Виды стеклоткани – характеристики, состав, свойства, применение. Стекловолокно: характеристики, применение
Время чтения: 3 минуты
Существуют чудесные технологии, благодаря которым вещество меняет свои свойства буквально на противоположные. В результате одного такого преображения хрупкое и звонкое стекло превращается в мягкую материю, обладающую новыми, потрясающими качествами. Это и есть так называемая стеклоткань.
Производство
Стеклоткань – это технический материал, который получается из стекловолоконных нитей, пропитанных так называемым замаслеванителем – эмульсией, содержащей парафин. Производство востребованных в народном хозяйстве технических тканей всегда регламентируются государственными стандартами. Стеклоткань не является исключением, она вырабатывается в строгом соответствии с ГОСТ 19907-83.
Рассмотрим подробнее, что же это такое, стекловолокно? Сырьём для материала является силикатное стекло с содержанием алюминия и бора. Его растапливают в специальных печах и продавливают через тончайшие отверстия-фильеры. Полученные волокна отличаются мягкостью, эластичностью и особой тонкостью. Их диаметр зачастую гораздо меньше человеческого волоса и составляет от 3 до 100 микрометров. Они невероятно легкие, например, вес 1м 2 стеклоткани Э3/2-100 равен всего 120 г. При этом они обладают невероятной прочностью. Поражает и длина волокон, составляющая 20 километров.
Крепко скрученные нити наматывают на бабины и отправляют в дальнейшую обработку на челночные или бесчелночные ткацкие станки, где различными способами плетения и создаётся стеклоткань.
Волокна тканного материала соединены в несколько нитей. Нетканое стекловолокно таких пучков не имеет: нити ложатся по одной.
Свойства стеклоткани
Материал обладает парадоксальными для тканей качествами.
- Невоспламеняемость и негорючесть. Стеклоткань выдерживает кратковременное воздействие открытого огня.
- Экологическая чистота и абсолютная нетоксичность.
- Химическая и биологическая инертность. Изделия выносят обработку щелочами и кислотами, они не гниют и не являются питательным субстратом для микроорганизмов.
- Невосприимчивость к ультрафиолетовым лучам.
- Беспримерная прочность, превышающая аналогичный показатель стальной проволоки.
- Долговечность, не знающая конкуренции.
- Отсутствие таких явлений, как механический износ и коррозия.
Виды материи и их использование
Марки стеклоткани отличаются различной устойчивостью к воздействиям химических веществ и высоким нагрузкам. На свойства материала во многом влияет способ переплетения нитей. Например, электроизоляционные ткани создаются полотняным плетением, конструкционные – полотняным и сатиновым, а фильтровальные ещё и саржевым методом. Итак, материал бывает следующих видов:
- Конструкционные – самые популярные, они идут на армирование стеклопластика и на производство надёжных конструкций в автомобильном, авиационном и судостроении.
- Ровинговые – лучшие материи для стеклорубероида. (Ровингом называют плоский жгут из стекловолокон, который получают сращиванием нескольких нитей.) Из них также делают корпуса яхт, катеров, автомобилей, детали летательных аппаратов.
- Изоляционные – востребованы при изготовления тепло-или гидроизоляции.
- Электроизоляционные – менее востребованная стеклоткань. Она идёт на производство печатных плат, фальгированных диэлектриков, а также на электроизоляцию теплопроводов.
- Базальтовые – выдерживают температуру до +700 о С.
- Кремнезёмные – наиболее термостойкие ткани, выдерживающие до +1200 о С. Их применяют в качестве покрывал при сварке, из них шьют средства первой защиты при пожаре.
Другие области применения
Кроме указанных областей, стеклоткань идёт на изготовление кровельных материалов: более дешёвых гладких и не деформирующихся, но более дорогих каркасных.
Используют для утепления и гидроизоляции домов, трубопроводов и автомобилей.
Из стеклоткани делают уникальные по прочности и конфигурации детали для аппаратов и станков.
В 1970-е годы цветное стекловолокно шло даже на украшение интерьеров. Тогда были весьма модными шторы, абажуры и торшеры из этой ткани.
Негорючесть материала служит основанием для использования стеклоткани на некоторых огнеопасных производствах и в наши дни.
Особенность утилизации
Стеклоткань – это нетоксичный материал, который можно утилизировать, как прочий строительный мусор. Однако при его измельчении в воздух попадает множество микрочастиц, способных вызвать зуд на коже, попасть в дыхательные пути и нанести вред здоровью. При утилизации стекломатерий следует соблюдать некоторые правила.
- Работу производить в перчатках и масках.
- Включать вытяжную вентиляцию.
- Минимизировать количество разрезов.
- Смачивать ткань при измельчении.
- Утилизированный материал должен находиться в герметичных пакетах, а рабочее место требует своевременной и тщательной очистки.
Этот необычный материал сегодня стал неотъемлемой частью нашей жизни. Путешествуем ли мы на поезде, летим ли на самолёте, передвигаемся на автомобиле или бороздим океанские просторы на круизном лайнере, кругом нам окружают предметы из стеклоткани или стеклопластика. Лёгкие, надёжные, экологичные изделия делают жизнь эстетичнее и комфортнее, а нашу планету – чище.
Прочность моноволокна £-стекла и S-стекла равна 3,4 и 4,5 ГПа соответственно. Стандартное отклонение примерно ±10 %. Приведенные значения являются усредненным результатом большого числа отдельных измерений. Распределение значений прочности в этих измерениях обычно подчиняется гистограмме (рис. 16.1), составленной фирмой «Оуэнз-Корнинг файбергласс». Полученные значения охватывают диапазон от близких к нулю (на нижнем участке гистограммы) до приближающихся к теоретически предельным- 10,3 ... 13,8 ГПа (на верхнем участке). Причиной такого широкого разброса являются наличие дефектов в волокнах и воздействие на них различных факторов окружающей среды . Основным таким фактором является влажность. Атмосферная влага воздействует на дефектные места в волокне, особенно когда оно находится в напряженном состоянии, что приводит к росту
Трещин и окончательному разрушению волокна. Этот механизм коррозии под напряжением проявляется как при оценке статической усталости, так и при растяжении. Трещины в волокне развиваются из больших поверхностных дефектов, возникающих в процессе вытяжки или при последующем получении ровингов из волокон, а также из сравнительно небольших изъязвлений поверхности, которые могли образоваться при вытяжке или развиться под действием коррозии под нагрузкой или без нее. В стекловолокне, кроме того, могут быть внутренние раковины.
