных дробей (у которой знаменатель кратен 10).
Определение
Десятичными называют дроби, знаменатели которых представляют собой числа, состоящие из единицы и некоторого количества следующих за нею нулей. То есть это дроби со знаменателем 10, 100, 1000 и т.д. Иначе десятичную дробь можно охарактеризовать как дробь со знаменателем 10 или одной из степеней десятки.
Примеры дробей:
, ,
Десятичная дробь записывается иначе, чем обыкновенная. Операции с этими дробями также отличны от операций с обыкновенными. Правила действий над ними в значительной мере приближены к правилами действий над целыми числами. Этим, в частности, обусловлена их востребованность при решении практических задач.
Представление дроби в десятичной записи
В записи десятичной дроби нет знаменателя, в ней отображено число числителя. В общем виде запись десятичной дроби осуществляется по такой схеме:
где Х – целая часть дроби, Y – ее дробная часть, «,» – десятичная запятая.
Для правильного представления обыкновенной дроби в виде десятичной требуется, чтобы она была правильной, то есть с выделенной целой частью (если это возможно) и числителем, который меньше знаменателя. Тогда в десятичной записи целая часть записывается до десятичной запятой (Х), а числитель обыкновенной дроби – после десятичной запятой (Y).
Если в числителе представлено число с количеством знаков, меньшим, чем количество нулей в знаменателе, то в части Y недостающее количество знаков в десятичной записи заполняется нулями впереди цифр числителя.
Пример:
Если обыкновенная дробь меньше 1, т.е. не имеет целой части, то для Х в десятичном виде записывают 0.
В дробной части (Y), после последнего значимого (отличного от нуля) разряда, может быть вписано произвольное количество нулей. На значение дроби это не влияет. И наоборот: все нули в конце дробной части десятичной дроби можно опустить.
Прочтение десятичных дробей
Часть Х читается в общем случае так: «Х целых».
Часть Y прочитывается в соответствии с числом в знаменателе. Для знаменателя 10 следует читать: «Y десятых», для знаменателя 100: «Y сотых», для знаменателя 1000: «Y тысячных» и так далее… 😉
Более корректным считается другой подход к прочтению, основанный на подсчете количества разрядов дробной части. Для этого нужно понимать, что дробные разряды расположены в зеркальном отражении по отношению к разрядам целой части дроби.
Наименования для правильного прочтения приведены в таблице:
Исходя из этого, прочтение должно опираться на соответствие наименованию разряда последней цифры дробной части.
- 3,5 читается как «три целых пять десятых»
- 0,016 читается как «ноль целых шестнадцать тысячных»
Перевод произвольной обыкновенной дроби в десятичную
Если в знаменателе обыкновенной дроби стоит 10 или какая-нибудь степень десятки, то перевод дроби выполняется как описано выше. В остальных ситуациях необходимы дополнительные преобразования.
Существует 2 способа перевода.
Первый способ перевода
Числитель и знаменатель необходимо домножить на такое целое число, чтобы в знаменателе было получено число 10 или одна из степеней десятки. А далее дробь представляется в десятичной записи.
Этот способ применим для дробей, знаменатель которых раскладывается только на 2 и 5. Так, в предыдущем примере . Если же в разложении присутствуют другие простые множители (например, ), то придется прибегнуть ко 2-му способу.
Второй способ перевода
2-й способ заключается в делении числителя на знаменатель в столбик или на калькуляторе. Целая часть, если таковая имеется, в преобразовании не участвует.
Правило деления в столбик, приводящее в результате к десятичной дроби, описано ниже (см. Деление десятичных дробей).
Перевод десятичной дроби в обыкновенную
Для этого следует ее дробную часть (справа от запятой) записать в виде числителя, а результат прочтения дробной части – в виде соответствующего числа в знаменателе. Далее, если это возможно, нужно сократить полученную дробь.
Конечная и бесконечная десятичная дробь
Конечной называют десятичная дробь, дробная часть которой состоит из конечного количества цифр.
Выше все приведенные примеры содержат именно конечные десятичные дроби. Однако не всякую обыкновенную дробь возможно представить в виде конечной десятичной. Если 1-й способ перевода для данной дроби не применим, а 2-й способ демонстрирует, что деление невозможно завершить, значит, получена может быть только бесконечная десятичная дробь.
В полном виде бесконечную дробь записать невозможно. В неполном же виде такие дроби можно представить:
- как результат сокращения до желательного количества разрядов после запятой;
- в виде периодической дроби.
Периодической называется дробь, у которой после запятой можно выделить повторяющуюся бесконечно последовательность цифр.
Остальные дроби называются непериодическими. Для непериодических дробей допустим только 1-й способ представления (округление).
Пример периодической дроби: 0,8888888… Здесь налицо повторяющаяся цифра 8, которая, очевидно, будет повторяться до бесконечности, поскольку нет оснований предполагать иное. Эта цифра называется периодом дроби .
Периодические дроби бывают чистыми и смешанными. Чистой является десятичная дробь, у которой период начинается непосредственно после запятой. У смешанной дроби до периода после запятой имеется 1 или больше цифр.
54,33333… – периодическая чистая десят.дробь
2,5621212121… – периодическая смешанная дробь
Примеры записи бесконечных десятичных дробей:
Во 2-м примере показано, как правильно оформлять период в записи периодической дроби.
Перевод периодических десятичных дробей в обыкновенные
Для перевода чистой периодической дроби в обыкновенную ее период записывают в числитель, а в знаменатель пишут число, состоящее из девяток в количестве, равном количеству цифр в периоде.
Смешанная периодическая десятичная дробь переводится следующим образом:
- нужно сформировать число, состоящее из числа, стоящего после запятой до периода, и первого периода;
- из полученного числа вычесть число, стоящее после запятой до периода. Итог составит числитель обыкновенной дроби;
- в знаменателе требуется вписать число, состоящее из кол-ва девяток, равных кол-ву цифр периода, а за ними нулей, кол-во которых равно количеству цифр числа, стоящего после запятой до 1-го периода.
Сравнение десятичных дробей
Десятичные дроби сравнивают первоначально по их целым частям. Больше та дробь, у которой больше ее целая часть.
Если целые части одинаковы, то сравнивают цифры соответствующих разрядов дробной части, начиная с первого (с десятых). Здесь действует тот же принцип: больше та из дробей, у которой больше разряд десятых; при равенстве цифр разряда десятых сравнивают разряды сотых и так далее.
Поскольку
, поскольку при равных целых частях и равных десятых в дробной части у 2-й дроби больше цифра сотых.
Сложение и вычитание десятичных дробей
Десятичные дроби складывают и вычитают так же, как и целые числа, записав соответствующие цифры друг под другом. Для этого нужно, чтобы друг под другом находились десятичные запятые. Тогда единицы (десятки и т.д.) целой части, а также десятые (сотые и т.д.) дробной окажутся в соответствии. Недостающие разряды дробной части заполняют нулями. Непосредственно процесс сложения и вычитания осуществляется так же, как и для целых чисел.
Умножение десятичных дробей
Для умножения десятичных дробей нужно записать их друг под другом, выровняв по последней цифре и не обращая внимания на местоположение десятичных запятых. Затем нужно перемножить числа так же, как и при умножении целых чисел. После получения результата следует пересчитать количество цифр после запятой в обоих дробях и отделить запятой в результирующем числе суммарное количество дробных разрядов. Если разрядов не хватает, то они заменяются нулями.
Умножение и деление десятичных дробей на 10 n
Эти действия просты и сводятся к переносу десятичной запятой. При умножении запятая переносится вправо (дробь увеличивается) на количество знаков, равных количеству нулей в 10 n , где n – произвольная целая степень. То есть некоторое количество цифр переносится из дробной части в целую. При делении, соответственно, запятая переносится влево (число уменьшается), и некоторая часть цифр переносится из целой части в дробную. Если цифр для переноса оказывается недостаточно, то недостающие разряды заполняются нулями.
