Первый представитель алкенов. III. Закрепление изученного материала. Изомерия и номенклатура
Алкены ненасыщенные алифатические углеводороды с одной или несколькими двойными углерод-углеродными связями. Двойная связь превращает два атома углерода в плоскую структуру с валентными углами между соседними связями по 120°С:
Гомологический ряд алкенов имеет общую формулу двумя его первыми членами являются этен (этилен) и пропен (пропилен):
Члены ряда алкенов с четырьмя или большим числом атомов углерода обнаруживают изомерию положения связей. Например, алкен с формулой имеет три изомера, два из которых являются изомерами положения связей:
Заметим, что нумерация цепи алкенов производится с того ее конца, который ближе к двойной связи. Положение двойной связи указывается меньшим из двух номеров, которые соответствуют двум атомам углерода, связанным между собой двойной связью. Третий изомер имеет разветвленную структуру:
Число изомеров какого-либо алкена возрастает с числом атомов углерода. Например, гексен имеет три изомера положения связей:
диенов является бута-1,3-диен, или просто бутадиен:
Соединения, содержащие три двойные связи, называются триенами. Соединения с несколькими двойными связями имеют общее название полиены.
Физические свойства
Алкены имеют несколько более низкие температуры плавления и кипения, чем соответствующие им алканы. Например, пентан имеет температуру кипения . Этилен, пропен и три изомера бутена при комнатной температуре и нормальном давлении находятся в газообразном состоянии. Алкены с числом атомов углерода от 5 до 15 в нормальных условиях находятся в жидком состоянии. Их летучесть, как и у алканов, возрастает при наличии разветвления в углеродной цепи. Алкены с числом атомов углерода больше 15 при нормальных условиях представляют собой твердые вещества.
Получение в лабораторных условиях
Двумя основными способами получения алкенов в лабораторных условиях являются дегидратация спиртов и дегидрогалогенирование галогеноалканов. Например, этилен можно получить дегидратацией этанола при действии избытка концентрированной серной кислоты при температуре 170 °С (см. разд. 19.2):
Этилен можно также получить из этанола, пропуская пары этанола над поверхностью нагретого оксида алюминия. Для этой цели можно использовать установку, схематически изображенную на рис. 18.3.
Второй распространенный метод получения алкенов основан на проведении дегидрогалогенирования галогеноалканов в условиях основного катализа
Механизм реакции элиминирования такого типа описан в разд. 17.3.
Реакции алкенов
Алкены обладают намного большей реакционной способностью, чем алканы. Это обусловлено способностью -электронов двойной связи притягивать электрофилы (см. разд. 17.3). Поэтому характерные реакции алкенов представляют собой главным образом реакции электрофильного присоединения по двойной связи:
Многие из этих реакций имеют ионные механизмы (см. разд. 17.3).
Гидрирование
Если какой-нибудь алкен, например этилен, смешать с водородом и пропустить эту смесь над поверхностью платинового катализатора при комнатной температуре или никелевого катализатора при температуре около 150°С, то произойдет присоединение
водорода по двойной связи алкена. При этом образуется соответствующий алкан:
Реакция этого типа представляет собой пример гетерогенного катализа. Его механизм описан в разд. 9.2 и схематически показан на рис. 9.20.
Присоединение галогенов
Хлор или бром легко присоединяются по двойной связи алкена; эта реакция протекает в неполярных растворителях, например в тетрахлорометане или гексане. Реакция протекает по ионному механизму, который включает образование карбкатиона. Двойная связь поляризует молекулу галогена, превращая ее в диполь:
Поэтому раствор брома в гексане или тетрахлорометане при встряхивании с алкеном обесцвечивается. То же самое происходит, если встряхивать алкен с бромной водой. Бромная вода представляет собой раствор брома в воде. Этот раствор содержит бромноватистую кислоту . Молекула бромноватистой кислоты присоединяется по двойной связи алкена, и в результате образуется бромозамещенный спирт. Например
Присоединение галогеноводородов
Механизм реакции этого типа описан в разд. 18.3. В качестве примера рассмотрим присоединение хлороводорода к пропену:
Отметим, что продукт этой реакции представляет собой 2-хлоропропан, а не 1-хлоро-пропан:
В таких реакциях присоединения наиболее электроотрицательный атом или наиболее электроотрицательная группа всегда присоединяются к атому углерода, связанному с
наименьшим числом атомов водорода. Эта закономерность носит название правила Марковникова.
Предпочтительное присоединение электроотрицательного атома или группы к атому углерода, связанному с наименьшим числом атомов водорода, обусловлено повышением устойчивости карбкатиона по мере возрастания числа алкильных заместителей на атоме углерода. Это повышение устойчивости в свою очередь объясняется индуктивным эффектом, возникающим в алкильных группах, так как они являются донорами электронов:
В присутствии какого-либо органического пероксида пропен реагирует с бромоводородом, образуя т. е. не по правилу Марковникова. Такой продукт называется антимарковниковским. Он образуется в результате протекания реакции по радикальному, а не ионному механизму.
Гидратация
Алкены реагируют с холодной концентрированной серной кислотой, образуя алкил-гидросульфаты. Например
Эта реакция представляет собой присоединение, поскольку в ней происходит присоединение кислоты по двойной связи. Она является обратной реакцией по отношению к дегидратации этанола с образованием этилена. Механизм этой реакции подобен механизму присоединения галогеноводородов по двойной связи. Он включает образование промежуточного карбкатиона. Если продукт этой реакции разбавить водой и осторожно нагревать, он гидролизуется, образуя этанол:
Реакция присоединения серной кислоты к алкенам подчиняется правилу Марковникова:
Реакция с подкисленным раствором перманганата калия
Фиолетовая окраска подкисленного раствора перманганата калия исчезает, если этот раствор встряхивают в смеси с каким-либо алкеном. Происходит гидроксилирование алкена (введение в него гидроксигруппы, образующейся вследствие окисления), который в результате превращается в диол. Например, при встряхивании избыточного количества этилена с подкисленным раствором происходит образование этан-1,2-диола (этиленгликоля)
Если алкен встряхивают с избыточным количеством раствора -ионов, происходит окислительное расщепление алкена, приводящее к образованию альдегидов и кетонов:
Альдегиды, образующиеся при этом, подвергаются дальнейшему окислению с образованием карбоновых кислот.
Гидроксилирование алкенов с образованием диолов может также проводиться с помощью щелочного раствора перманганата калия.