Результаты испытаний на растяжение стренг или пучков волокна примерно на 20 % ниже, чем средние значения для моноволокна. После разрыва отдельных волокон в пучке на оставшиеся волокна приходится большая нагрузка. В результате этого итоговая прочность снижается. Фактически прочность стренги может быть рассчитана с высокой точностью по кривой распределения прочности моноволокна. Неодинаковое натяжение волокон внутри деформируемой стренги дает аналогичный прогрессирующий эффект разрушения.
По данным фирм, выпускающих стекловолокно, ровинги с большим числом отдельных концов (одиночных нитей), но обычно не более 60, имеют примерно такую же удельную прочность, что и ровинги с единым концом (в виде жгута). Такой вывод основан на предположении, что при соединении отдельных стренг в ровинг дисперсии механических свойств существенно не возрастают.
Диаметр моноволокон - еще один параметр, влияющий на их предел прочности при растяжении. В опытах, проведенных в жестко контролируемых условиях, было показано, что прочность моноволокна не уменьшается при увеличении диаметра до максимальных для промышленного волокна размеров. Однако для практических целей совершенно очевидно, что прочность волокон большого диаметра ниже, чем у волокон с меньшим диаметром. Допустимые значения прочности регламентируются военными техническими условиями і?-60346 на применяемый для намотки ровинг. Минимальное значение для ровинга из волокон £-стекла с диаметром G (0,09 ... 0,010 мм) составляет 1,93 ГПа. Для волокон большего диаметра, т. е. до калибра Т (0,023 ... 0,024 мм), максимально допустимое значение предела прочности при растяжении 1,38 ГПа.
Прочность волокна зависит также от метода испытания отвержденных композитов. При сохранении волокон в выпрямленном состоянии и их равномерном нагружении прочность однонаправленных композитов не ниже или даже выше прочности нитей. При испытании волокон по методу «кольцо NOL» их прочность может достигать 2,76 ... 3,1 ГПа. С другой стороны, при более толстой намотке изделий большего размера максимальная прочность не превышает 2,07 ГПа. Значения прочности для таких конструкций ниже по ряду причин: повреждение волокон при намотке; нарушение центровки или плохая коллимация; неравно - 202
мерное натяжение слоев при намотке; изменение напряжения при переходе от внутренних слоев к наружным; появление случайных локальных напряжений.
Общий вывод заключается в том, что при определении прочности материала для расчета конструкций следует испытывать композит, а не само волокно. Сравнение с данными, полученными при испытании стренг, свидетельствует об эффективности метода их получения. Для определения истинного напряжения волокна в момент разрушения требуется детальный анализ напряжений.
СТЕКЛЯННЫЕ ВОЛОКНА (СВ)
1. Природа СВ и способы получения
2. Виды и формы СВ
3. Основные свойства СВ
4. Ассортимент и применение
5. Высокосиликаты (кварцевые волокна)
Более 3500 лет человечеству известно о возможности вытягивания различных изделий из расплавленного стекла. В XIX в. было теоретически предсказано, что стекло, вытянутое в длинное волокно, пригодно для использования в различных текстильных изделиях. Однако промышленного производства стекловолокон реально не существовало до 1939 г. Начало коммерческого выпуска стекловолокон связано с образованием фирмы «Оуенз Корнинг файбергласс».
СВ сочетают сравнительно малую плотность с высокими теплостойкостью, химической стойкостью и прочностью, низкой теплопроводностью и коэф. термического расширения, они негорючи, стойки к биологическому воздействию.
Технология получения
Известно два основных вида СВ: непрерывное и штапельное. Для первого характерны неограниченно большая длина, прямолинейность и параллельное расположение волокон в нити; для второго - небольшая длина, извитость и хаотическое расположение волокон в пространстве.
Существуют три основных способа получения стекловолокна:
1)вытягивание волокон из расплавленной массы через фильеры (одностадийный процесс);
2)вытягивание волокон из стеклянных штабиков при их разогреве (двухстадийный процесс);
3) получение штапельного волокна путем расчленения струй стекломассы под воздействием центробежных сил или потоков воздуха, газа, пара.
Непрерывные СВ изготавливаются вытягиванием волокон из расплавленной стекломассы через фильеры одно- или двух-стадийным способом либо из стеклянных штабиков. Штапельное волокно формуется путем вытягивания непрерывного СВ на струи расплавленного стекла с последующим разрывом его на отрезки ограниченной длины (способ воздушного вытягивания) или разделением струи (пленки) расплавленного стекла на отдельные объемы, растягиваемые в короткие волокна раздувом (дутьевой способ), центробежным или комбинированным способами.
Состав стекла определяет способ, условия формования и область применения СВ. Для технического назначения СВ получают из стекол различных составов (таблица 1), СВ высокопрочные высокомодульные, с низкой и высокой диэлектрической проницаемостью, полупроводящие и другие - из стекол специальных составов.
Таблица 1 - Состав стекловолокон, %
Состав | Марка стекла | |||
А (высоко-щелочное) | С(химически-стойкое) | Е (электроизо-ляцнонное) | S (высоко-прочное) | |
Окись кремния | 72,00 | 64,6 | 54,3 | 64,20 |
Окись алюминия | 0,6 | 4,1 | 15,2 | 24,80 |
Окись железа | - | - | - | 0,21 |
Окись кальция | 10,00 | 13,2 | 17,2 | 0,01 |
Окись магния | 2,5 | 3,3 | 4,7 | 10,27 |
Окись натрия | 14,2 | 7,7 | 0,6 | 0,27 |
Окись калия | - | 1,7 | - | |
Окись бора | - | 4,7 | 8,0 | 0,01 |
Окись бария | - | 0,9 | - | 0,20 |
Прочие вещества | 0,7 | - | -. |
Большую часть стекловолокон получают одностадийным методом. Кварцевый песок, известняк, борная кислота и другие компоненты (глина, уголь и шпаты) перемешиваются и плавятся в высокотемпературных печах. Температура плавления для каждой композиции своя, но в среднем она составляет ~ 1260°С. Расплав стекла поступает непосредственно в оборудование для расплавного формования (рисунок 1).
1 - глина; 2 - известняк; 3 - уголь; 4 - кварцевый песок; 5 - флюорит; 6 - борная кислота; 7 - автоматические дозаторы: 8 - смеситель; 9, 10 - бункера; 11 - шнековый питатель; 12 – ванна; 13 - секция приготовления замасливателя (шлихты); 14 - платиновые фильеры (бушинги с электронагревом и автоматическим управлением); 15 - замасливатель; 16 - высокоскоростное намоточное устройство; 17, 27 - посты контроля и взвешивания; 18 - камера для кондиционирования волокна; 19 - крутильные машины; 20 - участок отделки и упаковки пряжи; 21 - участок термообработки; 22 - шпулярники; 23 - намоточная машина для ровинга; 24 - резальная машина; 25 - ровинг; 26 - резаное волокно (штапель); 28 - участок упаковки; 29 - участок отгрузки продукции
Рисунок 1 - Схема одностадийного получения стекловолокна:
Непрерывные волокна получают из предварительно расплавленного стекла на аппаратах для вытяжки стекловолокон (емкость для расплавленного стекла из платинового сплава называется бушингом - стеклоплавильный сосуд, имеющий форму лодочки). Под действием гидростатического давления расплав стекла вытекает через тонкие отверстия фильеры диаметром 0,8...3,0 мм в днище бушинга. Экструдируемые из каждого отверстия струи, подвергают интенсивному механическому растяжению до диаметра 3...19 мкм, после закалки в подфильерном холодильнике (в потоке водяных брызг) собирают в нить и пропускают через зону, в которой на волокно наносится покрытие - замасливатель, повышающий компактность нити.