Деление десятичной дроби и целого числа на целое число и на десятичную дробь
Деление в столбик десятичной дроби на целое число выполняется аналогично делению двух целых чисел. Дополнительно требуется только учет положения десятичной запятой: при сносе цифры разряда, за которым следует запятая, необходимо поставить запятую после текущей цифры формируемого ответа. Далее нужно продолжать делить до получения нуля. Если знаков в делимом для полного деления недостает, в их качестве следует использовать нули.
Аналогично делятся в столбик 2 целых числа, если снесены все цифры делимого, а полное деление еще не завершено. В этом случае после сноса последней цифры делимого ставится десят.запятая в формирующемся ответе, а в качестве сносимых цифр используют нули. Т.е. делимое здесь, по сути, представляют как десятичную дробь с нулевой дробной частью.
Для деления десят.дроби (или целого числа) на десят.число необходимо домножить делимое и делитель на число 10 n , в котором количество нулей равно количеству цифр после десят.запятой в делителе. Таким способом избавляются от десят.запятой в дроби, на которую требуется делить. Далее процесс деления совпадает с описанным выше.
Графическое представление десятичных дробей
Графически десятичные дроби изображаются посредством координатной прямой. Для этого единичные отрезки делят дополнительно на 10 равных долей подобно тому, как на линейке откладываются одновременно сантиметры и миллиметры. Это обеспечивает точное отображение десятичных дробей и возможность объективного их сравнения.
Чтобы дольные деления на единичных отрезках были одинаковыми, следует тщательно продумывать длину самого единичного отрезка. Она должна быть такой, чтобы можно было обеспечить удобство дополнительного деления.
Эта статья про десятичные дроби . Здесь мы разберемся с десятичной записью дробных чисел, введем понятие десятичной дроби и приведем примеры десятичных дробей. Дальше поговорим о разрядах десятичных дробей, дадим названия разрядов. После этого остановимся на бесконечных десятичных дробях, скажем о периодических и непериодических дробях. Дальше перечислим основные действия с десятичными дробями. В заключение установим положение десятичных дробей на координатном луче.
Навигация по странице.
Десятичная запись дробного числа
Чтение десятичных дробей
Скажем пару слов о правилах чтения десятичных дробей.
Десятичные дроби, которым соответствуют правильные обыкновенные дроби, читаются также как и эти обыкновенные дроби, только еще предварительно добавляется «ноль целых». Например, десятичной дроби 0,12 отвечает обыкновенная дробь 12/100 (читается «двенадцать сотых»), поэтому, 0,12 читается как «нуль целых двенадцать сотых».
Десятичные дроби, которым соответствуют смешанные числа, читаются абсолютно также как эти смешанные числа. Например, десятичной дроби 56,002 соответствует смешанное число , поэтому, десятичная дробь 56,002 читается как «пятьдесят шесть целых две тысячных».
Разряды в десятичных дробях
В записи десятичных дробей, также как и в записи натуральных чисел, значение каждой цифры зависит от ее позиции. Действительно, цифра 3 в десятичной дроби 0,3 означает три десятых, в десятичной дроби 0,0003 – три десяти тысячных, а в десятичной дроби 30 000,152 – три десятка тысяч. Таким образом, мы можем говорить о разрядах в десятичных дробях , так же как и о разрядах в натуральных числах .
Названия разрядов в десятичной дроби до десятичной запятой полностью совпадают с названиями разрядов в натуральных числах. А названия разрядов в десятичной дроби после запятой видны из следующей таблицы.
Например, в десятичной дроби 37,051 цифра 3 находится в разряде десятков, 7 – в разряде единиц, 0 стоит в разряде десятых, 5 – в разряде сотых, 1 – в разряде тысячных.
Разряды в десятичной дроби также различаются по старшинству. Если в записи десятичной дроби двигаться от цифры к цифре слева на право, то мы будем перемещаться от старших к младшим разрядам . Например, разряд сотен старше разряда десятых, а разряд миллионных младше разряда сотых. В данной конечной десятичной дроби можно говорить о старшем и младшем разряде. К примеру, в десятичной дроби 604,9387 старшим (высшим) разрядом является разряд сотен, а младшим (низшим) - разряд десятитысячных.
Для десятичных дробей имеет место разложение по разрядам. Оно аналогично разложению по разрядам натуральных чисел . Например, разложение по разрядам десятичной дроби 45,6072 таково: 45,6072=40+5+0,6+0,007+0,0002 . А свойства сложения от разложения десятичной дроби по разрядам позволяют перейти к другим представлениям этой десятичной дроби, например, 45,6072=45+0,6072 , или 45,6072=40,6+5,007+0,0002 , или 45,6072=45,0072+0,6 .
Конечные десятичные дроби
До этого момента мы говорили лишь о десятичных дробях, в записи которых после десятичной запятой находится конечное число цифр. Такие дроби называют конечными десятичными дробями.
Определение.
Конечные десятичные дроби – это десятичные дроби, в записях которых содержится конечное число знаков (цифр).
Приведем несколько примеров конечных десятичных дробей: 0,317 , 3,5 , 51,1020304958 , 230 032,45 .
Однако не всякая обыкновенная дробь может быть представлена в виде конечной десятичной дроби. К примеру, дробь 5/13 не может быть заменена равной ей дробью с одним из знаменателей 10, 100, … , следовательно, не может быть переведена в конечную десятичную дробь. Подробнее об этом мы поговорим в разделе теории перевод обыкновенных дробей в десятичные дроби .
Бесконечные десятичные дроби: периодические дроби и непериодические дроби
В записи десятичной дроби после запятой можно допустить возможность наличия бесконечного количества цифр. В этом случае мы придем к рассмотрению так называемых бесконечных десятичных дробей.
Определение.
Бесконечные десятичные дроби – это десятичные дроби, в записи которых находится бесконечное множество цифр.
Понятно, что бесконечные десятичные дроби мы не можем записать в полном виде, поэтому в их записи ограничиваются лишь некоторым конечным числом цифр после запятой и ставят многоточие, указывающее на бесконечно продолжающуюся последовательность цифр. Приведем несколько примеров бесконечных десятичных дробей: 0,143940932… , 3,1415935432… , 153,02003004005… , 2,111111111… , 69,74152152152… .
Если внимательно посмотреть на две последние бесконечные десятичные дроби, то в дроби 2,111111111… хорошо видна бесконечно повторяющаяся цифра 1 , а в дроби 69,74152152152… , начиная с третьего знака после запятой, отчетливо видна повторяющаяся группа цифр 1 , 5 и 2 . Такие бесконечные десятичные дроби называют периодическими.
Определение.
Периодические десятичные дроби (или просто периодические дроби ) – это бесконечные десятичные дроби, в записи которых, начиная с некоторого знака после запятой, бесконечно повторяется какая-нибудь цифра или группа цифр, которую называют периодом дроби .
Например, периодом периодической дроби 2,111111111… является цифра 1 , а периодом дроби 69,74152152152… является группа цифр вида 152 .
Для бесконечных периодических десятичных дробей принята особая форма записи. Для краткости условились период записывать один раз, заключая его в круглые скобки. Например, периодическая дробь 2,111111111… записывается как 2,(1) , а периодическая дробь 69,74152152152… записывается как 69,74(152) .