Реакция с пербензойной кислотой
Алкены реагируют с пероксикислотами (надкислотами), например с пербензойной кислотой, образуя простые циклические эфиры (эпоксисоединения). Например
При осторожном нагревании эпоксиэтана с разбавленным раствором какой-либо кислоты образуется этан-1,2-диол:
Реакции с кислородом
Как и все другие углеводороды, алкены горят и при обильном доступе воздуха образуют диоксид углерода и воду:
При ограниченном доступе воздуха горение алкенов приводит к образованию моноксида углерода и воды:
Поскольку алкены имеют более высокое относительное содержание углерода, чем соответствующие алканы, они горят с образованием более дымного пламени. Это обусловлено образованием частиц углерода:
Если смешать какой-либо алкен с кислородом и пропустить эту смесь над поверхностью серебряного катализатора, при температуре около 200 °С образуется эпоксиэтан:
Озонолиз
При пропускании газообразного озона через раствор какого-либо алкена в трихлорометане или тетрахлорометане при температуре ниже 20 °С образуется озонид соответствующего алкена (оксиран)
Озониды - неустойчивые соединения и могут быть взрывоопасными. Они подвергаются гидролизу с образованием альдегидов или кетонов. Например
В этом случае часть метаналя (формальдегида) реагирует с пероксидом водорода, образуя метановую (муравьиную) кислоту:
Полимеризация
Простейшие алкены могут полимеризоваться с образованием высокомолекулярных соединений, которые обладают той же эмпирической формулой, что и исходный алкен:
Эта реакция протекает при высоком давлении, температуре 120°С и в присутствии кислорода, который играет роль катализатора. Однако полимеризацию этилена можно проводить и при более низком давлении, если воспользоваться катализатором Циглера. Одним из наиболее распространенных катализаторов Циглера является смесь триэтилалюминия и тетрахлорида титана.
Полимеризация алкенов более подробно рассматривается в разд. 18.3.
Алке́ны (олефины , этиленовые углеводороды C n H 2n
Гомологический ряд.
этен (этилен) | |
Простейшим алкеном является этилен (C 2 H 4). По номенклатуре IUPAC названия алкенов образуются от названий соответствующих алканов заменой суффикса «-ан» на «-ен»; положение двойной связи указывается арабской цифрой.
Углеводородные радикалы, образованные от алкенов имеют суффикс «-енил» . Тривиальные названия: CH 2 =CH- «винил» , CH 2 =CH-CH 2 - «аллил» .
Атомы углерода при двойной связи находятся в состоянии sp² гибридизации, и имеют валентный угол 120°.
Для алкенов характерны изомерия углеродного скелета, положения двойной связи, межклассовая и пространственная.
Физические свойства
Температуры плавления и кипения алкенов (упрощенно) увеличиваются с молекулярной массой и длиной главной углеродной цепи.
При нормальных условиях алкены с C 2 H 4 до C 4 H 8 - газы; с пентена C 5 H 10 до гексадецена C 17 H 34 включительно - жидкости, а начиная с октадецена C 18 H 36 - твёрдые вещества. Алкены не растворяются в воде, но хорошо растворяются в органических растворителях.
Дегидрирование алканов
Это один из промышленных способов получения алкенов
Гидрирование алкинов
Частичное гидрирование алкинов требует специальных условий и наличие катализатора
Двойная связь является сочетания сигма- и пи-связей. Сигма- связь возникает при осевом перекрывании sp2 – орбиталей, а пи-связь при боковом перекрывании
Правило Зайцева:
Отщепление атома водорода в реакциях элиминирования происходит преимущественно от наименее гидрогенизированного атома углерода.
13. Алкены. Строение. sp 2 гибридизация, параметры кратной связи. Реакции электрофильного присоединения галогенов, галогеноводородов, хлорноватистой кислоты. Гидратация алкенов. Правило Морковникова. Механизмы реакций.
Алке́ны (олефины , этиленовые углеводороды ) - ациклические непредельные углеводороды, содержащие одну двойную связьмежду атомами углерода, образующие гомологический ряд с общей формулой C n H 2n
Одна s- и 2 p-орбитали смешиваются и образуются 2 равноценные sp2-гибридные орбитали, расположенные в одной плоскости под углом 120.
Если связь образуется более чем одной парой электронов, то она называется кратной .
Кратная связь образуется в тех случаях, когда имеется слишком мало электронов и связывающихся атомов, чтобы каждая пригодная для образования связи валентная орбиталь центрального атома могла перекрыться с какой-либо орбиталью окружающего атома.
Реакции электрофильного присоединения
В данных реакциях атакующей частицей является электрофил.
Галогенирование:
Гидрогалогенирование
Электрофильное присоединение галогенводородов к алкенам происходит по правилу Марковникова
Марковникова правило
Присоединение хлорноватистой кислоты с образованием хлоргидринов:
Гидратация
Реакция присоединения воды к алкенам протекает в присутствии серной кислоты :
Карбкатион - частица, в которой на атоме углерода сосредоточен положительный заряд, атом углерода имеет вакантную p-орбиталь.
14. Этиленовые углеводороды. Химические свойства: реакции с окислителями. Каталитическое окисление, реакция с надкислотами, реакция окисления до гликолей, с разрывом связи углерод-углерод, озонирование. Вакер-процесс. Реакции замещения.
Алке́ны (олефины , этиленовые углеводороды ) - ациклические непредельные углеводороды, содержащие одну двойную связьмежду атомами углерода, образующие гомологический ряд с общей формулой C n H 2n
Окисление
Окисление алкенов может происходить в зависимости от условий и видов окислительных реагентов как с разрывом двойной связи, так и с сохранением углеродного скелета.
При сжигании на воздухе олефины дают углекислый газ и воду.
H 2 C=CH 2 + 3O 2 => 2CO 2 + 2H 2 O
C n H 2n + 3n/O 2 => nCO 2 + nH 2 O – общая формула
Каталитическое окисление
В присутствии солей палладия этилен окисляется до ацетальдегида. Аналогично образуется ацетон из пропена.
При действии на алкены сильных окислителей (KMnO 4 или K 2 Cr 2 O 7 в среде Н 2 SO 4) при нагревании происходит разрыв двойной связи:
При окислении алкенов разбавленным раствором марганцовки образуются двухатомные спирты – гликоли (реакция Е.Е.Вагнера). Реакция протекает на холоде.
Ациклические и циклические алкены при взаимодействии с надкислотами RCOOOH в неполярной, среде образуют эпоксиды (оксираны), поэтому сама реакция носит название реакции эпоксидирования.
Озонирование алкенов.
при взаимодействии алкенов с озоном образуются перекисные соединения, которые называются озо-нидами. Реакция алкенов с озоном является наиболее важным методом окислительного расщепления алкенов по двойной связи
Алкены не вступают в реакции замещения.
Вакер-процесс -процесс получения ацетальдегида прямым окислением этилена.