Собранные в единый пучок элементарные волокна называют одиночной нитью или «стренга». Скорость вытягивания готовой нити стекловолоконной стренги составляет от 20 до 50 м/с. Прядильный кулич кондиционируется или проходит сушку для дальнейшей переработки в товарную продукцию.
Для получения штапельного стекловолокна расплавленная стекломасса, вытекающая из отверстий фильеры, вытягивается и разрывается в струе воздуха. Волокна длиной 200 ... 380 мм собираются вместе на вращающемся барабане и объединяются в стренгу. Затем стекловолокно проходит кондиционирование или сушку, если это необходимо для дальнейших технологических процессов.
Каждое элементарное волокно, вытягиваемое из отверстий фильеры, должно контролироваться для обеспечения стабильности размеров и свойств как элементарных волокон, так и стренг. Этот контроль достигается с помощью регулирования вязкости и температуры расплава стекломассы, а также скорости вытяжки (скорости приема нити или скорости истечения струи). Следовательно, можно получать большее число волокон различной тонины, меняя число отверстий в бушинге и условия вытяжки.
При двухстадийном процессе расплав перерабатывается вначале в стеклосферы, которые затем поступают в плавильные печи. После вторичной плавки расплав подается на установки для формования.
Характеристики ряда комплексных нитей из стекла различного состава приведены в таблице 2.
Таблица 6 – Основные характеристики крученных комплексных нитей
Марка | Техническая документация | Линейная плотность, текс | Крутка, кр/м | Тип замасливателя, потери при прокаливании, % (масс.) |
Нити из алюмоборосиликатного стекла | ||||
БС6-2бх1х4(у) | ТУ6-11-116-75 | 104±12 | 100±10 | ПЭ н/б 2,0 |
БС5-3,4х1х2-80 | ТУ6-11-383-76 | 6,8±0,5 | 150±15 | № 80 0,8-2,0 |
Нити из бесщелочного безборного стекла Т-273А | ||||
ТС8-26х1х4 | ТУ6-11-431-77 | 104±6 | ПЭ1,5-0,5 | |
ТС8-26х1х2 | То же | 52±4 | ПЭ1,5-0,5 | |
Нити кремнеземные из стекла № 11 | ||||
КПС6-180 | ОСТ-П-389-74 | 18О±14 | 150±10 | |
КПС6-180-13 | То же | То же | 150±10 | № 13 |
КПС6-170-БА | ОСТ-11 -389-74 | 170±20 | 150±10 | № 13 |
Нити кварцевые | ||||
КС11-7х4хЗ | ТУ6-11-82-75 | 100±15 | ПЭ н/б 2,5 | |
КС11-17x2x3 | То же | 100±15 | То же |
Обозначение марки крученой комплексной нити, например: БС6-3,4х1х2 (150)-80; ТС8-26х1х2; К11С6-180-БА; КС11-17x4x3, состоит из трех частей:
1– тип стекла и номинальный диаметр элементарной нити (волокна), где Б – бесщелочное алюмоборосиликатное, Т – стекло состава Т-273А, К11 – кремнеземные нити из стекла N11, К – кварцевая нить, С – стеклонить непрерывная, 6,8,6,11 – диаметр элементарной нити, мкм;
2 - номинальная линейная плотность комплексной нити (3,4;26;180;17), текс. Цифровое обозначение после знака "х": 1 - количество одиночных нитей в комплексной, 2 - количество скручиваемых одиночных нитей; цифры в скобках - количество кручений на 1 м нити;
3- тип замасливателя (например, № 80). При выработке нити на технологическом замасливателе из парафиновой эмульсии индекс в марке нити не указывают. В кремнеземных нитях: БА - безусадочная аппретированная нить.
Стекло является аморфным материалом, занимающим по своим физико-механическим свойствам промежуточное положение между твердым телом и жидкостью. С одной стороны, оно не обладает кристаллической структурой твердого тела, с другой - не обладает текучестью, проявляющейся в жидкостях. Химически стекла состоят в основном из кремнеземной (SiO 2) основы, существующей в виде полимерных цепочек (- SiO 4 -). Однако диоксид кремния, т, е. кварц, требует высоких температур для размягчения и вытягивания. Поэтому необходима модификация состава для снижения уровня рабочих температур, при которых стекломасса обладает вязкостью, позволяющей проводить вытяжку нитей. Способы модификации состава могут быть разделены по решению задач на две группы: получение стекол с определенными свойствами и приспособление к нуждам технологии.
Высокощелочные стекла (широко известные как натриевые или бутылочные стекла) являются наиболее распространенными. Они используются в основном для производства емкостей и листового стекла. Высокощелочные композиции (известково-натриевое стекло), известные под маркой А-стекла, выгодны для получения волокон, обладающих высокой хемостойкостью.
Вместе с тем высокое содержание щелочи в стекле определяет его невысокие электрические свойства, в то время как хорошие электроизоляционные свойства определили развитие стекол на основе низкощелочных композиций (алюмоборосиликаты), получивших наименование Е-стекол. В настоящее время из Е-стекол изготовляется большая часть текстильного ассортимента стекловолокон.
Для специальных областей применения, когда не подходят волокна из А - стекла и Е-стекла, могут быть созданы композиции с необходимыми характеристиками. Когда требуется особо высокая хемостойкость, может быть использовано волокно из С-стекла (натрийборосиликатная композиция). Для создания волокон с высокими прочностными характеристиками (например, для материалов несущих конструкций в самолето- и ракетостроении) используют S - стекла (C 1 -стекла) (магнийалюмосиликатные композиции). Повышение прочностных характеристик волокон из S-стекла приблизительно на 40 % относительно волокон из Е - стекла является результатом более высокой прочности исходной композиции. Кроме того, S - стекла имеют более высокую теплостойкость, нежели Е – стекла. Волокна из S - стекла обладают наряду с высоким качественным уровнем свойств довольно умеренным уровнем стоимости.