Стоит отметить, что для одной и той же периодической десятичной дроби можно указать различные периоды. Например, периодическую десятичную дробь 0,73333… можно рассматривать как дробь 0,7(3) с периодом 3 , а также как дробь 0,7(33) с периодом 33 , и так далее 0,7(333), 0,7(3333), … Также на периодическую дробь 0,73333… можно посмотреть и так: 0,733(3) , или так 0,73(333) и т.п. Здесь, чтобы избежать многозначности и разночтений, условимся рассматривать в качестве периода десятичной дроби самую короткую из всех возможных последовательностей повторяющихся цифр, и начинающуюся с самой близкой позиции к десятичной запятой. То есть, периодом десятичной дроби 0,73333… будем считать последовательность из одной цифры 3 , и периодичность начинается со второй позиции после запятой, то есть, 0,73333…=0,7(3) . Еще пример: периодическая дробь 4,7412121212… имеет период 12 , периодичность начинается с третьей цифры после запятой, то есть, 4,7412121212…=4,74(12) .
Бесконечные десятичные периодические дроби получаются при переводе в десятичные дроби обыкновенных дробей, знаменатели которых содержат простые множители, отличные от 2 и 5 .
Здесь же стоит сказать о периодических дробях с периодом 9 . Приведем примеры таких дробей: 6,43(9) , 27,(9) . Эти дроби являются другой записью периодических дробей с периодом 0 , и их принято заменять периодическими дробями с периодом 0 . Для этого период 9 заменяют периодом 0 , а значение следующего по старшинству разряда увеличивают на единицу. Например, дробь с периодом 9 вида 7,24(9) заменяется периодической дробью с периодом 0 вида 7,25(0) или равной ей конечной десятичной дробью 7,25 . Еще пример: 4,(9)=5,(0)=5 . Равенство дроби с периодом 9 и соответствующей ей дроби с периодом 0 легко устанавливается, после замены этих десятичных дробей равными им обыкновенными дробями.
Наконец, повнимательнее рассмотрим бесконечные десятичные дроби, в записи которых отсутствует бесконечно повторяющаяся последовательность цифр. Их называют непериодическими.
Определение.
Непериодические десятичные дроби (или просто непериодические дроби ) – это бесконечные десятичные дроби, не имеющие периода.
Иногда непериодические дроби имеют вид, схожий с видом периодических дробей, например, 8,02002000200002… - непериодическая дробь. В этих случаях следует быть особо внимательными, чтобы заметить разницу.
Отметим, что непериодические дроби не переводятся в обыкновенные дроби, бесконечные непериодические десятичные дроби представляют иррациональные числа .
Действия с десятичными дробями
Одним из действий с десятичными дробями является сравнение, также определены четыре основных арифметических действия с десятичными дробями : сложение, вычитание, умножение и деление. Рассмотрим отдельно каждое из действий с десятичными дробями.
Сравнение десятичных дробей по сути базируется на сравнении обыкновенных дробей , отвечающих сравниваемым десятичным дробям. Однако перевод десятичных дробей в обыкновенные является достаточно трудоемким действием, да и бесконечные непериодические дроби не могут быть представлены в виде обыкновенной дроби, поэтому удобно использовать поразрядное сравнение десятичных дробей. Поразрядное сравнение десятичных дробей аналогично сравнению натуральных чисел . Для получения более детальной информации рекомендуем изучить материал статьи сравнение десятичных дробей, правила, примеры, решения .
Переходим к следующему действию - умножению десятичных дробей . Умножение конечных десятичных дробей проводится аналогично вычитание десятичных дробей, правила, примеры, решения умножению столбиком натуральных чисел. В случае периодических дробей умножение можно свести к умножению обыкновенных дробей . В свою очередь умножение бесконечных непериодических десятичных дробей после их округления сводится к умножению конечных десятичных дробей. Рекомендуем к дальнейшему изучению материал статьи умножение десятичных дробей, правила, примеры, решения .
Десятичные дроби на координатном луче
Между точками и десятичными дробями существует взаимно однозначное соответствие.
Разберемся, как строятся точки на координатном луче, соответствующие данной десятичной дроби.
Конечные десятичные дроби и бесконечные периодические десятичные дроби мы можем заменить равными им обыкновенными дробями, после чего построить соответствующие обыкновенные дроби на координатном луче . Например, десятичной дроби 1,4 отвечает обыкновенная дробь 14/10 , поэтому точка с координатой 1,4 удалена от начала отсчета в положительном направлении на 14 отрезков, равных десятой доле единичного отрезка.
Десятичные дроби можно отмечать на координатном луче, отталкиваясь от разложения данной десятичной дроби по разрядам. Например, пусть нам нужно построить точку с координатой 16,3007 , так как 16,3007=16+0,3+0,0007 , то в данную точку можно попасть, последовательно откладывая от начала координат 16 единичных отрезков, 3 отрезка, длина которых равна десятой доле единичного, и 7 отрезков, длина которого равна десятитысячной доле единичного отрезка.
Такой способ построения десятичных чисел на координатном луче позволяет сколь угодно близко приблизиться к точке, отвечающей бесконечной десятичной дроби.
Иногда возможно точно построить точку, соответствующую бесконечной десятичной дроби. Например, , тогда этой бесконечной десятичной дроби 1,41421… соответствует точка координатного луча, удаленная от начала координат на длину диагонали квадрата со стороной 1 единичный отрезок.
Обратный процесс получения десятичной дроби, соответствующей данной точке на координатном луче, представляет собой так называемое десятичное измерение отрезка . Разберемся, как оно проводится.
Пусть наша задача заключается в том, чтобы попасть из начала отсчета в данную точку координатной прямой (или бесконечно приблизиться к ней, если попасть в нее не получается). При десятичном измерении отрезка мы можем последовательно откладывать от начала отсчета любое количество единичных отрезков, далее отрезков, длина которых равна десятой доле единичного, затем отрезков, длина которых равна сотой доле единичного, и т.д. Записывая количество отложенных отрезков каждой длины, мы получим десятичную дробь, соответствующую данной точке на координатном луче.
К примеру, чтобы попасть в точку М на приведенном выше рисунке, нужно отложить 1 единичный отрезок и 4 отрезка, длина которых равна десятой доле единичного. Таким образом, точке М соответствует десятичная дробь 1,4 .
Понятно, что точкам координатного луча, в которые невозможно попасть в процессе десятичного измерения, соответствуют бесконечные десятичные дроби.
Список литературы.
- Математика : учеб. для 5 кл. общеобразоват. учреждений / Н. Я. Виленкин, В. И. Жохов, А. С. Чесноков, С. И. Шварцбурд. - 21-е изд., стер. - М.: Мнемозина, 2007. - 280 с.: ил. ISBN 5-346-00699-0.
- Математика. 6 класс: учеб. для общеобразоват. учреждений / [Н. Я. Виленкин и др.]. - 22-е изд., испр. - М.: Мнемозина, 2008. - 288 с.: ил. ISBN 978-5-346-00897-2.
- Алгебра: учеб. для 8 кл. общеобразоват. учреждений / [Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, С. Б. Суворова]; под ред. С. А. Теляковского. - 16-е изд. - М. : Просвещение, 2008. - 271 с. : ил. - ISBN 978-5-09-019243-9.
- Гусев В. А., Мордкович А. Г. Математика (пособие для поступающих в техникумы): Учеб. пособие.- М.; Высш. шк., 1984.-351 с., ил.
дробного числа.
Десятичная запись дробного числа представляет собой набор двух и более цифр от $0$ до $9$, между которыми находится так называемая \textit{десятичная запятая}.
Пример 1
Например, $35,02$; $100,7$; $123 \ 456,5$; $54,89$.
Крайняя левая цифра в десятичной записи числа не может быть нулем, исключением является только случай, когда десятичная запятая стоит сразу после первой цифры $0$.
Пример 2
Например, $0,357$; $0,064$.
Часто десятичную запятую заменяют десятичной точкой. Например, $35.02$; $100.7$; $123 \ 456.5$; $54.89$.
Определение десятичной дроби
Определение 1
Десятичные дроби -- это дробные числа, которые представлены в десятичной записи.
Например, $121,05$; $67,9$; $345,6700$.