Вакер-процесс основан на реакции окисления этилена дихлоридом палладия:
CH 2 =CH 2 + PdCl 2 + H 2 O = CH 3 CHO + Pd + 2HCl
15. Алкены: химические свойства. Гидрирование. Правило Лебедева. Изомеризация и олигомеризация алкенов. Радикальная и ионная полимеризация. Понятие полимер, олигомер, мономер, элементарное звено, степень полимеризации. Теломеризация и сополимеризация.
Гидрирование
Гидрирование алкенов непосредственно водородом происходит только в присутствии катализатора. Катализаторами гидрирования служат платина,палладий, никель
Гидрирование можно проводить и в жидкой фазе с гомогенными катализаторами
Реакции изомеризации
При нагревании возможна изомеризация молекул алкенов, которая
может привести как к перемещению двойной связи, так и к изменению скелета
углеводорода.
CH2=CH-CH2-CH3 CH3-CH=CH-CH3
Реакции полимеризации
Это разновидность реакции присоединения. Полимеризация - это реакция последовательного соединения одинаковых молекул в большие по размеру молекулы, без выделения какого-либо низкомолекулярного продукта. При полимеризации атом водорода присоединяется к наиболее гидрогенизированному атому углерода, находящемуся у двойной связи, а к другому атому углерода присоединяется остальная часть молекулы.
CH2=CH2 + CH2=CH2 + ... -CH2-CH2-CH2-CH2- ...
или n CH2=CH2 (-CH2-CH2-)n (полиэтилен)
Вещество, молекулы которого вступают в реакцию полимеризации, называются мономером . Молекула мономера обязательно должна иметь хотя бы одну двойную связь. Образующиеся полимеры состоят из большого количества повторяющихся цепочек, имеющих одинаковое строение (элементарных звеньев). Число, показывающее, сколько раз в полимере повторяется структурное (элементарное) звено, называется степенью полимеризации (n).
В зависимости от вида промежуточных частиц, образующихся при полимеризации, различают 3 механизма полимеризации: а) радикальный; б)катионный; в) анионный.
По первому методу получают полиэтилен высокого давления:
Катализатором реакции выступают пероксиды.
Второй и третий методы предполагает использование в качестве катализаторов кислот (катионная полимеризация), металлорганических соединений.
В химии олигомер ) - молекула в виде цепочки изнебольшого числа одинаковых составных звеньев.
Теломеризация
Теломеризация – олигомеризация алкенов в присутствии веществ – передатчиков цепи (телогенов). В результате реакции образуется смесь олигомеров (теломеров), концевые группы которых представляют собой части телогена. Например, в реакции CCl 4 с этиленом телогеном является CCl 4 .
CCl 4 + nCH 2 =CH 2 => Cl(CH 2 CH 2) n CCl 3
Инициирование этих реакций может осуществляться радикальными инициаторами или g -излучением.
16. Алкены. Реакции радикального присоединения галогенов и галогеноводородов (механизм). Присоединение карбенов к олефинам. Этилен, пропилен, бутилены. Промышленные источники и основные пути использования.
Алкены легко присоединяют галогены, особенно хлор и бром (галогенирование).
Типичной реакцией такого типа является обесцвечивание бромной воды
CH2=CH2 + Вr2 → СH2Br-CH2Br (1,2-дибромэтан)
Электрофильное присоединение галогенводородов к алкенам происходит по правилу Марковникова:
Марковникова правило : при присоединении протонных кислот или воды к несимметричным алкенам или алкинаматом водорода присоединяется к наиболее гидрогенизированному атому углерода
гидрогенизированный атом углерода – тот атом, к которому присоединен водород. Наиболее гидрогенизированный – там где больше всего Н
Реакции присоединения карбенов
Карбены CR 2: - высокореакционные короткоживущие частицы, которые способны легко присоединяться к двойной связи алкенов . В результате реакции присоединения карбена образуются производные циклопропана
Этиле́н - органическое химическое описываемое формулой С 2 H 4 . Является простейшималкеном (олефином )соединение. При нормальных условиях - бесцветный горючий газ со слабым запахом. Частично растворим в воде. Содержит двойную связь и поэтому относится к ненасыщенным или непредельным углеводородам. Играет чрезвычайно важную роль в промышленности. Этилен - самое производимое органическое соединение в мире: Окись этилена; полиэтилен, уксусная кислота, этиловый спирт.
Основные химические свойства (не учи, просто пусть будут на всякий случай, вдруг списать получится)
Этилен - химически активное вещество. Так как в молекуле между атомами углерода имеется двойная связь, то одна из них, менее прочная, легко разрывается, и по месту разрыва связи происходит присоединение, окисление, полимеризация молекул.
Галогенирование:
CH 2 =CH 2 + Br 2 → CH 2 Br-CH 2 Br
Происходит обесцвечивание бромной воды. Это качественная реакция на непредельные соединения.
Гидрирование:
CH 2 =CH 2 + H - H → CH 3 - CH 3 (под действием Ni)
Гидрогалогенирование:
CH 2 =CH 2 + HBr → CH 3 - CH 2 Br
Гидратация:
CH 2 =CH 2 + HOH → CH 3 CH 2 OH (под действием катализатора)
Эту реакцию открыл A.M. Бутлеров, и она используется для промышленного получения этилового спирта.
Окисление:
Этилен легко окисляется. Если этилен пропускать через раствор перманганата калия, то он обесцветится. Эта реакция используется для отличия предельных и непредельных соединений. Окись этилена - непрочное вещество, кислородный мостик разрывается и присоединяется вода, в результате образуетсяэтиленгликоль. Уравнение реакции :
3CH 2 =CH 2 + 2KMnO 4 + 4H 2 O → 3HOH 2 C - CH 2 OH + 2MnO 2 + 2KOH
C 2 H 4 + 3O 2 → 2CO 2 + 2H 2 O
Полимеризация (получение полиэтилена):
nCH 2 =CH 2 → (-CH 2 -CH 2 -) n
Пропиле́н (пропен) СН 2 =СН-СН 3 - непредельный (ненасыщенный) углеводород ряда этилена, горючий газ. Пропилен представляет собой газообразное вещество с низкой температурой кипения t кип = −47,6 °C
Обычно пропилен выделяют из газов нефтепереработки (при крекинге сырой нефти, пиролизе бензиновых фракций) или попутных газов, а также из газов коксования угля.
Для алкенов характерны, прежде всего, реакции присоединения по двойной связи. В основном эти реакции идут по ионному механизму. Пи-связь разрывается, и образуются две новые сигма-связи. Напомню, что для алканов типичными были реакции замещения и шли они по радикальному механизму. Присоединяться к алкенам могут молекулы водорода, эти реакции называются гидрирование, молекулы воды, гидратация, галогены галогенирование, галогенводороды гидрогалогенирование. Но обо всем по порядку.