Образцы специальных композиций стекол создаются для исследования возможности создания материалов со специальными свойствами.
Композиция М-стекла позволила получать стекловолокна с высоким модулем упругости (Е = 11З ГПа). Однако присутствие бериллия (окиси, бериллия) препятствует созданию коммерческой продукция.
Низкие диэлектрические свойства D-стекол послужили причиной исследования возможности их применения в электронике. Они обладают низкой диэлектрической проницаемостью, по сравнению с Е-стеклами и могут найти применение при создании обтекателей антенн радиолокаторов.
L-стекла (свинцовые) хороши для радиационной защиты. Стекловолокна из такой композиции могут быть использованы для защитной одежды людей работающих с рентгеновским излучением, и как «меченая» пряжа в композитах, которая не разрушается под воздействием рентгеновского излучения.
Обработка поверхности . Поверхность непрерывных СВ в процессе их вытягивания из фильер покрывается замасливателем, который соединяет волокна в нить, предотвращает истирание волокон, защищает их от разрушения во время текстильной переработки, препятствует накоплению зарядов статического электричества при трений.
Применяются два вида замасливателей: технологические (текстильные) и прямые (активные, гидрофобно-адгезионные). Первые служат только для обеспечения текстильной переработки стеклонитей и состоят из клеящих и пластифицирующих (или смазывающих) веществ, обычно растворенных или эмульгированных в воде, реже - в органических растворителях. В отечественной промышленности наиболее часто применяется водно-эмульсионный замасливатель называемый «парафиновая эмульсия». За рубежом используют замасливатели на основе крахмала. Текстильные замасливатели ухудшают адгезию волокна к полимерной матрице, поэтому перед изготовлением КМ их необходимо удалять.
После удаления замасливателя на поверхность стеклянного наполнителя в ряде случаев наносят аппреты - вещества, способствующие созданию прочной связи на границе СВ - связующее. В качестве аппретов применяют обычно кремнийорганические и металлорганические соединения. Удаление текстильного замасливателя и последующее аппретирование усложняет и удорожает подготовку стеклонаполнителей, поэтому более эффективно применение прямых (активных) замасливателей, в состав которых наряду с пленкообразующими смазками входят и аппреты. Прямой замасливатель выполняет двойную функцию - предохраняет волокна от разрушения и усиливает адгезию между стеклом и полимерной матрицей.
Виды и формы
Обычно СВ имеют форму сплошного круглого цилиндра, СВ другой формы, например полые, называются профилированными. К наиболее перспективным профилированным СВ относятся волокна, имеющие в сечении форму треугольника, квадрата, шестигранника, волокна лентовидной и других форм с гладкой и гофрированной поверхностью.
Полые СВ получают протягиванием расплавленной стекломассы через фильеры при подаче воздуха под давлением в зону формования через сопло, расположенное внутри фильеры концентрически ее отверстию. Профилированные СВ с поперечным сечением сложной формы изготавливают вытягиванием заготовки с поперечным сечением такой же формы, как у готового СВ, вытягиванием стекломассы через фильеры, имеющие форму сектора, а также через коническую диафрагму. Плоские непрерывные СВ вырабатывают путем предварительного пропускания стекломассы через формующее устройство, с открытой стороны которого стекломасса охлаждается быстрее, чем с закрытой.
Полые (капиллярные) СВ по сравнению со сплошными имеют высокие значения плотности, диэлектрической проницаемости, тангенса угла диэлектрических потерь и теплопроводности, а также более высокие жесткость при изгибе и прочность при сжатии. Свойства полых СВ в значительной степени определяются коэффициентом капиллярности, который представляет собой отношение внутреннего диаметра волокна к его наружному диаметру. Полые СВ из бесщелочного алюмоборосиликатного стекла типа Е при кажущейся плотности 1700 кг/м 3 , среднем наружном диаметре 10,2 мкм, среднем коэффициенте капиллярности 0,57 имеют среднюю прочность при растяжении 2500 – 2800 МПа
В результате длительной практики промышленность стекловолокон установила несколько стандартов на толщину моноволокон (таблица 2). Значения диаметров, выраженные в микрометрах, округлены.
Таблица 2 - Маркировка и размеры элементарных стекловолокон
Маркировка | Диаметр, мкм | Маркировка | Диаметр, мкм | Маркировка | Диаметр, мкм |
В | 3,8 | DE | 6,0 | H | 10,0 |
С | 4,5 | Е | 7.0 | K | 13,0 |
D | 5,0 | G | 9,0 |
Основные свойства
Механические свойства . Стекловолокна имеют очень высокий предел прочности при растяжении, превышающий прочность других текстильных волокон. Удельная прочность стекловолокон (отношение прочности при растяжении к плотности) превышает аналогичную характеристику стальной проволоки.
По прочности (1000 - 6000 МПа) технические СВ значительно превосходят исходные массивные стекла (100 МПа) вследствие более изотропной структуры высокотемпературного расплава стекла, из которого вырабатываются волокна, и высокой скорости их охлаждения, предотвращающей образование опасных микродефектов и микротрещин на поверхности СВ в процессе их формования. Наиболее высокую техническую прочность, достигающую прочности кварцевых волокон, имеют СВ из стекол магнийалюмосиликатного состава (таблица 2).
Таблица 2 - Механические свойства СВ
Тип, парка стекла | Е, ГПа | d раст, МПа | e, % |
Алюмоборосиликатиое Е-стекло | 73,5 | 4,8 | |
Высокомодульное ВМ-1 (РФ) | 4,8 | ||
М-стекло (США) | … | ||
Высокопрочное магнийалюмосиликатное | |||
ВМП (РФ) | … | … | |
УП-68 (РФ) | 84,7 | ... | ... |
УП-73 (РФ) | 82,6 | … | … |
S-994 (США) | 86,8 | 4650 - 4900 | 5,4 |
D-стекло с низкой диэлектрической проницаемостью (США) | 52,5 | 4,7 | |
Известково-натриевое А-стекло (США) | 66,0 | 4,0 | |
Кислотостойкое | |||
№ 7-А (РФ) | 74,0 | 3,6 | |
С-стекло (США) | 70,0 | ... | |
Плавленый кварц | 74,2 | ... | |
Свинцовосиликатное L-стекло (США) | 51,0 | 4,6 |
На прочность СВ помимо химического состава стекла влияют метод и условия формования и главным образом состояние поверхности волокон в физико-химическое взаимодействие поверхностных дефектов с окружающей средой. Наиболее высокой прочностью обладают СВ с неповрежденной поверхностью, так называемые нетронутые волокна (отобранные сразу после вытяжки из фильер до контакта с замасливающим и наматывающим устройствами). Выпускаемые промышленностью СВ имеют механически и химически поврежденную поверхность, что снижает их прочность и увеличивает разброс показателей.