Десятичные дроби используются для более компактной записи правильных обыкновенных дробей, знаменателями которых являются числа $10$, $100$, $1 \ 000$ и т.д. и смешанные числа, знаменателями дробной части которых являются числа $10$, $100$, $1 \ 000$ и т.д.
Например, обыкновенную дробь $\frac{8}{10}$ можно записать в виде десятичной дроби $0,8$, а смешанное число $405\frac{8}{100}$ -- в виде десятичной дроби $405,08$.
Чтение десятичных дробей
Десятичные дроби, которые соответствуют правильным обыкновенным дробям , читаются также как и обыкновенные дроби, только впереди добавляется фраза «ноль целых». Например, обыкновенной дроби $\frac{25}{100}$ (читается «двадцать пять сотых») отвечает десятичная дробь $0,25$ (читается «нуль целых двадцать пять сотых»).
Десятичные дроби, которые соответствуют смешанным числам, читаются также как и смешанные числа. Например, смешанному числу $43\frac{15}{1000}$ соответствует десятичная дробь $43,015$ (читается «сорок три целых пятнадцать тысячных»).
Разряды в десятичных дробях
В записи десятичной дроби значение каждой цифры зависит от ее позиции. Т.е. в десятичных дробях также имеет место понятие разряда .
Разряды в десятичных дробях до десятичной запятой называются так же, как и разряды в натуральных числах. Разряды в десятичных дробях после запятой вынесены в таблицу:
Рисунок 1.
Пример 3
Например, в десятичной дроби $56,328$ цифра $5$ стоит в разряде десятков, $6$ - в разряде единиц, $3$ - в разряде десятых, $2$ - в разряде сотых, $8$ -- в разряде тысячных.
Разряды в десятичных дробях различают по старшинству. При чтении десятичной дроби движутся слева направо -- от старшего разряда к младшему .
Пример 4
Например, в десятичной дроби $56,328$ старшим (высшим) разрядом является разряд десятков, а младшим (низшим) -- разряд тысячных.
Десятичную дробь можно разложить по разрядам аналогично разложению по разрядам натурального числа.
Пример 5
Например, разложим по разрядам десятичную дробь $37,851$:
$37,851=30+7+0,8+0,05+0,001$
Конечные десятичные дроби
Определение 2
Конечными десятичными дробями называют десятичные дроби, в записях которых содержится конечное число знаков (цифр).
Например, $0,138$; $5,34$; $56,123456$; $350 972,54$.
Любую конечную десятичную дробь можно перевести в обыкновенную дробь или смешанное число.
Пример 6
Например, конечной десятичной дроби $7,39$ отвечает дробное число $7\frac{39}{100}$, а конечной десятичной дроби $0,5$ соответствует правильная обыкновенная дробь $\frac{5}{10}$ (или любая дробь, которая равна ей, например, $\frac{1}{2}$ или $\frac{10}{20}$.
Перевод обыкновенной дроби в десятичную дробь
Перевод обыкновенных дробей со знаменателями $10, 100, \dots$ в десятичные дроби
Перед переводом некоторых правильных обыкновенных дробей в десятичные их нужно предварительно «подготовить». Результатом такой подготовки должно быть одинаковое количество цифр в числителе и количество нулей в знаменателе.
Суть «предварительной подготовки» правильных обыкновенных дробей к переводу в десятичные дроби -- дописывание слева в числителе такого числа нулей, чтобы общее количество цифр стало равно числу нулей в знаменателе.
Пример 7
Например, подготовим обыкновенную дробь $\frac{43}{1000}$ к переводу в десятичную и получим $\frac{043}{1000}$. А обыкновенная дробь $\frac{83}{100}$ в подготовке не нуждается.
Сформулируем правило перевода правильной обыкновенной дроби со знаменателем $10$, или $100$, или $1 \ 000$, $\dots$ в десятичную дробь :
записать $0$;
после него поставить десятичную запятую;
записать число из числителя (вместе с дописанными нулями после подготовки, если она была нужна).
Пример 8
Перевести правильную обыкновенную дробь $\frac{23}{100}$ в десятичную.
Решение.
В знаменателе стоит число $100$, которое содержит $2$ два нуля. В числителе стоит число $23$, в записи которого $2$.цифры. значит, подготовку для этой дроби к переводу в десятичную проводить не нужно.
Запишем $0$, поставим десятичную запятую и запишем число $23$ из числителя. Получим десятичную дробь $0,23$.
Ответ : $0,23$.
Пример 9
Записать правильную дробь $\frac{351}{100000}$ в виде десятичной дроби.
Решение.
В числителе данной дроби $3$ цифры, а число нулей в знаменателе -- $5$, поэтому данную обыкновенную дробь нужно подготовить к переводу в десятичную. Для этого необходимо дописать $5-3=2$ нуля слева в числителе: $\frac{00351}{100000}$.
Теперь можем составить нужную десятичную дробь. Для этого запишем $0$, затем поставим запятую и запишем число из числителя. Получим десятичную дробь $0,00351$.
Ответ : $0,00351$.
Сформулируем правило перевода неправильных обыкновенных дробей со знаменателями $10$, $100$, $\dots$ в десятичные дроби :
записать число из числителя;
отделить десятичной запятой столько цифр справа, сколько нулей в знаменателе исходной дроби.
Пример 10
Перевести неправильную обыкновенную дробь $\frac{12756}{100}$ в десятичную дробь.
Решение.
Запишем число из числителя $12756$, затем отделим десятичной запятой $2$ цифры справа, т.к. в знаменателе исходной дроби $2$ нуля. Получим десятичную дробь $127,56$.
ГЛАВА III.
ДЕСЯТИЧНЫЕ ДРОБИ.
§ 31. Задачи и примеры на все действия с десятичными дробями.
Выполнить указанные действия:
767. Найти частное от деления:
Выполнить действия:
772. Вычислить:
Найти х , если:
776. Неизвестное число умножили на разность чисел 1 и 0,57 и в произведении получили 3,44. Найти неизвестное число.
777. Сумму неизвестного числа и 0,9 умножили на разность между 1 и 0,4 и в произведении получили 2,412. Найти неизвестное число.
778. По данным диаграммы о выплавке чугуна в РСФСР (рис. 36) составить задачу, для решения которой надо применить действия сложения, вычитания и деления.
779. 1) Длина Суэцкого канала 165,8 км, длина Панамского канала меньше Суэцкого на 84,7 км, а длина Беломорско-Балтийского канала на 145,9 км больше длины Панамского. Какова длина Беломорско-Балтийского канала?
2) Московское метро (к 1959 г.) было построено в 5 очередей. Длина первой очереди метро 11,6 км, второй -14,9 км, длина третьей на 1,1 км меньше длины второй очереди, длина четвёртой очереди на 9,6 км больше третьей очереди, а длина пятой очереди на 11,5 км меньше четвёртой. Чему равна длина Московского метро к началу 1959 г.?
780. 1) Наибольшая глубина Атлантического океана 8,5 км, наибольшая глубина Тихого ркеана на 2,3 км больше глубины Атлантического океана, а наибольшая глубина Северного Ледовитого океана в 2 раза меньше наибольшей глубины Тихого океана. Какова наибольшая глубина Северного Ледовитого океана?
2) Автомобиль «Москвич» на 100 км пути расходует 9 л бензина, автомобиль «Победа» на 4,5 л больше, чем расходует «Москвич», а «Волга» в 1,1 раза больше «Победы». Сколько бензина расходует автомобиль «Волга» на 1 км пути? (Ответ округлить с точностью до 0,01 л.)
781. 1) Ученик во время каникул поехал к дедушке. По железной дороге он ехал 8,5 часа, а от станции на лошадях 1,5 часа. Всего он проехал 440 км. С какой скоростью ученик ехал по железной дороге, если на лошадях он ехал со скоростью 10 км в час?