Реакции присоединения по двойной связи
Итак, первое химическое свойство способность присоединять галогеноводороды, гидрогалогенирование.
Пропен и остальные алкены реагируют с галогеноводородами по правилу Марковникова.
Атом водорода присоединяется к наиболее гидрированному, или правильнее сказать гидрогенизированному, атому углерода.
Вторым номером в нашем списке свойств будет гидратация, присоединение воды.
Реакция проходит при нагревании в присутствии кислоты обычно серной или фосфорной. Присоединение воды происходит также по правилу Марковникова, то есть первичный спирт можно получить только гидратацией этилена, остальные неразветвленные алкены дают вторичные спирты.
И для гидрогалогениерования и для гидратации существуют исключения из правила Марковникова. Во-первых, против этого правила присоединение протекает в присутствии пероксидов.
Во-вторых, для производных алкенов, в которых присуствуют электронноакцепторне группы. Например, для 3,3,3-трифторпропена-1.
Атомы фтора за счет высокой электроотрицательности оттягивают на себя электронную плотность по цепи сигма-связей. Такое явление называется отрицательным индуктивным эффектом.
Из-за этого происходит смещение подвижных пи-электронов двойной связи и у крайнего атома углерода оказывается частичный положительный заряд, который обычно обозначается как дельта плюс. Именно к нему и пойдет отрицательно заряженный ион брома, а катион водорода присоединится к наименее гидрированному атому углерода.
Помимо трифторметильной группы отрицательным индуктивным эффектом обладает, например, трихлорметильная группа, нитрогруппа, карбоксильная группа и некоторые другие.
Этот второй случай нарушения правила Марковникова в ЕГЭ встречается очень редко, но все-таки желательно иметь его в виду, если вы планируете сдать экзамен на максимальный балл.
Третье химическое свойство присоединение молекул галогенов.
В первую очередь это касается брома, поскольку данная реакция является качественной на кратную связь. При пропускании, например, этилена через бромную воду, то есть раствор брома в воде, имеющий коричневый цвет, происходит ее обесцвечивание. Если пропускать через бромную воду смесь газов, например, этан и этен, то можно получить чистый этан без примеси этена, поскольку тот останется в реакционной колбе в виде дибромэтана, представляющего собой жидкость.
Особым образом стоит отметить реакцию алкенов в газовой фазе при сильном нагревании, например, с хлором.
При таких условиях протекает не реакция присоединения, а реакция замещения. При чем исключительно по альфа-атому углерода, то есть атому, соседствующему с двойной связью. В данном случае получается 3-хлорпропен-1. Эти реакции на экзамене встречаются нечасто, поэтому большинство учеников их не помнит и, как правило, совершает ошибки.
Четвертым номером идет реакция гидрирования, а вместе с ней и реакция дегидрирования. То есть присоединение или отщепление водорода.
Гидрирование происходит при не очень высокой температуре на никелевом катализаторе. При более высокой температуре возможно дегидрирование с получением алкинов.
Пятым свойством алкенов является способность к полимеризации, когда сотни и тысячи молекул алкена за счет разрыва пи-связи и образования сигма-свзяей друг с другом образуют очень длинные и прочные цепочки.
В данном случае получился полиэтилен. Обратите внимание, что в получившейся молекуле кратные связи отсутствуют. Такие вещества называются полимерами, исходные молекулы называются мономерами, повторяющийся фрагмент это элементарное звено полимера, а число n степень полимеризации.
Также возможны реакции получения других важных полимерных материалов, например, полипропилена.
Еще один важный полимер поливинилхлорид.
Исходным веществом для производства этого полимера является хлорэтен, тривиальное название которого винилхлорид. Поскольку этот непредельный заместитель называется винил. Часто встречающаяся аббревиатура на пластмассовых изделиях ПВХ как раз расшифровывается как поливинилхлорид.
Мы обсудили пять свойств, которые представляли собой реакции присоединения по двойной связи. Теперь обратимся к реакциям окисления .
Реакции окисления алкенов
Шестое химическое свойство в нашем общем списке это мягкое окисление или реакция Вагнера. Оно протекает при воздействии на алкен водным раствором перманганата калия на холоду, поэтому часто в экзаменационных заданиях указывают температуру ноль градусов.
В результате получается двухатомный спирт. В данном случае этиленгликоль, а в целом такие спирты носят общее название гликоли. В процессе реакции фиолетово-розовый раствор перманганата обесцвечивается, поэтому эта реакция также является качественной на двойную связь. Марганец в нейтральной среде из степени окисления +7 восстанавливается до степени окисления +4. Рассмотрим еще несколько примеров. УРАВНЕНИЕ
Здесь получился пропандиол-1,2. Однако таким же образом будут реагировать и циклические алкены. УРАВНЕНИЕ
Еще один вариант, когда двойная связь находится, например, в боковой цепи ароматических углеводородов. Регулярно в заданиях егэ встречается реакция Вагнера с участием стирола, его второе название винилбензол.
Я надеюсь, что представил вашему вниманию достаточно примеров, чтобы вы поняли, что мягкое окисление двойной связи всегда подчиняется довольно простому правилу пи-связь разрывается и к каждому атому углерода присоединяется гидроксигруппа.
Теперь, что касается жесткого окисления. Это будет наше седьмое свойство. Такое окисление происходит, когда алкен реагирует с кислотным раствором перманганата калия при нагревании.
Происходит деструкция молекулы, то есть ее разрушение по двойной связи. В случае бутена-2 получились две молекулы уксусной кислоты. В целом же, по продуктам окисления можно судить о положении кратной связи в углеродной цепи.
При окислении бутена-1 получается молекула пропионовой (пропановой) кислоты и углекислый газ.
В случае этилена получится две молекулы углекислого газа. Во всех случаях в кислой среде марганец из степени окисления +7 восстанавливается до +2.
И, наконец, восьмое свойство полное окисление или горение.
Алкены сгорают, как и другие углеводороды, до углекислого газа и воды. Запишем уравнение сгорания алкенов в общем виде.
Молекул углекислого газа будет столько же, сколько и атомов углерода в молекуле алкена, поскольку в состав молекулы CO 2 входит один атом углерода. То есть n молекул CO 2 . Молекул воды будет в два раза меньше, чем атомов водорода, то есть 2n/2, а значит просто n.
Атомов кислорода слева и справа одинаковое количество. Справа их 2n из углекислого газа плюс n из воды, итого 3n. Слева атомов кислорода столько же, а значит молекул в два раза меньше, потому как в состав молекулы входят два атома. То есть 3n/2 молекул кислорода. Можно записать 1,5n.
Мы рассмотрели восемь химических свойств алкенов.