Термообработка СВ без нагрузки приводит к уменьшению их прочности и тем в большей степени, чем выше температура и продолжительность обработки. Это связано с ростом микронеоднородностей и поверхностной кристаллизацией, вызывающей образование микротрещин. Понижение прочности кварцевых волокон наступает при температуре обработки 873 К, бесщелочных алюмоборосиликатных - при 573 К, натрийкальцийсиликатных, боратных, свинцовых и фосфатных - при 373 - 473 К.
Рисунок 2- Зависимость прочности от температуры термообработки волокна:
1 - кварцевого; 2 - марки Е; 3 - марки А.
Прочность СВ возрастает с уменьшением их диаметра, но эта зависимость не всегда справедлива и определяется условиями формования волокон, их составом и условиями эксплуатации.
Так, в полимерных КМ зависимость прочности дефектных волокон от их геометрических параметров проявляется лишь при значительных диаметрах и можно достаточно эффективно использовать СВ диаметром 10 - 50 мкм и более. Согласно современным представлениям влияние диаметра волокна на его прочность выражено значительно слабее, если соблюдать неизменной скорость охлаждения волокна (рисунок 3, кривая 1).
Рисунок 3 - Зависимость прочности стеклянного волокна марки Е от диаметра при уменьшающейся (1) и постоянной (2) скорости охлаждения.
СВ имеют низкую стойкость к многократному изгибу и истиранию, которые значительно повышаются после пропитки их лаками, смолами. Склеивание волокон в нить увеличивает ее прочность на 20 - 25 %, а пропитка лаками - на 80 - 100 %. Сопротивление изгибу и кручению растет с уменьшением диаметра СВ.
При комнатной температуре, влажности примерно 50 - 55 % и кратковременной нагружении СВ ведут себя вплоть до разрушения как идеальные упругие тела, подчиняясь закону Гука. С повышением температуры модуль упругости СВ уменьшается незначительно до температуры размягчения. Исключение составляют кварцевые волокна, модуль упругости которых с температурой линейно увеличивается от 74,2 ГПа при 293 К до 82,9 ГПа при 1173 К.
Высокомодульные волокна в большинстве случаев имеют меньшую прочность и более высокую плотность, а следовательно, меньшие значения удельной жесткости и прочности.
Прочность кремнеземных волокон зависит от состава стекол, из которых они выщелочены, структуры волокон. Наибольшую прочность (800 - 1000 МПа) имеют кремнеземные волокна, полученные из натрийсиликатных стекол, низкую (1000 - 1500 МПа) - алюмокремнеземные и алюмосиликатньм волокна.
Физические свойства СВ идентичны свойствам массивных стекол того же состава и определяются в основном химическим составом стекла (таблица 1).
Кремнеземные волокна обладают высокой температурой размягчения. Так, температура размягчения высококремнеземных волокон типа «викор» равна 1773 К, волокна «рефразил» (98 - 99 % SiO 2) не плавятся и не испаряются до температуры 1923 К. Все виды кремнеземных волокон имеют хорошие теплофизические (при температуре 538 К l = 0,087 Вт/(м´К), с = 1,006 кДж/(кг´К)) и электроизоляционные свойства, мало изменяющиеся с повышением температуры. Алюмокремнеземные волокна имеют более высокую температуру спекания (1973 К), чем кремнеземные. Высокие температуры плавления (1973 - 2063 К) и спекания (1723 - 1773 К), хорошие электроизоляционные, теплоизоляционные (l = 0,22 Вт/(м´К) при температуре 373 К), звукоизоляционные свойства и низкую плотность (80 - 100 кг/м 3) имеют алюмосиликатные волокна (каолиновые, каовул, файберакс). Алюмосиликатные и алюмохромосиликатные волокна могут длительно эксплуатироваться при температурах 1473-1723 К.
Химические свойства. Химическая стойкость СВ зависит от состава стекла, природы, концентрации, температуры и продолжительности действия реагента и определяется потерями массы и прочности под воздействием агрессивных сред. СВ имеют развитую поверхность и поэтому разрушаются интенсивнее, чем массивные стекла. Хотя химическая стойкость СВ не зависит от их диаметра, абсолютная растворимость в различных агрессивных средах выше у тонких СВ вследствие более развитой поверхности.
Высокой химической стойкостью к воде и пару высокого давления обладают кварцевые, кремнеземные, каолиновые, бесщелочные алюмоборосиликатные волокна. При длительном воздействии водяного пара различного давления прочность тонких волокон из многокомпонентных бесщелочных стекол снижается. В щелочных стеклах с увеличением содержания щелочных оксидов снижается стойкость к действию воды и водяного пара вследствие интенсивного выщелачивания, которое приводит к полному распаду структурной сетки стекла.
Кварцевые, кремнеземные и бесщелочные алюмосиликатные волокна, не содержащие борного ангидрида, стойки к действию органических и минеральных кислот, за исключением фтористоводородной, которая разрушает все виды стекол и СВ уже при нормальной температуре, и ортофосфорной, разрушающей СВ при температуре выше 573 К. При введении в алюмосиликатные стекла некоторых оксидов (титана, циркония, церия и др.) кислотостойкость волокон резко повышается.
Химическая стойкость и прочность волокон из Е-стекла под действием минеральных кислот различной концентрации снижается. При обработке кислотой волокон многощелочного состава растворяются все компоненты стекла, за исключением SiO 2 .
Все СВ недостаточно устойчивы к действию щелочных растворов, что обусловлено хорошей растворимостью в щелочах кремнеземного каркаса. Кварцевые и кремнеземные волокна в щелочных средах разрушаются медленнее, чем волокна из обычных стекол. Стойкость СВ к щелочным растворам повышается при введении в стекло оксидов, уплотняющих их структуру. К таковым относятся оксиды циркония, алюминия, железа, цинка, олова, лантана и некоторые др.
Эксплуатационные свойства стекловолокон
Тепло- и огнестойкость. Так как природа стекловолокон неорганическая, они не горят и не поддерживают горение. Высокая температура плавления стекловолокон позволяет использовать их в области высоких температур.
Биостойкость. Стекловолокна устойчивы к воздействию грибков, бактерий и насекомых.
Влагостойкость. Стекловолокна не сорбируют влагу, следовательно, не набухают, не растягиваются и не разрушаются под ее воздействием. Стекловолокна не гниют и сохраняют свои высокие прочностные свойства в среде с повышенной влажностью.
Термические свойства. Стекловолокна имеют низкий коэффициент линейного расширения и большой коэффициент теплопроводности. Эти свойства позволяют эксплуатировать их при повышенных температурах, особенно, если необходима быстрая диссипация температуры.