2) Колхознику надо было быть в пункте, находящемся на расстоянии 134,7 км от его дома. 2,4 часа он ехал на автобусе со средней скоростью 55 км в час, а остальную часть пути он прошёл пешком со скоростью 4,5 км в час. Сколько времени он шёл пешком?
782. 1) За лето один суслик уничтожает около 0,12 ц хлеба. Пионеры весной истребили на 37,5 га 1 250 сусликов. Сколько хлеба сохранили школьники для колхоза? Сколько сбережённого хлеба приходится на 1 га?
2) Колхоз подсчитал, что, уничтожив сусликов на площади в 15 га пашни, школьники сберегли 3,6 т зерна. Сколько сусликов в среднем уничтожено на 1 га земли, если один суслик за лето уничтожает 0,012 т зерна?
783. 1) При размоле пшеницы на муку теряется 0,1 её веса, а при выпечке получается припёк, равный 0,4 веса муки. Сколько печёного хлеба получится из 2,5 т пшеницы?
2) Колхоз собрал 560 т семян подсолнуха. Сколько подсолнечного масла изготовят из собранного зерна, если вес зерна составляет 0,7 веса семян подсолнуха, а вес полученного масла составляет 0,25 веса зерна?
784. 1) Выход сливок из молока составляет 0,16 веса молока, а выход масла из сливок составляет 0,25 веса сливок. Сколько требуется молока (по весу) для получения 1 ц масла?
2) Сколько килограммов белых грибов надо собрать для получения 1 кг сушёных, если при подготовке к сушке остаётся 0,5 веса, а при сушке остаётся 0,1 веса обработанного гриба?
785. 1) Земля, отведённая колхозу, использована так: 55% её занято пашней, 35% -лугом, а вся остальная земля в количестве 330,2 га отведена под колхозный сад и под усадьбы колхозников. Сколько всего земли в колхозе?
2) Колхоз засеял 75% всей посевной площади зерновыми культурами, 20% -овощными, а остальную площадь кормовыми травами. Сколько посевной площади имел колхоз, если кормовыми травами он засеял 60 га?
786. 1) Сколько центнеров семян потребуется для засева поля, имеющего форму прямоугольника длиной 875 м и шириной 640 м, если на 1 га высевать 1,5 ц семян?
2) Сколько центнеров семян потребуется для засева поля, имеющего форму прямоугольника, если его периметр равен 1,6 км? Ширина поля 300 м. На засев 1 га требуется 1,5 ц семян.
787. Сколько пластинок квадратной формы со стороной в 0,2 дм поместится в прямоугольнике размером 0,4 дм х 10 дм?
788. Читальный зал имеет размеры 9,6 м х 5м х 4,5 м. На сколько мест рассчитан читальный зал, если на каждого человека необходимо 3 куб. м воздуха?
789. 1) Какую площадь луга скосит трактор с прицепом четырёх косилок за 8 час, если ширина захвата каждой косилки 1,56 м и скорость трактора 4,5 км в час? (Время на остановки не учитывается.) (Ответ округлить с точностью до 0,1 га.)
2) Ширина захвата тракторной овощной сеялки равна 2,8 м. Какую площадь можно засеять этой сеялкой за 8 час. работы при скорости 5 км в час?
790. 1) Найти выработку трёхкорпусного тракторного плуга за 10 час. работы, если скорость трактора 5 км в час, захват одного корпуса 35 см, а непроизводительная трата времени составила 0,1 всего затраченного времени. (Ответ округлить с точностью до 0,1 га.)
2) Найти выработку пятикорпусного тракторного плуга за 6 час. работы, если скорость трактора 4,5 км в час, захват одного корпуса 30 см, а непроизводительная трата времени составила 0,1 всего затраченного времени. (Ответ округлить с точностью до 0,1 га.)
791. Расход воды на 5 км пробега для паровоза пассажирского поезда равен 0,75 т. Водяной бак тендера вмещает 16,5 т воды. На сколько километров пути хватит воды поезду, если бак был наполнен на 0,9 своей вместимости?
792. На запасном пути могут поместиться только 120 товарных вагонов при средней длине вагона в 7,6 м. Сколько поместится на этом пути четырёхосных пассажирских вагонов длиной в 19,2 м каждый, если на этом пути будут помещены ещё 24 товарных вагона?
793. Для прочности железнодорожной насыпи рекомендуется производить укрепление откосов посредством посева полевых трав. На каждый квадратный метр насыпи требуется 2,8 г семян стоимостью 0,25 руб. за 1 кг. Сколько будет стоить засев 1,02 га откосов, если стоимость работ составит 0,4 от стоимости семян? (Ответ округлить с точностью до 1 руб.)
794. Кирпичный завод доставил на станцию железной дороги кирпичи. На перевозке кирпичей работали 25 лошадей и 10 грузовых машин. Каждая лошадь перевозила 0,7 т за одну поездку и в день совершала 4 поездки. Каждая машина перевозила за одну поездку 2,5 т и в день совершала 15 поездок. Перевозка продолжалась 4 дня. Сколько штук кирпичей было доставлено на станцию, если средний вес одного кирпича 3,75 кг? (Ответ округлить с точностью до 1 тыс. штук.)
795. Запас муки был распределён между тремя пекарнями: первая получила 0,4 всего запаса, вторая 0,4 остатка, а третья пекарня получила муки на 1,6 т меньше, чем первая. Сколько всего муки было распределено?
796. На втором курсе института 176 студентов, на третьем 0,875 этого числа, а на первом в полтора раза больше того, что было на третьем курсе. Число студентов на первом, втором и третьем курсах составляло 0,75 всего числа студентов этого института. Сколько студентов было в институте?
797. Найти среднее арифметическое:
1) двух чисел: 56,8 и 53,4; 705,3 и 707,5;
2) трёх чисел: 46,5; 37,8 и 36; 0,84; 0,69 и 0,81;
3) четырёх чисел: 5,48; 1,36; 3,24 и 2,04.
798. 1) Утром температура была 13,6°, в полдень 25,5°, а вечером 15,2°. Вычислить среднюю температуру за этот день.
2) Какова средняя температура за неделю, если в течение недели термометр показал: 21°; 20,3°; 22,2°; 23,5°; 21,1°; 22,1°; 20,8°?
799. 1) Школьная бригада в первый день прополола 4,2 га свёклы, во второй день 3,9 га, а в третий 4,5 га. Определять среднюю выработку бригады за день.
2) Для установления нормы времени на изготовление новой детали были поставлены 3 токаря. Первый изготовил деталь за 3,2 мин., второй за 3,8 мин., а третий за 4,1 мин. Вычислить норму времени, которая была установлена на изготовление детали.
800. 1) Среднее арифметическое двух чисел 36,4. Одно из этих чисел 36,8. Найти другое.
2) Температуру воздуха измеряли три раза в день: утром, в полдень и вечером. Найти температуру воздуха утром, если в полдень было 28,4°, вечером 18,2° тепла, а средняя температура дня 20,4°.
801. 1) Автомобиль проехал за первые два часа 98,5 км, а за последующие три часа 138 км. Сколько километров в среднем проезжал автомобиль в час?
2) Пробный улов и взвешивание карпов-годовичков показал, что из 10 карпов 4 имели вес по 0,6 кг, 3 по 0,65 кг, 2 по 0,7 кг и 1 весил 0,8 кг. Каков в среднем вес карпа-годовичка?
802. 1) К 2 л сиропа стоимостью 1,05 руб. за 1 л добавили 8 л воды. Сколько стоит 1 л полученной воды с сиропом?
2) Хозяйка купила банку консервированного борща объёмом 0,5 л за 36 коп. и прокипятила с 1,5 л воды. Во что обошлась тарелка борща, если её объём равен 0,5 л?