НЕПРЕДЕЛЬНЫЕ, ИЛИ НЕНАСЫЩЕННЫЕ, УГЛЕВОДОРОДЫ РЯДА ЭТИЛЕНА
(АЛКЕНЫ, ИЛИ ОЛЕФИНЫ)
Алкены , или олефины (от лат. olefiant - масло - старое название, но широко используемое в химической литературе. Поводом к такому названию послужил хлористый этилен, полученный в XVIII столетии, - жидкое маслянист вещество.) - алифатические непредельные углеводороды, в молекулах которых между углеродными атомами имеется одна двойная связь.
Алкены содержат в своей молекуле меньшее число водородных атомов, чем соответствующие им алканы (с тем же числом углеродных атомов), поэтому такие углеводороды называют непредельными или ненасыщенными.
Алкены образуют гомологический ряд с общей формулой C n H 2n
1. Гомологический ряд алкенов
С n H 2 n алкен |
Названия, суффикс ЕН, ИЛЕН |
C 2 Н 4 |
этен , этилен |
C 3 H 6 |
пропен |
C 4 H 8 |
бутен |
C 5 H 10 |
пентен |
C 6 H 12 |
гексен |
Гомологи:
С H 2 = CH 2 этен
С H 2 = CH - CH 3 пропен
С H 2 =CH-CH 2 -CH 3 бутен -1
С H 2 =CH-CH 2 -CH 2 - СН 3 пентен -1
2. Физические свойства
Этилен (этен) – бесцветный газ с очень слабым сладковатым запахом, немного легче воздуха, малорастворим в воде.
С 2 – С 4 (газы)
С 5 – С 17 (жидкости)
С 18 – (твёрдые)
· Алкены не растворяются в воде, растворимы в органических растворителях (бензин, бензол и др.)
· Легче воды
· С увеличением Mr температуры плавления и кипения увеличиваются
3. Простейшим алкеном является этилен - C 2 H 4
Структурная
и электронная формулы этилена имеют вид:
В молекуле этилена подвергаются
гибридизации одна s
- и две p
-орбитали атомов C (sp
2 -гибридизация).
Таким образом, каждый атом C имеет по три гибридных орбитали и по одной негибридной p -орбитали. Две из гибридных орбиталей атомов C взаимно перекрываются и образуют между атомами C
σ - связь. Остальные четыре гибридных орбитали атомов C перекрываются в той же плоскости с четырьмя s -орбиталями атомов H и также образуют четыре σ - связь. Две негибридные p -орбитали атомов C взаимно перекрываются в плоскости, которая расположена перпендикулярно плоскости σ - связь, т.е. образуется одна П - связь.
По своей природе П - связь резко отличается от σ - связь; П - связь менее прочная вследствие перекрывания электронных облаков вне плоскости молекулы. Под действием реагентов П - связь легко разрывается.
Молекула этилена симметрична; ядра всех атомов расположены в одной плоскости и валентные углы близки к 120°; расстояние между центрами атомов C равно 0,134 нм.
Если атомы соединены двойной связью, то их вращение невозможно без того, чтобы электронные облака П - связь не разомкнулись.
4. Изомерия алкенов
Наряду со структурной изомерией углеродного скелета для алкенов характерны, во-первых, другие разновидности структурной изомерии - изомерия положения кратной связи и межклассовая изомерия .
Во-вторых, в ряду алкенов проявляется пространственная изомерия , связанная с различным положением заместителей относительно двойной связи, вокруг которой невозможно внутримолекулярное вращение.
Структурная изомерия алкенов
1. Изомерия углеродного скелета (начиная с С 4 Н 8):
2. Изомерия положения двойной связи (начиная с С 4 Н 8):
3. Межклассовая изомерия с циклоалканами, начиная с С 3 Н 6:
Пространственная изомерия алкенов
Вращение атомов вокруг двойной связи невозможно без ее разрыва. Это обусловлено особенностями строения p-связи (p-электронное облако сосредоточено над и под плоскостью молекулы). Вследствие жесткой закрепленности атомов поворотная изомерия относительно двойной связи не проявляется. Но становится возможной цис -транс -изомерия.
Алкены, имеющие у каждого из двух атомов углерода при двойной связи различные заместители, могут существовать в виде двух пространственных изомеров, отличающихся расположением заместителей относительно плоскости p-связи. Так, в молекуле бутена-2 СН 3 –СН=СН–СН 3 группы СН 3 могут находиться либо по одну сторону от двойной связи в цис -изомере, либо по разные стороны в транс -изомере.
ВНИМАНИЕ!
цис-транс
- Изомерия не проявляется, если хотя бы один из атомов С
при двойной связи имеет 2 одинаковых заместителя.
Например,
бутен-1 СН 2 =СН–СН 2 –СН 3 не имеет цис - и транс -изомеров, т.к. 1-й атом С связан с двумя одинаковыми атомами Н.
Изомеры цис - и транс - отличаются не только физическими
,
но и химическими свойствами, т.к. сближение или удаление частей молекулы друг от друга в пространстве способствует или препятствует химическому взаимодействию.
Иногда цис-транс -изомерию не совсем точно называют геометрической изомерией . Неточность состоит в том, что все пространственные изомеры различаются своей геометрией, а не только цис - и транс -.
5. Номенклатура
Алкены простого строения часто называют, заменяя суффикс -ан в алканах на -илен: этан - этилен, пропан - пропилен и т.д.
По систематической номенклатуре названия этиленовых углеводородов производят заменой суффикса -ан в соответствующих алканах на суффикс -ен (алкан - алкен, этан - этен, пропан - пропен и т.д.). Выбор главной цепи и порядок названия тот же, что и для алканов. Однако в состав цепи должна обязательно входить двойная связь. Нумерацию цепи начинают с того конца, к которому ближе расположена эта связь. Например:
Непредельные (алкеновые) радикалы называют тривиальными названиями или по систематической номенклатуре:
(Н 2 С=СН-)винил или этенил
(Н 2 С=CН-СН 2) аллил
Гипермаркет знаний >>Химия >>Химия 10 класс >> Химия: Алкены
К непредельным относят углеводороды, содержащие в молекулах кратные связи между атомами углерода. Непредельными являются алкены, алкины , алкадиены (полиены). Непредельным характером обладают также циклические углеводороды, содержащие двойную связь в цикле (циклоалке-ны), а также циклоалканы с небольшим числом атомов углерода в цикле (три или четыре атома). Свойство «непредельности» связано со способностью этих веществ вступать в реакции присоединения, прежде всего водорода, с образованием предельных, или насыщенных, углеводородов - алканов.
Строение
Алкены - ациклические , содержащие в молекуле, помимо одинарных связей, одну двойную связь между атомами углерода и соответствующие общей формуле С n Н 2n .