Электрические свойства. Поскольку стекловолокна не проводят ток, они могут быть использованы как очень хорошие изоляторы. Это особенно выгодно там, где необходимы высокая электрическая прочность и низкая диэлектрическая постоянная.
Таблица 3 - Свойства стекловолокон
Свойства | Марка стекла | |||
А | С | Е | S | |
Физические | ||||
Плотность, кг/м 3 | ||||
Твердость по Моосу | - | 6,5 | 6,5 | 6,5 |
Механические | ||||
Предел прочности при растяжении МПа: | ||||
при 22 °С | ||||
при 371 °С | - | - | ||
при 533 °С | - | - | ||
Модуль упругости при растяжении при 22°С, МПа | - | 69,о | 72,4 | 85,5 |
Предел текучести, % | - | 4,8 | 4,8 | 5,7 |
Упругое восстановление, К | - | |||
Термические | ||||
Коэффициент линейного термического расширения, 10 -6 К -1 | 8,6 | 7,2 | 5,6 | |
Коэффициент теплопроводности, Вт/(м-К) | - | - | 10,4 | - |
Удельная теплоемкость при 22 °С | - | 0,212 | 0,197 | 0,176 |
Температура размягчения, °С | - | |||
Электрические | ||||
Электрическая прочность, В/мм | 19 920 | |||
Диэлектрическая постоянная при 22°С: при 60 Гц | - | 5,9 - 6,4 | 5,0 - 5,4 | |
при 1 МГц | 6,9 | 6,3 | 5,1 | |
Потери при 22°С: при 60 Гц | 0,005 | 0,003 | ||
при 1 МГц | - | - | 0,002 | 0,003 |
Объемное сопротивление при 22 °С и 500 В постоянного тока, Ом-м | - | - | 10 17 | 10 18 |
Поверхностное сопротивление при 22 °С и 500 В постоянного тока, Ом-м | - | - | 10 15 | 10 16 |
Оптические | ||||
Коэффициент преломления | - | - | 1,547 | 1,423 |
Акустические | ||||
Скорость звука, м/с | - | - |
Свойства СВ во многом определяются их составом. В зависимости от основного назначения могут быть получены волокна с повышенной прочностью или с повышенным модулем упругости (магнийалюмосиликатные композиции типа ВМП, ВМ-1), волокна с повышенной стойкостью к действию кислот (средне-щелочное силикатное стекло типа ТА), тугоплавкие кварцевые волокна (кремнеземные с содержанием SiO 2 не менее 94%), волокна с хорошими электроизоляционными свойствами и высокой прочностью (алюмоборосиликатные композиции). Основные физико-механические свойства СВ, наиболее распространенных в производстве волокнистых стеклопластиков в РФ, приведены в таблице 5.
Таблица 5 – Характеристики стеклянных волокон
Свойства | Марка стекла* | ||
MAC | АБС | КС | |
Физические: | |||
плотность r, кг/м 3 | |||
Механические: | |||
предел прочности при растяжении s, МПа: | |||
при 22 °С | |||
при 371 °С | - | ||
пои 533 °С | - | ||
Модуль упругости при растяжении Е, МПа, при 22 °С | 85,5 | 72,4 | |
Предел текучести стт, % | 5,7 | 4,8 | 4,8 |
Термические: КЛТР a´10 6 , К -1 | 5,6 | 7,2 | |
Коэффициент теплопроводности X, Вт/(мК) | 10,4 | ||
Удельная теплоемкость, Дж/(кгК), при 22 °С | 0,176 | 0,197 | 0,212 |
Температура размягчения Т, °С | - |
Примечание. MAC - магнийалюмосиликатные, АБС - алюмоборосиликатные, КС - кислотостойкие.
Эта ткань настолько необычна, что является поводом очередной раз восхититься современными технологиями. Из неё шьются одежду для людей специфических профессий, чья работа предполагает контакт с вредными химическими веществами, агрессивными кислотами, для пожарников, каждодневно борющихся с огнём.
Этот технический материал более, чем востребован в народном хозяйстве и необходим в радиотехнике и электронике, применяется при производстве космических аппаратов, служит материалом для зданий и строительства водопроводов.
Стеклоткань создаётся из стекловолокна на основе чистого кремнезёма с добавлением бора и алюминия. В процессе производства силикатное стекло в специальных печах расплавляется, чтобы, превратиться в вязкую массу, которая в дальнейшем продавливается через тончайшие фильтры.
После чего получаются эластичные и мягкие волокна. Эти чрезвычайно изящные стеклянные нити, намного миниатюрней по толщине, измеряемого в несколько десятков микрометров, человеческого волоса. При этом волокна наделены фантастической прочностью и невероятной длиной, составляющей до 20 км.
Стеклянные нити пропитываются особыми полимерами, замасливаются парафиновой эмульсией. Благодаря этому хрупкое, в обычном состоянии, со звоном бьющееся, стекло чудесным образом меняет свои былые свойства почти на противоположные и приобретает новые, уникальные особенности.
Таким образом появляется на свет стеклоткань . Гост строго регламентирует её стандарты. Качества этой технической ткани практически парадоксальны. Следует перечислить основные из них.
1. Негорючесть. Данное свойство этот уникальный материал получил от своего прообраза – стекла, также, как и теплоизоляционные характеристики. Он способен выдерживать, не разрушаясь, воздействие открытого огня, правда, строго ограниченный, непродолжительный период. При этом он не проводит электричество, поэтому стеклоткань для изоляции применяют достаточно часто.
2. Устойчивость и гибкость. Благодаря особому строению, ткань невосприимчива к вредным, негативным механическим воздействиям. А восхитительная гибкость даёт возможность, не ломаясь, принимать ей любую предпочтительную форму.
3. Биохимическая инертность. Ингредиенты, из которых делается технический материал непитательны для микроскопических организмов, как следствие, ткань не подвергается гниению. С другой стороны, стеклоткань устойчива к воздействию водной среды, ультрафиолета, химии, прекрасно переносит обработку кислотами и щелочами, прочими агрессивными субстанций.
4. Долговечность и механическая прочность, не знающая аналогов. Характеристики стеклоткани превышают показатели проволоки из стали. Коррозия и механический износ ей тоже нестрашны.
5. Экологическая чистота и простота в применении. Составляющие технической ткани не являются токсичными. Вместе с тем, масса материала незначительна. Экологичность делает удобной, при необходимости, его утилизацию.
В этом случае с ним поступают, как и с прочим строительным мусором. Этим и объясняется востребованность стеклоткани, которая, по прогнозам экономистов в ближайшее время будет только возрастать, особенно в отраслях, где применение стекла нецелесообразно из-за его хрупкости.