803. Лабораторная работа «Измерение расстояния между двумя точками»,
1-й приём. Измерение рулеткой (мерной лентой). Класс разбивается на звенья по три человека в каждом. Принадлежности: 5-6 вех и 8-10 бирок.
Ход выполнения работы: 1) отмечаются точки А и Б и между ними провешивают прямую (см. задачу 178); 2) укладывают рулетку, вдоль провешенной прямой и каждый раз отмечают биркой конец рулетки. 2-й приём. Измерение, шагами. Класс разбивается на звенья по три человека в каждом. Каждый учащийся проходит расстояние от А до Б, считая число своих шагов. Умножив среднюю длину своего шага на полученное число шагов, находят расстояние от А до Б.
3-й приём. Измерение "на глаз" . Каждый из учащихся вытягивает левую руку с поднятым большим пальцем (рис. 37) и направляет большой палец на веху в точку Б (на рисунке - дерево) так, чтобы левый глаз (точка А), большой палец и точка Б находились на одной прямой. Не изменяя положения, закрывают левый глаз и смотрят правым на большой палец. Измеряют на глаз полученное смещение и увеличивают его в 10 раз. Это и есть расстояние от А до Б.
804. 1) По переписи 1959 г. население СССР составляло 208,8 млн. человек, причем сельского населения было на 9,2 млн. человек больше, чем городского. Сколько было городского и сколько сельского населения в СССР в 1959 г.?
2) По переписи 1913 г. население России составляло 159,2 млн. человек, причём городского населения было на 103,0 млн. человек меньше, чем сельского. Сколько было городского и сельского населения в России в 1913 г.?
805. 1) Длина проволоки 24,5 м. Эту проволоку разрезали на две части так, что первая часть получилась на 6,8 м длиннее, чем вторая. Сколько метров длины имеет каждая часть?
2) Сумма двух чисел 100,05. Одно число на 97,06 больше другого. Найти эти числа.
806. 1) На трёх угольных складах 8656,2 т угля, на втором складе на 247,3 т угля больше, чем на первом, а на третьем на 50,8 т больше, чем на втором. Сколько тонн угля на каждом складе?
2) Сумма трёх чисел 446,73. Первое число меньше второго на 73,17 и больше третьего на 32,22. Найти эти числа.
807. 1) Катер по течению реки шёл со скоростью 14,5 км в час, а против течения со скоростью 9,5 км в час. Какова скорость катера в стоячей воде и какова скорость течения реки?
2) Пароход прошёл за 4 часа по течениию реки 85,6 км, а против течения за 3 часа 46,2 км. Какова скорость парохода в стоячей воде и какова скорость течения реки?
808. 1) Два парохода доставили 3 500 т груза, причём один пароход доставил в 1,5 раза груза больше, чем другой. Сколько груза доставил каждый пароход?
2) Площадь двух комнат 37,2 кв. м. Площадь одной комнаты в 2 раза больше другой. Чему равна площадь каждой комнаты?
809. 1) Из двух населённых пунктом, расстояние между которыми 32,4 км одновременно выехали навстречу друг другу мотоциклист и велосипедист. Сколько километров проедет каждый из них до встречи, если скорость мотоциклиста в 4 раза больше скорости велосипедиста?
2) Найти два числа, сумма которых 26,35, а частное от деления одного числа на другое равно 7,5.
810. 1) Завод отправил три вида груза общим весом в 19,2 т. Вес груза первого вида был втрое больше веса груза второго вида, а вес груза третьего вида был вдвое меньше, чем вес груза первого и второго видов вместе. Каков вес груза каждого вида?
2) За три месяца бригада горняков добыла 52,5 тыс. т железной руды. За март добыто в 1,3, за февраль в 1,2 раза больше, чем за январь. Сколько руды добывала бригада ежемесячно?
811. 1) Газопровод Саратов - Москва на 672 км длиннее канала имени Москвы. Найти длину того и другого сооружения, если длина газопровода в 6,25 раза больше длины канала имени Москвы.
2) Длина реки Дона в 3,934 раза больше длины реки Москвы. Найти длину каждой реки, если длина реки Дона больше длины реки Москвы на 1 467 км.
812. 1) Разность двух чисел 5,2, а частное от деления одного числа на другое 5. Найти эти числа.
2) Разность двух чисел 0,96, а их частное 1,2. Найти эти числа.
813. 1) Одно число на 0,3 меньше другого и составляет 0,75 его. Найти эти числа.
2) Одно число на 3,9 больше другого числа. Если меньшее число увеличить в 2 раза, то оно составит 0,5 от большего. Найти эти числа.
814. 1) Колхоз засеял пшеницей и рожью 2600 га земли. Сколько гектаров земли было засеяно пшеницей и сколько рожью, если 0,8 площади, засеянной пшеницей, равны 0,5 площади, засеянной рожью?
2) Коллекция двух мальчиков вместе составляет 660 марок. Из скольких марок состоит коллекция каждого мальчика, если 0,5 числа марок первого мальчика равны 0,6 числа марок коллекции второго мальчика?
815. Два ученика вместе имели 5,4 руб. После того как первый истратил 0,75 своих денег, а второй 0,8 своих денег, у них осталось денег поровну. Сколько денег было у каждого ученика?
816. 1) Два парохода вышли навстречу друг другу из двух портов, расстояние между которыми 501,9 км. Через сколько времени они встретятся, если скорость первого парохода 25,5 км в час, а скорость второго 22,3 км в час?
2) Два поезда вышли навстречу друг другу из двух пунктов, расстояние между которыми 382,2 км. Через сколько времени они встретятся, если средняя скорость первого поезда была 52,8 км в час, а второго 56,4 км в час?
817. 1) Из двух городов, расстояние между которыми 462 км, одновременно выехали два автомобиля и встретились через 3,5 часа. Найти скорость каждого автомобиля, если скорость первого была на 12 км в час больше скорости второго автомобиля.
2) Из двух населённых пунктов, расстояние между которыми 63 км, одновременно выехали навстречу друг другу мотоциклист и велосипедист и встретились через 1,2 часа. Найти скорость мотоциклиста, если велосипедист ехал со скоростью на 27,5 км в час меньшей скорости мотоциклиста.
818. Ученик заметил, что поезд, состоящий из паровоза и 40 вагонов, проходил мимо него 35 сек. Определить скорость поезда в час, если длина паровоза 18,5 м, а длина вагона 6,2 м. (Ответ дать с точностью до 1 км в час.)
819. 1) Из А в Б выехал велосипедист со средней скоростью 12,4 км в час. Спустя 3 часа 15 мин. из Б навстречу ему выехал другой велосипедист со средней скоростью 10,8 км в час. Через сколько часов и на каком расстоянии от А они встретятся, если 0,32 расстояния между А и Б равны 76 км?
2) Из городов А и Б, расстояние между которыми 164,7 км, выехали навстречу друг другу грузовая машина из города А и легковая - из города Б. Скорость грузовой машины 36 км, а легковой в 1,25 раза больше. Легковая машина вышла на 1,2 часа позже грузовой. Через сколько времени и на каком расстоянии от города Б легковая машина встретит грузовую?
820. Два парохода вышли одновременно из одного порта и идут в одном направлении. Первый пароход в каждые 1,5 часа проходит 37,5 км, а второй в каждые 2 часа проходит 45 км. Через сколько времени первый пароход будет находиться от второго на расстоянии 10 км?
821. Из одного пункта вначале вышел пешеход, а через 1,5 часа после его выхода выехал в том же направлении велосипедист. На каком расстоянии от пункта велосипедист догнал пешехода, если пешеход шёл со скоростью 4,25 км в час, а велосипедист ехал со скоростью 17 км в час?
822. Поезд вышел из Москвы в Ленинград в 6 час. 10 мин. утра и шёл со средней скоростью 50 км п час. Позднее из Москвы в Ленинград вылетел пассажирский самолет и прилетел в Ленинград одновременно с прибытием поезда. Средняя скорость самолёта была 325 км в час, а расстояние между Москвой и Ленинградом 650 км. Когда самолёт вылетел из Москвы?