Свое второе название - «олефины» - алкены получили по аналогии с жирными непредельными кислотами (олеиновая, линолевая), остатки которых входят в состав жидких жиров - масел (от англ. oil - масло).
Атомы углерода, между которыми имеется двойная связь, как вы знаете, находятся в состоянии sp 2 -гибридизации. Это означает, что в гибридизации участвуют одна s- и две р-орбитали, а одна р-орбиталь остается негибридизованной. Перекрывание гибридных орбиталей приводит к образованию а-связи, а за счет негибридизованных -орбиталей соседних молекулы этилена атомов углерода образуется вторая, п -связь. Таким образом, двойная связь состоит из одной Þ- и одной п-связи.
Гибридные орбитали атомов, образующих двойную связь, находятся в одной плоскости, а орбитали, образующие л-связь, располагаются перпендикулярно плоскости молекулы (см. рис. 5).
Двойная связь (0,132 нм) короче одинарной, а ее энергия больше, т. е. она является более прочной. Тем не менее наличие подвижной, легко поляризуемой 7г-связи приводит к тому, что алкены химически более активны, чем алканы, и способны вступать в реакции присоединения.
Гомологический ряд этена
Неразветвленные алкены составляют гомологический ряд этена (этилена).
С2Н4 - этен, С3Н6 - пропен, С4Н8 - бутен, С5Н10 - пентен, С6Н12 - гексен и т. д.
Изомерия и номенклатура
Для алкенов, так же как и для алканов, характерна структурная изомерия. Структурные изомеры, как вы помните, отличаются друг от друга строением углеродного скелета. Простейший алкен, для которого характерны структурные изомеры , - это бутен.
СН3-СН2-СН=СН2 СН3-С=СН2
l
СН3
бутен-1 метилпропен
Особым видом структурной изомерии является изомерия положения двойной связи:
СН3-СН2-СН=СН2 СН3-СН=СН-СН3
бутен-1 бутен-2
Вокруг одинарной углерод-углеродной связи возможно практически свободное вращение атомов углерода, поэтому молекулы алканов могут приобретать самую разнообразную форму. Вращение вокруг двойной связи невозможно, что приводит к появлению у алкенов еще одного вида изомерии - геометрической, или цис-транс-изомерии.
Цис-изомеры отличаются от торакс-изомеров пространственным расположением фрагментов молекулы (в данном случае метильных групп) относительно плоскости п -связи, а следовательно, и свойствами.
Алкены изомерны циклоалканам (межклассовая изомерия), например:
сн2=сн-сн2-сн2-сн2-сн3
гексен-1 циклогексан
Номенклатура алкенов , разработанная ИЮПАК, схожа с номенклатурой алканов.
1. Выбор главной цепи
Образование названия углеводорода начинается с определения главной цепи - самой длинной цепочки атомов углерода в молекуле. В случае алкенов главная цепь должна содержать двойную связь.
2. Нумерация атомов главной цепи
Нумерация атомов главной цепи начинается с того конца, к которому ближе находится двойная связь. Например, правильное название соединения
сн3-сн-сн2-сн=сн-сн3 сн3
5-метилгексен-2, а не 2-метилгексен-4, как можно было бы предположить.
Если по расположению двойной связи нельзя определить начало нумерации атомов в цепи, то его определяет положение заместителей так же, как для предельных углеводородов.
CH3- CH2-CH=CH-СН-СН3
l
СН3
2-метилгексен-З
3. Формирование названия
Названия алкенов формируются так же, как и названия ал-канов. В конце названия указывают номер атома углерода, у которого начинается двойная связь, и суффикс , обозначающий принадлежность соединения к классу алкенов, -ен.
Получение
1. Крекинг нефтепродуктов. В процессе термического крекинга предельных углеводородов наряду с образованием алка-нов происходит образование алкенов.
2. Дегидрирование предельных углеводородов. При пропускании алканов над катализатором при высокой температуре (400-600 °С) происходит отщепление молекулы водорода и образование алкена:
3. Дегидратация спиртов (отщепление воды). Воздействие водоотнимающих средств (Н2804, Аl203) на одноатомные спирты при высокой температуре приводит к отщеплению молекулы воды и образованию двойной связи:
Эту реакцию называют внутримолекулярной дегидратацией (в отличие от межмолекулярной дегидратации, которая приводит к образованию простых эфиров и будет изучена в § 16 «Спирты»).
4. Дегидрогалогенирование (отщепление галогеноводорода).
При взаимодействии галогеналкана со щелочью в спиртовом растворе образуется двойная связь в результате отщепления молекулы галогеноводорода.
Обратите внимание, что в результате этой реакции образуется преимущественно бутен-2, а не бутен-1, что соответствует правилу Зайцева:
При отщеплении галогеноводорода от вторичных и третичных галогеналканов атом водорода отщепляется от наименее гидрированного атома углерода.
5. Дегалогенирование. При действии цинка на дибромпроиз-водное алкана происходит отщепление атомов галогенов, находящихся при соседних атомах углерода, и образование двойной связи:
Физические свойства
Первые три представителя гомологического ряда алкенов - газы, вещества состава С5Н10-С16Н32 - жидкости, высшие алкены - твердые вещества.
Температуры кипения и плавления закономерно повышаются при увеличении молекулярной массы соединений.
Химические свойства
Реакции присоединения
Напомним, что отличительной чертой представителей непредельных углеводородов - алкенов является способность вступать в реакции присоединения. Большинство этих реакций протекает по механизму электрофильного присоединения.
1. Гидрирование алкенов. Алкены способны присоединять водород в присутствии катализаторов гидрирования - металлов - платины, палладия, никеля:
CH3-СН2-СН=СН2 + Н2 -> CH3-CH2-СН2-СН3
Эта реакция протекает и при атмосферном и при повышенном давлении и не требует высокой температуры, так как является экзотермической. При повышении температуры на тех же катализаторах может пойти обратная реакция - дегидрирование.
2. Галогенирование (присоединение галогенов). Взаимодействие алкена с бромной водой или раствором брома в органическом растворителе (ССl4) приводит к быстрому обесцвечиванию этих растворов в результате присоединения молекулы галогена к алкену и образования дигалогеналканов.
Марковников Владимир Васильевич
(1837-1904)
Русский химик-органик. Сформулировал (1869) правила о направлении реакций замещения, отщепления, присоединения по двойной связи и изомеризации в зависимости от химического строения. Исследовал (с 1880 г.) состав нефти, заложил основы нефтехимии как самостоятельной науки. Открыл (1883) новый класс органических веществ - цикло-парафины (нафтены).
3. Гидрогалогенирование (присоединение галогеноводорода).
Реакция присоединения галогеноводорода более подробно будет рассмотрена ниже. Эта реакция подчиняется правилу Марковникова:
При присоединении галогеноводорода к алкену водород присоединяется к более гидрированному атому углерода, т. е. атому, при котором находится больше атомов водорода, а галоген - к менее гидрированному.