Описываемая техническая ткань всё больше становится неотъемлемой частью жизни людей, которых повсюду окружают предметы из стекломатерии. Их можно увидеть в автомобилях, круизных лайнерах, в самолёте. Они привносят разнообразие, удобство, делают наш быт комфортнее.
К недостаткам материала относится необходимость соблюдения строгих правил безопасности при утилизации. Ведь микрочастицы, попадающие в воздух при измельчении стеклоткани, способны нанести относительный вред здоровью, попадая в дыхательные пути. Поэтому работу проводят в масках и перчатках, при измельчении смачивая материал. И хранят утилизационные отходы в герметичных пакетах.
Виды стеклоткани
На сегодняшний день стекломатериал представляется несколькими разновидностями. Каждая из них выделяется собственными характеристиками, на которые во многом влияют не только составляющие компоненты, но и методика переплетения нитей. Они будут перечислены далее.
1. Конструкционная стеклоткань создаётся сатиновым и полотняным плетением, с использованием особых стеклянных алюмоборосиликатных нитей. При полотняном (наиболее плотном) плетении стекловолокна образуют уникальную картину, образным аналогом которой может послужить шахматная доска.
Поэтому изделия из подобного типа тканей с трудом поддаются искривлениям и меняют свои размеры. В сатиновом, волокна располагаются редко, поэтому ткани менее плотны, но чрезвычайно гибки и растяжимы, становясь незаменимыми в поделке предметов со сложной геометрией.
Полученный в результате создания двух упомянутых структур, стекломатериал характеризуется лёгким весом и относительно высокой прочностью, активно применяясь для армирования и в производстве всевозможных изделий.
Данные материалы маркируются начальной буквой «Т ». Стеклоткань такого типа находит самое многогранное использование в промышленности, незаменима в автомобилестроении и судостроении, а также в изготовлении стеклопластика.
2. Электроизоляционные. Часто создаются полотняным плетением, ввиду этого прочность полученного материала достаточно высока. Здесь маркировка отмечена начальной буквой «Э», в случаях сортов из полого волокна – «П».
Данный продукт идеально подходит для электрической изоляции (как можно догадаться из названия), так как не проводит электричество. Кроме того, отличаясь устойчивостью к коррозии, невоспламеняемостью и прочностью, с успехом используется для создания теплоизоляционных труб, фольгированных материалов, печатных плат, стеклопластиковых конструкций: цистерн, лодок и прочего. Из полого стекла изготавливаются теплоизоляционные оболочки и монтажные платы.
3. Фильтрационные. Производятся, в том числе, и путём саржевого плетения. Там тонкие стеклянные волокна располагаются по диагонали, поэтому ткани менее прочны, но более растяжимы, становясь незаменимыми в поделке предметов со сложной геометрией.
Данный материал, применяемый для создания фильтрационных сетей, через которые пропускают газы. Маркировки, применяемые в данном случае, характеризуются индексами «ССФ» и «ТСФ».
4. Строительные. Прочность таких тканей и другие ценные качества становятся важным поводом для применения их в отделочных работах, дорожном строительстве и укреплении самых разных конструкций. Индексами для маркировки являются «ССШ», «СДА», «СС».
5. Базальтовые, кварцевые, кремнезёмные стеклоткани. Предназначены для использования в самых экстремальных условиях. При работе с агрессивными веществами, в средах с высокой радиацией, при огромных температурах, доходящих до 1100°С.
6. Радиотехнические ткани изготавливаются с применением металлических элементов. Это наделяет их способностью к отражению радиоволн и света, что с успехом используется в технике.
7. Изоляционные ткани производятся из бесщелочного стекла. Применяются для армирования строительных теплоизоляционных конструкций.
Среди ранее описанных типов стекломатериала, следует упомянуть ровинговые стеклоткани. Они не относятся к отдельной разновидности, а указывают на тип структуры, которая может относиться к любому из перечисленных видов материала.
Они создаются из ровингов, так принято называть структуры, создаваемые из нескрученных пучков нитей, которые сплетаются в ткань. Они обычно выделены маркировкой «ТР» и поставляется потребителю рулонами или листами значительной площади. Также все стекломатериалы по типу структуры плетения разделяются на следующие типы:
- тканевые – с упорядочено сплетёнными волокнами;
- нетканевые – с беспорядочным расположением нитей.
Применение
Об обширной востребованности стеклотканей в самых разных, подчас неожиданных областях, уже многое было сказано. А все виды и способы использования просто невозможно описать. Поэтому сейчас подошло время рассмотреть принципы применения стеклотканей на практике.
Чаще всего описываемый материал оказывается востребованным в производстве стеклопластика, то есть в создании изделий из стекловолоконного наполнителя, скрепляемых в процессе работ посредством специальных связующих веществ. Данные технологии обычно базируются на следующих принципах, осуществляясь по указанным этапам.
1. Производится модель предполагаемого изделия. Она может изготавливаться вручную из глины, пластика, дерева, любого из податливых материалов.
3. Модель покрывается стеклотканью с получением требуемой толщины стенок. При необходимости приклеивание производится в несколько слоёв. Для наилучшего соединения подойдёт полиэфирная и эпоксидная смола . Стеклоткань также может клеиться и многими другими составами.
4. Каждый из слоёв после соединения следует приглаживать валиком. А очередное приклеивание можно начинать, даже не дождавшись окончательного высыхания предыдущего слоя.
5. Завершается цикл только, когда связующее вещество достигнет полной полимеризации. После сушки форму следует убрать, аккуратным снятием.
Наиболее распространённым методом является формовка изделия в матрице. Здесь изготавливается гипсовая форма, что помогает организовать многосерийное производство. Для этого изделие обрабатывается вазелиновым составом, располагается в специальном ящике, после чего заливается гипсом. Далее форма вынимается и используется по назначению.
Прочность конечной продукции обеспечивается не менее, чем четырьмя слоями стеклоткани . Эпоксидная смола, как необходимое связующее, имеет свои особенности, которые невозможно не учитывать. Она может затвердеть уже через четверть часа, поэтому готовится для осуществления работ лишь в определённом количестве.
Весь процесс производства модели из стекломатериала занимает, до полной готовности изделия, не более четырёх дней. При желании, ему можно предать любой желаемый цвет, для этого в связующее следует добавить, соответствующий задумке, краситель.
Фактура тоже может стать поводом для проявления творческой фантазии, создаваясь по собственному усмотрению, если изначально подобрать стекломатериал с нужной структурой и переплетением волокон.
Описываемые ткани часто оказываются востребованными для армирования уже готовых строительных конструкций, а также фанерных лодок. Для этого следует произвести качественное оклеивание выбранного изделия данным материалом.
Ограждение и теплоизоляция печных труб (ещё один из распространённых способов применения материала) предполагают их обмотку. Здесь следует упомянуть стеклоткань ЭЗ-200 .