823. Пароход по течению реки шёл 5 час, а против течения 3 часа и прошёл всего 165 км. Сколько километров он прошёл по течению и сколько против течении, если скорость течения реки 2,5 км в час?
824. Поезд вышел из А и должен прибыть в Б в определённое время; пройдя половину пути и делая по 0,8 км в 1 мин., поезд был остановлен на 0,25 часа; увеличив далее скорость на 100 м в 1 млн., поезд прибыл в Б вовремя. Найти расстояние между А и Б.
825. От колхоза до города 23 км. Из города в колхоз выехал на велосипеде почтальон со скоростью 12,5 км в час. Через 0,4 часа после этого ИВ колхоза в город выехал на лошади колхозник со скоростью, ранной 0,6 скорости почтальона. Через сколько времени после своего выезда колхозник встретит почтальона?
826. Из города А в город Б, отстоящий от А на 234 км, выехал автомобиль со скоростью 32 км в час. Через 1,75 часа после этого из города Б выехал навстречу первому второй автомобиль, скорость которого в 1,225 раза больше скорости первого. Через сколько часов после своего выезда второй автомобиль встретит первый?
827. 1) Одна машинистка может перепечатать рукопись за 1,6 часа, а другая за 2,5 часа. За сколько времени обе машинистки перепечатают эту рукопись, работая совместно? (Ответ округлить с точностью до 0,1 часа.)
2) Бассейн наполняется двумя насосами различной мощности. Первый насос, работая один, может наполнить бассейн за 3,2 часа, а второй за 4 часа. За сколько времени наполнится бассейн при одновременной работе этих насосов? (Ответ округлить с точностью до 0,1.)
828. 1) Одна бригада может выполнить некоторый заказ за 8 дней. Другой на выполнение этого заказа требуется 0,5 времени первой. Третья бригада может выполнить этот заказ за 5 дней. За сколько дней будет выполнен весь заказ при совместной работе трёх бригад? (Ответ округлить с точностью до 0,1 дня.)
2) Первый рабочий может выполнить заказ за 4 часа, второй в 1,25 раза быстрее, а третий за 5 час. За сколько часов будет выполнен заказ при совместной работе трёх рабочих? (Ответ округлить с точностью до 0,1 часа.)
829. На уборке улицы работают две машины. Первая из них может убрать всю улицу за 40 мин., второй для этого требуется 75% времени первой. Обе машины начали работу одновременно. После совместной рвботы в течение 0,25 часа вторая машина прекратила работу. Во сколько времени после этого первая машина закончила работу по уборке улицы?
830. 1) Одна из сторон треугольника 2,25 см, вторая на 3,5 см больше первой, а третья на 1,25 см меньше второй. Найти периметр треугольника.
2) Одна из сторон треугольника 4,5 см, вторая на 1,4 см меньше первой, а третья сторона равна полусумме двух первых сторон. Чему равен периметр треугольника?
831 . 1) Основание треугольника 4,5 см, а высота его на 1,5 см меньше. Найти площадь треугольника.
2) Высота треугольника 4,25 см, а его основание в 3 раза больше. Найти площадь треугольника. (Ответ округлить с точностью до 0,1.)
832. Найти площади заштрихованных фигур (рис. 38).
833. Какая площадь больше: прямоугольника со сторонами 5 см и 4 см, квадрата со стороной 4,5 см или треугольника, основание и высота которого равны по 6 см?
834. Комната имеет длину 8,5 м, ширину 5,6 м и высоту 2,75 м. Площадь окон, дверей и печей составляет 0,1 общей площади стен комнаты. Сколько кусков обоев понадобится для оклеивания этой комнаты, если кусок обоев имеет длину 7 м и ширину 0,75 м? (Ответ округлить с точностью до 1 куска.)
835. Надо снаружи оштукатурить и побелить одноэтажный дом, размеры которого: длина 12 м, ширина 8 м и высота 4,5 м. В доме 7 окон размером каждое 0,75 м х 1,2 м и 2 двери каждая размером 0,75 м х 2,5 м. Сколько будет стоить вся работа, если побелка и штукатурка 1 кв. м стоит 24 коп.? (Ответ округлить а точностью до 1 руб.)
836. Вычислите поверхность и объём вашей комнаты. Размеры комнаты найдите измерением.
837. Огород имеет форму прямоугольника, длина которого 32 м, ширина 10 м. 0,05 всей площади огорода засеяно морковью, а остальная часть огорода засажена картофелем и луком, причём картофелем засажена площадь в 7 paз большая, чем луком. Сколько земли в отдельности засажено картофелем, луком и морковью?
838. Огород имеет форму прямоугольника, длина которого 30 м и ширина 12 м. 0,65 всей площади огорода засажено картофелем, а остальная часть - морковью и свёклой, причём свёклой засажено на 84 кв. м больше, чем морковью. Сколько земли в отдельности под картофелем, свёклой и морковью?
839. 1) Ящик, имеющий форму куба, обшили со всех сторон фанерой. Сколько фанеры израсходовано, если ребро куба 8,2 дм? (Ответ округлить с точностью до 0,1 кв. дм.)
2) Сколько краски потребуется для окраски куба с ребром в 28 см, если на 1 кв. см будет истрачено 0,4 г краски? (Ответ, округлить с точностью до 0,1 кг.)
840. Длина чугунной заготовки, имеющей форму прямоугольного параллелепипеда, равна 24,5 см, ширина 4,2 см и высота 3,8 см. Сколько весят 200 чугунных заготовок, если 1 куб. дм чугуна весит 7,8 кг? (Ответ округлить с точностью до 1 кг.)
841. 1) Длина ящика (с крышкой), имеющего форму прямоугольного параллелепипеда, равна 62,4 см, ширина 40,5 см, высота 30 см. Сколько квадратных метров досок пошло на изготовление ящика, если отходы досок составляют 0,2 поверхности, которая должна быть обшита досками? (Ответ округлить с точностью до 0,1 кв. м.)
2) Дно и боковые стенки ямы, имеющей форму прямоугольного параллелепипеда, должны быть обшиты досками. Длина ямы 72,5 м, ширина 4,6 м и высота 2,2 м. Сколько квадратных метров досок пошло на обшивку, если отходы досок составляют 0,2 поверхности, которая должна быть обшита досками? (Ответ округлить с точностью до 1 кв. м.)
842. 1) Длина подвала, имеющего форму прямоугольного параллелепипеда, равна 20,5 м, ширина 0,6 его длины, а высота 3,2 м. Подвал заполнили картофелем на 0,8 его объёма. Сколько тонн картофеля поместилось в подвале, если 1 куб.м картофеля весит 1,5 т? (Ответ округлить с точностью до 1 т.)
2) Длина бака, имеющего форму прямоугольного параллелепипеда, равна 2,5 м, ширина 0,4 его длины, а высота 1,4 м. Бак наполнен керосином на 0,6 его объёма. Сколько тонн керосина налито в бак, если вес керосина в объёме 1 куб. м равен 0,9 т? (Ответ округлить с точностью до 0,1 т.)
843. 1) Во сколько времени можно обновить воздух в комнате, имеющей 8,5 м длины, 6 м ширины и 3,2 м высоты, если через форточку в 1 сек. проходит 0,1 куб. м воздуха?
2) Произведите подсчёт времени, необходимого для обновления воздуха в вашей комнате.
844. Размеры бетонного блока для постройки стен следующие: 2,7 м х 1,4 м х 0,5 м. Пустота составляет 30% объёма блока. Сколько кубометров бетона потребуется на изготовление 100 таких блоков?