4. Гидратация (присоединение воды). Гидратация алкенов приводит к образованию спиртов. Например, присоединение воды к этену лежит в основе одного из промышленных способов получения этилового спирта:
CH2=CH2 + H2O -> СН3-СН2ОН
этен этанол
Обратите внимание на то, что первичный спирт (с гидроксигруппой при первичном углероде) образуется только при гидратации этена. При гидратации пропена или других алкенов образуются вторичные спирты.
Эта реакция также протекает в соответствии с правилом Марковникова - катион водорода присоединяется к более гидрированному атому углерода, а гидроксигруппа - к менее гидрированному.
5. Полимеризация. Особым случаем присоединения является реакция полимеризации алкенов:
Эта реакция присоединения протекает по свободноради-кальному механизму.
Реакции окисления
Как и любые органические соединения, алкены горят в кислороде с образованием С02 и Н20.
В отличие от алканов, которые устойчивы к окислению в растворах, алкены легко окисляются под действием водных растворов перманганата калия. В нейтральных или слабощелочных растворах происходит окисление алкенов до диолов (двухатомных спиртов), причем гидроксильные группы присоединяются к тем атомам, между которыми до окисления существовала двойная связь.
Как вы уже знаете, непредельные углеводороды - алкены способны вступать в реакции присоединения. Большинство этих реакций протекает по механизму электрофильного присоединения.
Электрофильное присоединение
Электрофильные реакции - это реакции, протекающие под действием электрофилов - частиц, имеющих недостаток электронной плотности, например незаполненную орбиталь. Простейшей электрофильной частицей является катион водорода. Известно, что атом водорода имеет один электрон на З-в-орбитали. Катион водорода образуется, когда атом теряет этот электрон, таким образом, у катиона водорода вообще отсутствуют электроны:
Н· - 1е - -> Н +
При этом катион имеет достаточно высокое сродство к электрону. Сочетание этих факторов делает катион водорода достаточно сильной электрофильной частицей.
Образование катиона водорода возможно при электролитической диссоциации кислот:
НВr -> Н + + Вr -
Именно по этой причине многие электрофильные реакции идут в присутствии и с участием кислот.
Электрофильные частицы, как уже говорилось раньше, действуют на системы, содержащие области повышенной электронной плотности. Примером такой системы может являться кратная (двойная или тройная) углерод-углеродная связь.
Вы уже знаете, что атомы углерода, между которыми образована двойная связь, находятся в состоянии sр 2 -гибридизации. Негибри-дизованные р-орбитали соседних атомов углерода, находящиеся в одной плоскости, перекрываются, образуя п -связь, которая менее прочна, чем Þ-связь, и, что наиболее существенно, легко поляризуется под действием внешнего электрического поля. Это означает, что при приближении положительно заряженной частицы электроны тс-связи смещаются в ее сторону и образуется так называемый п- комплекс.
Получается п
-комплекс и при присоединении катиона водорода к п
-связи. Катион водорода как бы натыкается на выступающую из плоскости молекулы электронную плотность п
-связи и присоединяется к ней.
На следующей стадии происходит полное смещение электронной пары п -связи к одному из атомов углерода, что приводит к появлению на нем неподеленной пары электронов. Орбиталь атома углерода, на которой находится эта пара, и незаполненная орбиталь катиона водорода перекрываются, что приводит к образованию ковалентной связи по донорно-акцепторному механизму. У второго атома углерода при этом остается незаполненная орбиталь, т. е. положительный заряд.
Образовавшаяся частица называется карбокатионом, так как она содержит положительный заряд на атоме углерода. Эта частица может соединиться с каким-либо анионом, частицей, имеющей неподеленную электронную пару, т. е. нуклеофилом.
Рассмотрим механизм реакции электрофильного присоединения на примере гидробромирования (присоединения бромоводорода) этена:
СН2= СН2 + НВг --> СНВr-СН3
Реакция начинается с образования электрофильной частицы - катиона водорода, которое происходит в результате диссоциации молекулы бромоводорода.
Катион водорода атакует п
-связь, образуя п
-комплекс, который быстро преобразуется в карбокатион:
Теперь рассмотрим более сложный случай.
Реакция присоединения бромоводорода к этену протекает однозначно, а взаимодействие бромоводорода с пропеном теоретически может дать два продукта: 1-бромпропан и 2-бромпропан. Данные эксперимента показывают, что в основном получается 2-бромпропан.
Для того чтобы объяснить это, нам придется рассмотреть промежуточную частицу - карбокатион.
Присоединение катиона водорода к пропену может привести к образованию двух карбокатионов: если катион водорода присоединится к первому атому углерода, к атому, который находится на конце цепи, то положительный заряд окажется у второго, т. е. в центре молекулы (1); если присоединится ко второму, то положительный заряд окажется у первого атома (2).
Преимущественное направление реакции будет зависеть от того, какого карбокатиона окажется больше в реакционной среде, что, в свою очередь, определяется устойчивостью карбокатиона. Эксперимент показывает преимущественное образование 2-бромпропа-на. Это означает, что в большей степени происходит образование карбокатиона (1) с положительным зарядом на центральном атоме.
Большая устойчивость этого карбокатиона объясняется тем, что положительный заряд на центральном атоме углерода компенсируется положительным индуктивным эффектом двух метильных групп, суммарный эффект которых выше, чем +/-эффект одной этильной группы:
Закономерности реакций гидрогалогенирования алкенов были изучены известным русским химиком В. В. Марковниковым, учеником А. М. Бутлерова , который, как это уже было сказано выше, сформулировал правило, носящее его имя.
Это правило было установлено эмпирически, т. е. опытным путем. В настоящее время мы можем привести вполне убедительное его объяснение.
Интересно, что правилу Марковникова подчиняются и другие реакции электрофильного присоединения, поэтому будет правильно сформулировать его в более общем виде.
В реакциях электрофильного присоединения электрофил (частица с незаполненной орбиталью) присоединяется к более гидрированному атому углерода, а нуклеофил (частица с неподеленной парой электронов) - к менее гидрированному.
Полимеризация
Особым случаем реакции присоединения является реакция полимеризации алкенов и их производных. Эта реакция протекает по механизму свободнорадикального присоединения:
Полимеризацию проводят в присутствии инициаторов - пере-кисных соединений, которые являются источником свободных радикалов. Перекисными соединениями называют вещества, молекулы которых включают группу -О-О-. Простейшим перекисным соединением является перекись водорода НООН.