Этот материал играет роль эффективно защиты не только в упомянутом случае, но и при изоляции для газовых турбин и котельных, из него шьют одежду для электросварщиков и металлургов. Данная ткань обеспечивает защиту при пайке, сварке, резке и расплавлении метала.
В общем, стеклоткань – это совершенно универсальный материал. Он окажется востребованным при строительстве, ремонте, моделировании, тюнинге. Важно только правильно подобрать ткань и оптимальную, с учётом необходимости, технологию.
Цена стеклоткани
Ремонт квартиры, коттеджа или жилого дома – важная часть обустройства современного быта. Именно поэтому среди потребителей стекломатериалов особым спросом пользуются .
Это рулонное покрытие для стен, создаётся из стеклянным нитей, обладающих разнообразной плотностью и толщиной. В этом и заключаются важные характеристики данного пластичного и упругого отделочного материала. В настоящее время потребителям предлагается подобная продукция, обладающая большим выбором фактурных решений и цветовых оттенков.
Наиболее крупными производителями подобных, чрезвычайно удобных в быту и обладающих многими ценными защитными качествами, обоев являются такие страны, как Швеция, США, Германия, Чехия, Китай и Россия. А приобретение пятидесятиметрового рулона может обойтись предполагаемому покупателю по цене от 3 до 7 тысяч рублей.
Стеклоткань – достаточно дешёвый и доступный материал, который наверняка окажется полезным в хозяйственном быту. Стоимость его может указываться при продаже за квадратный или погонный метр. Приблизительная цена стеклоткани в среднем выражается в цифрах от 24 до 60 руб./м 2.
Многие предприятия и фирмы занимаются производством фасадного декора из стеклокомпозита. Они изготавливают декоративные украшения для коммерческих зданий, высотных жилых и частных домов.
Стеклоткань удобна в оформлении тем, что ей возможно придать любую желаемую, даже чрезвычайно сложную форму. Декоративные изделия могут быть совсем небольшими, но отражающими композицию в самых мелких деталях.
Или, наоборот, огромными. К примеру, венчающие карнизы, отличающиеся многометровой высотой. Приобрести такой карниз возможно по цене от полутора и более тысяч рублей, где стоимость зависит от сложности и качества изделия.
Предоставляется шанс выбрать и другие архитектурные декоративные украшения. Они весьма удобны в практическом использовании за счёт совершенно незначительного веса и толщины, а также полого строения конструкции. Подобны изделия, закреплённые на фасадах высоток, за счёт малой массы не несут в себе опасности и не создают дополнительную нагрузку для .
Привлекательность ещё и в том, что поверхность декоративных украшений может быть изготовлена под любой, желаемый натуральный материал, благодаря новейшим технологиям, применяемым для финишной обработки.
Это может быть искусственный камень, облицовочные панели под кирпич и прочие, а также самые разнообразные виды лепнины. Декоративные элементы производятся быстро, надёжно и качественно. А стеклокомпозиции не предполагают последующего ухода и дорогостоящего ремонта.
Стекловолокно – это уникальный строительный материал, который изготавливают путем расплавления неорганического стекла. Чтобы иметь представление, что такое стекловолокно, нужно немного углубиться в процесс его изготовления.
Странный материал был впервые создан совершенно случайно молодым ученым Дейлом Клейстом, жившим в Иллинойсе. В 1932 году юный изобретатель пробовал герметично сварить стеклянные блоки. При этом струи сжатого воздуха, попавшие случайно в поток расплавленного стекла, превратили его в тонкие волокна. В то время еще понятия не имели, что такое стекловолокно – это был первый экспериментальный образец.
Сейчас для получения стекловолокнистого материала используют отходы стекольной промышленности, стеклянный бой, доломит, песок, известняк, соду и другие компоненты. Сначала все составляющие расплавляют при помощи специальных печей. Затем из материала, который находится в полужидком состоянии, получается волокнистая смесь с тончайшими стеклонитями. Толщина отдельных волокон меньше человеческого волоса почти в 20 раз.
Полученные стеклонити находятся параллельно друг к другу, что обеспечивает высокое качество материала и звукоизоляционные свойства. Заключающий момент производства – это придание стекловолокнистой смеси необходимой жесткости и цвета.
Анализируя детальнее, что такое стекловолокно, можно рассмотреть два основных вида изготовления:
- Непрерывный способ производства, при котором цельное волокно в расплавленном виде вытягивают в длину на несколько тысяч метров. Такие стеклонити длинные и тонкие, напоминающие шелковые нити.
- Штапельный способ производства отличается тем, что волокно создают способом раздува горячей стеклянной массы паром или воздухом. Эти стекловолокна короткие и тонкие, имеют сходство с шерстью.
Стекловолокно стало основой для получения некоторых строительных материалов: стекловаты, стеклопластика, стеклоткани, и др. Эти материалы довольно востребованы в ремонте и строительстве, так как обладают характеристиками и свойствами стеклянного волокна.
Стекловолокно: применение
Стекловолокно обладает особыми качественными характеристиками, благодаря которым его можно использовать в разных сферах. Это практичный материал, который не гниет, не горит, не впитывает влагу. Важным фактором является небольшая плотность и отличное тепловое сопротивление, которое достигается, благодаря некоторому количеству воздуха внутри материала.
Стекловолокно находит применение в строительстве, электротехнической промышленности, автомобилестроении, судостроении, инструментальной промышленности и других отраслях.
Обычно стекловолокно изготавливают в виде рулонов, жестких плит или матов. Это очень удобный для монтажа материал, который с легкостью можно резать, сгибать, придавая необходимую форму.
В строительстве материал часто используют для утепления, звукоизоляции в межэтажных или межкомнатных перегородках. Также применяют стекловолокно для утепления фасадов, полов, каркасных стен, изолируют трубопроводы.
Удивительно, что многие предметы, окружающие нас, также сделаны с использованием стекловолокна. Иногда термин «стекловолокно» применяют при названии армированного волокном пластика (FRP).
Сейчас из такого материала делают фургоны и катера, некоторые автомобили, кровли и даже ванны. Для этого стекловолокну придают гладкость, блеск, прочность методом нанесения прозрачного или цветного полимерного геля на наружную поверхность материала на начальном этапе производства.
Интересно : Есть стекловолокно естественного происхождения, которое можно найти на местах извержения вулканов. Такому виду волокон дано название – волосы Пеле, немного странное на первый взгляд. Это объясняется тем, что в гавайской мифологии Пеле – это богиня вулканов. Но «волосы Пеле» обладают химическим составом натуральных базальтовых пород, содержат включения кристаллов и не являются аналогами стекловолокна по всем физико-механическим свойствам.