845. Грейдер-элеватор (машина для рытья канав) за 8 час. работы делает канаву шириной 30 см, глубиной 34 см и длиной 15 км. Скольких землекопов заменяет такая машина, если один землекоп может вынуть 0,8 куб. м в час? (Результат округлить.)
846. Закром в форме прямоугольного параллелепипеда имеет в длину 12 м и в ширину 8 ж. В этом закроме насыпано зерно до высоты 1,5 м. Для того чтобы узнать, сколько весит всё зерно, взяли ящик длиной 0,5 м, шириной 0,5 м и высотой 0,4 м, наполнили его зерном и взвесили. Сколько весило зерно в закроме, если зерно в ящике весило 80 кг?
848. 1) Используя диаграмму «Выплавка стали в РСФСР» (pис 39). ответьте на следующие вопросы:
а) На сколько миллионов тонн возросла выплавка стали в 1959 г. по сравнению с 1945 г.?
б) Во сколько раз выплавка стали в 1959 г. была больше выплавки в 1913 г.? (С точностью до 0,1.)
2) Используя диаграмму «Посевные площади в РСФСР» (рис. 40), ответьте на следующие вопросы:
а) На сколько миллионов гектаров увеличилась посевная площадь в 1959 г. по сравнению с 1945 г.?
б) Во сколько раз посевная площадь в 1959 г. была больше посевной площади в 1913 г.?
849. Построить линейную диаграмму роста городского населения в СССР, если в 1913 г. городского населения было 28,1 млн человек, в 1926 г.-24,7 млн., в 1939 г.-56,1 млн. и в 1959г- 99,8 млн. человек.
850. 1) Составить смету на ремонт помещения вашего класса, если требуется побелить стены и потолок, а также покрасить пол. Данные для составления сметы (размеры класса, стоимость побелки 1 кв. м, стоимость покраски пола 1 кв. м) выяснить у завхоза школы.
2) Для посадки в саду школа купила саженцы: 30 яблонь по 0,65 руб. за штуку, 50 вишен по 0,4 руб. за штуку, 40 кустов крыжовника по 0,2 руб. и 100 кустов малины по 0,03 руб. за куст. Напишите счёт на эту покупку по образцу:
В швейной мастерской было 5 цветов ленты. Красной ленты было больше, чем синей на 2,4 метра, но меньше, чем зеленой на 3,8 метра. Белой ленты было больше, чем черной на 1,5 метра, но меньше, чем зеленой на 1,9 метра. Сколько метров ленты всего было в мастерской, если белой было 7,3 метра?
- Решение
- 1) 7,3 + 1,9 = 9,2 (м) зеленой ленты было в мастерской;
- 2) 7,3 – 1,5 = 5,8 (м) черной ленты;
- 3) 9,2 – 3,8 = 5,4 (м) красной ленты;
- 4) 5,4 - 2,4 = 3 (м) синей ленты;
- 5) 7,3 + 9,2 + 5,8 + 5,4 + 3 = 30,7 (м).
- Ответ: всего в мастерской было 30,7 метров ленты.
Задача 2
Длина прямоугольного участка составляет 19,4 метра, а ширина на 2,8 метра меньше. Вычислите периметр участка.
- Решение
- 1) 19,4 – 2,8 = 16,6(м) ширина участка;
- 2) 16,6 * 2 + 19,4 * 2 = 33,2 + 38,8 = 72(м).
- Ответ: периметр участка равен 72 метра.
Задача 3
Длина прыжка кенгуру может достигать 13,5 метров в длину. Мировой рекорд для человека составляет 8,95 метров. Насколько дальше прыгает кенгуру?
- Решение
- 1) 13,5 – 8,95 = 4,55 (м).
- 2) Ответ: кенгуру прыгает на 4,55 метра дальше.
Задача 4
Самая низкая температура на планете была зарегистрирована на станции Восток в Антарктиде, летом 21 июля 1983 года и составляла -89,2 ° C, а самая жаркая в городке Эль-Азизия, 13 сентября 1922 года составляла +57,8 ° C. Вычисли разницу между температурами.
- Решение
- 1) 89,2 + 57,8 = 147° C.
- Ответ: разница между температурами составляет 147° C.
Задача 5
Грузоподъемность фургона Газель составляет 1,5 тонн, а карьерного самосвала БелАЗ в 24 раза больше. Вычислите грузоподъемность самосвала БелАЗ.
- Решение
- 1) 1,5 * 24 = 36 (тонн).
- Ответ: грузоподъемность БелАЗа 36 тонн.
Задача 6
Максимальная скорость движения Земли по своей орбите 30,27 км/сек, а скорость Меркурия на 17,73 км больше. С какой скоростью Меркурий движется по своей орбите?
- Решение
- 1) 30,27 + 17,73 = 48 (км/сек).
- Ответ: скорость движение Меркурия по орбите 48 км/сек.
Задача 7
Глубина Марианской впадины составляет 11,023 км, а высота самой высокой горы в мире - Джомолунгмы 8,848 км над уровнем моря. Вычисли разницу между этими двумя точками.
- Решение
- 1) 11,023 + 8,848 = 19,871(км).
- Ответ: 19, 871 км.
Задача 8
Для Коли, как и для любого здорового человека, нормальная температура тела 36,6 ° C, а для его четвероногого друга Шарика на 2,2 ° C больше. Какая температура для Шарика считается нормальной?
- Решение
- 1) 36,6 + 2,2 = 38,8° C.
- Ответ: для Шарика нормальная температура тела 38,8° C.
Задача 9
Маляр за 1 день покрасил 18,6 м² забора, а его помощник, на 4,4 м² меньше. Сколько всего м2 забора покрасит маляр и его помощник за рабочую неделю, если она равна пяти дням?
- Решение
- 1) 18,6 – 4,4 = 14,2 (м²) покрасит за 1 день помощник маляра;
- 2) 14,2 + 18,6 = 32,8 (м²) покрасят за 1 день вместе;
- 3) 32,8 *5 = 164 (м²).
- Ответ: за рабочую неделю маляр и его помощник вместе покрасят 164 м² забора.
Задача 10
От двух пристаней навстречу друг другу одновременно отошли два катера. Скорость одного катера 42,2 км/ч второго на 6 км/ч больше. Какое расстояние будет между катерами через 2,5 часа, если расстояние между пристанями 140,5 км?
- Решение
- 1) 42,2 + 6 = 48,2 (км/ч) скорость второго катера;
- 2) 42,2 * 2,5 = 105,5 (км) преодолеет первый катер за 2,5 часа;
- 3) 48,2 * 2,5 = 120,5 (км) преодолеет второй катер за 2,5 часа;
- 4) 140,5 – 105,5 = 35 (км) расстояние от первого катера до противоположной пристани;
- 5) 140,5 – 120, 5 = 20 (км) расстояние от второго катера до противоположной пристани;
- 6) 35 + 20 = 55 (км);
- 7) 140 – 55 = 85 (км).
- Ответ: между катерами будет 85 км.
Задача 11
Каждый день велосипедист преодолевает 30,2 км. Мотоциклист, если бы затрачивал столько же времени, преодолевал бы расстояние в 2,5 раза большее, чем велосипедист. Какое расстояние может преодолеть мотоциклист за 4 дня?
- Решение
- 1) 30,2 * 2,5 = 75,5 (км) за 1 день преодолеет мотоциклист;
- 2) 75,5 * 4 = 302 (км).
- Ответ: мотоциклист может преодолеть за 4 дня 302 км.
Задача 12
В магазине за 1 день было продано 18, 3 кг печенья, а конфет на 2,4 кг меньше. Сколько конфет и печенья вместе было продано в магазине за этот день?
- Решение
- 1) 18,3 – 2, 4 = 15,9 (кг) конфет было продано в магазине;
- 2) 15,9 + 18,3 = 34,2 (кг).
- Ответ: конфет и печенья всего было продано 34,2 кг.