При температуре 100 °С и давлении 100 МПа происходит гомо-лиз неустойчивой кислород-кислородной связи и образование радикалов - инициаторов полимеризации. Под действием радикалов КО- происходит инициирование полимеризации, которая развивается как реакция свободнорадикального присоединения. Рост цепи прекращается, когда в реакционной смеси происходит рекомбинация радикалов - полимерной цепи и радикалов или КОСН2СН2-.
При помощи реакции свободнорадикальной полимеризации веществ, содержащих двойную связь, получают большое количество высокомолекулярных соединений:
Применение алкенов с различными заместителями дает возможность синтезировать богатый ассортимент полимерных материалов с широким набором свойств.
Все эти полимерные соединения находят широкое применение в самых разных областях человеческой деятельности - промышленности, медицине, используются для изготовления оборудования биохимических лабораторий, некоторые являются полупродуктами для синтеза других высокомолекулярных соединений.
Окисление
Вы уже знаете, что в нейтральных или слабощелочных растворах происходит окисление алкенов до диолов (двухатомных спиртов). В кислой среде (подкисленный серной кислотой раствор) происходит полное разрушение двойной связи и превращение атомов углерода, между которыми существовала двойная связь, в атомы углерода карбоксильной группы:
Деструктивное окисление алкенов можно применять для определения их структуры. Так, например, если при окислении некоторого алкена получены уксусная и пропионовая кислоты, это означает, что окислению подвергся пентен-2, а если получены масляная (бутановая) кислота и углекислый газ, то исходный углеводород - пентен-1.
Применение
Алкены широко используются в химической промышленности как сырье для получения разнообразных органических веществ и материалов.
Так, например, этен является исходным веществом для производства этанола, этиленгликоля, эпоксидов, дихлорэтана.
Большое количество этена перерабатывается в полиэтилен, который используется для изготовления упаковочной пленки, посуды, труб, электроизоляционных материалов.
Из пропена получают глицерин, ацетон, изопропанол, растворители. Полимеризацией пропена получают полипропилен, который по многим показателям превосходит полиэтилен: имеет более высокую температуру плавления, химическую устойчивость.
В настоящее время из полимеров - аналогов полиэтилена производят волокна, обладающие уникальными свойствами. Так, например, волокно из полипропилена прочнее всех известных синтетических волокон.
Материалы, изготовленные из этих волокон, являются перспективными и находят все большее применение в разных областях человеческой деятельности.
1. Какие виды изомерии характерны для алкенов? Напишите формулы возможных изомеров пентена-1.
2. Из каких соединений может быть получен: а) изобутен (2-метилпропен); б) бутен-2; в) бутен-1? Напишите уравнения соответствующих реакций.
3. Расшифруйте следующую цепочку превращений. Назовите соединения А, Б, В.
4. Предложите способ получения 2-хлорпропана из 1-хлор-пропана. Напишите уравнения соответствующих реакций.
5. Предложите способ очистки этана от примесей этилена. Напишите уравнения соответствующих реакций.
6. Приведите примеры реакций, с помощью которых можно различить предельные и непредельные углеводороды.
7. На полное гидрирование 2,8 г алкена израсходовано 0,896 л водорода (н. у.). Какова молекулярная масса и структурная формула этого соединения, имеющего нормальную цепь углеродных атомов?
8. Какой газ находится в цилиндре (этен или пропен), если известно, что на полное сгорание 20 см3 этого газа потребовалось 90 см3 (н. у.) кислорода?
9*. При реакции алкена с хлором в темноте образуется 25,4 г дихлорида, а при реакции этого алкена той же массы с бромом в тетрахлорметане - 43,2 г дибромида. Установите все возможные структурные формулы исходного алкена.
История открытия
Из вышеизложенного материала мы с вами уже поняли, что этилен является родоначальником гомологического ряда непредельных углеводородов, имеющий одну двойную связь. Их формула C n H 2n и носят они название алкенов.
Немецкому врачу и химику Бехеру в 1669 году впервые удалось получить этилен путем воздействия серной кислоты на этиловый спирт. Бехер установил, что этилен является, более химически активным, чем метан. Но, на жаль, в то время, полученный газ ученый идентифицировать не смог, поэтому и названия ему никакого не присвоил.
Немного позже таким же способом получения этилена воспользовался и голландские химики. А так как при взаимодействии с хлором он имел свойство образовывать маслянистуюю жидкость, то соответственно и получил название «маслородного газа». Позднее стало известно, что эта жидкость является дихлорэтаном.
Во французском языке термин «маслородный» звучит, как oléfiant. А после того, как были обнаружены и другие углеводороды подобного типа, то Антуан Фуркруа,французский химик и ученый, ввел новый термин, который стал общим для всего класса олефинов или алкенов.
Но уже в начале девятнадцатого века французским химиком Ж. Гей-Люссаком было доведено, что этанол состоит не только из «маслородного» газа, но и воды. Кроме того, такой же газ был обнаружен и в хлористом этиле.
И хотя химики и определили, что этилен состоит из водорода и углерода, и уже знали состав веществ, но найти его настоящую формулу еще долго не могли. И лишь в 1862 году Э.Эрленмейеру удалось доказать наличие в молекуле этилена двойной связи. Это признал и российский ученый А. М. Бутлеров и подтвердил правильность такой точки зрения экспериментально.
Нахождение в природе и физиологическая роль алкенов
Многих интересует вопрос, где в природе можно встретить алкены. Так вот, оказывается, что в природе они практически не встречаются, так как простейший его представитель этилен является гормоном для растений и лишь в незначительном количестве в них синтезируется.
Правда в природе существует такой алкен, как мускалур. Этот один из природных алкенов является половым аттрактантом самки домашней мухи.
Стоит обратить внимание на то, что, имея, высокую концентрацию низшие алкены обладают наркотическим эффектом, которые способны вызывать судороги и раздражение слизистых.
Применение алкенов
Жизнь современного общества на сегодняшний день трудно представить без применения полимерных материалов. Так как в отличие от природных материалов, полимеры обладают различными свойствами, они легкие в обработке, да и если смотреть по цене, то они сравнительно дешевы. Еще важным аспектом в пользу полимеров, является то, что многие из них можно вторично перерабатывать.
Алкены свое применение нашли при производстве пластмасс, каучуков, пленок, тефлона, этилового спирта, уксусного альдегида и других органических соединений.
В сельском хозяйстве его применяют, как средство, которое ускоряет процесс созревания фруктов. Для получения различных полимеров и спиртов используют пропилен и бутилены. А вот в производстве синтетического каучука используют изобутилен. Поэтому можно сделать вывод, что без алкенов не обойтись, так как они являются важнейшим химическим сырьем.
Промышленное использование этилена
В промышленных масштабах пропилен, как правило, используют для синтеза полипропилена и для получения изопропанола, глицерина, масляных альдегидов и т.д. С каждым годом потребность в пропилене возрастает.