Люди которые быстро считают в уме. Как научиться быстро считать в уме
Мало кому удается найти применение алгебре и геометрии за пределами школы. Зато умение считать в уме никогда не теряло актуальности – при подсчете сдачи, расчете времени, определении пропорции и во многих других ситуациях. Со школьных времен многое забывается, и многие хотели бы еще раз узнать, как научиться считать в уме быстро. Подобные навыки позволяют не только обходиться без использования гаджетов для подсчета сдачи, но и позволяют человеку гораздо лучше организовать себя в различных жизненных ситуациях.
Основные правила
Важную роль в освоении такого навыка играют регулярные тренировки. Методик, направленных на обучение счету в уме, существует очень много. Они могут отличаться между собой, но их объединяют 3 компонента:
- Опыт и тренировки. Регулярные практические занятия и постановка перед собой каждый раз все более сложных целей способствуют улучшению качества и увеличению скорости счета. С каждым шагом следует усложнять решаемые задачи.
- Алгоритм. Одним из секретов того, как быстро считать в уме является знание специальных алгоритмов. Для решения каждого математического действия существуют определенные приемы и законы, знание и применение которых позволяет значительно упростить процесс счета.
- Способности. Для решения математических примеров в уме необходимо обладать умением удерживать в краткосрочной памяти сразу несколько вещей и способностью концентрировать внимание. Наибольших успехов достигают люди с предрасположенностью к логическому мышлению и математическим складом ума.
Хитрости подсчета
Облегчить подсчет в уме поможет использование специальных правил. Например, существует легкий способ, как умножить любое двузначное число на 11. К примеру, необходимо умножить 79 на 11. Необходимо в уме представить свободное место между цифрами 7 и 9. В нем нужно расположить сумму этих двух цифр, если она представляет собой однозначное число. Если в сумме получается двузначное (в данном примере 7+9=16), между цифрами, составляющими множитель необходимо поставить только вторую цифру (7_6_9). Далее, к первой цифре множителя нужно добавить единицу (7+1=8). В итоге получится 869 – произведение чисел 79 и 11.
Еще один простейший способ умножения на 11 – умножить необходимое число на 10 и приплюсовать к нему еще одно исходное.
Еще более простая техника умножения чисел на 4. Для этого просто следует умножить число на 2, потом еще раз на 2.
Существует очень простая техника того, как считать проценты в уме. Так, например, очень легко определить 15% от какого либо числа. Для этого следует взять 10% от него, разделив его на 10 и добавить к ним половину полученного – еще 5%. Так, для определения 15% от числа 390, следует провести следующие действия: 390:10=39 – это 10% от числа. 39:2=19,5. 19,5+39=58,5 – 15% от числа 390.
Потренировавшись несколько раз, можно будет легко осуществлять такие операции в уме. Подобных приемов существует огромное множество, знание основных из них значительно облегчит процесс устного счета.
Использование устного счета в повседневной жизни
Очень важным аспектом того, как правильно считать в уме, является знание таблицы умножения. Ее нужно как можно чаще повторять и использовать на практике. Для закрепления успеха следует минимизировать использование калькулятора.
В последнее время в анкетах для трудоустройства и непосредственно на собеседованиях работодатели требуют показать свои способности к математике. Если соискатель проявляет успехи при проведении расчетов в уме, это говорит о его аналитическом складе ума.
Учеными давно было доказано, что люди, которые регулярно считают в уме, менее подвержены раннему слабоумию и старческому маразму.
Довольно часто родители сталкиваются с задачей научить ребенка считать. Может показаться, что в этом нет ничего сложного, однако для маленького ребенка порой бывает очень трудно научиться счету. Малышам, как правило, свойственно запоминать только то, что им интересно, поэтому взрослым нужно постараться сначала заинтересовать кроху, тогда процесс приобретения новых знаний пройдет намного легче.
Если подавать арифметику как сухое скучное занятие, ребенка будет сложно заинтересовать им
Оптимальный возраст для начала обучения ребенка счету
Начинать учить детей счету лучше всего в тот период, когда их мозг очень активно развивается. Обычно это происходит в возрасте до 6-7 лет. Родителям важно еще до момента поступления в школу начинать развивать у малыша навыки обучения счету.
Дети уже в раннем возрасте, как только начинают разговаривать, проявляют интерес к счету. Родителям необходимо поддерживать этот интерес с помощью специальных развивающих игр.
Основные правила обучения счету
Эта статья рассказывает о типовых способах решения Ваших вопросов, но каждый случай уникален! Если Вы хотите узнать у меня, как решить именно Вашу проблему - задайте свой вопрос. Это быстро и бесплатно !
Если вы хотите обучить малыша счету, необходимо придерживаться главных правил обучения:
- Получаемый объем информации ребенком. Занятия следует совершать три раза в день, продолжительность каждого из которых не должна превышать 10 минут. Таким образом у ребенка не появится усталость от изобилия информации, не исчезнет интерес к новым знаниям.
- Не повторять пройденный материал каждый день. Его лучше вспоминать лишь в тех случаях, когда накопленные знания потребуются для решения более тяжелых заданий.
- Не давать малышу слишком сложные задания. Не стоит ругать ребенка, если у него не получается достичь желаемого результата. Возможно, ему на самом деле тяжело справиться с поставленной задачей. Подбирайте ребенку такие задачи, которые ему под силу решить.
- Закреплять полученные знания в повседневной жизни. Чаще занимайтесь с ребенком подсчетом всего, что находится вокруг: машины, птички на дереве, количество тарелок на столе, автобусов на дороге и т. д.
- Соблюдайте очередность этапов. По мнению психологов, процесс приобретения новых знаний у ребенка состоит из трех этапов: этап привыкания, этап понимания полученной информации, запоминание материала.
Самое главное – не торопить малыша. Наберитесь терпения, чаще общайтесь с крохой, сравнивайте при разговоре предметы, говорите о числах, оказывайте поддержку и помощь в получении знаний.
Учить ребенка счету можно и на прогулке, где попадаются примечательные интересные предметы
Методики обучения малыша
Чтобы научить ребенка правильному счету в уме, необходимо использовать следующие методы:
- Пальцы рук. Этот метод один из самых популярных среди родителей. Его суть заключается в подсчете пальчиков на руках. Метод помогает развивать зрительную память малыша, моторику рук, а также способствует быстрому обучению считать предметы.
- Материал для счета. Идеально подходит для обучения малыша считать примеры. В качестве материала подойдут обычные игрушки или определенные развивающие наборы. При выборе такого набора отдавайте предпочтение более ярким и красочным, убедитесь, что они сделаны из экологически чистых и безопасных материалов.
- Развивающие детские книги (рекомендуем прочитать: ). В настоящий момент в магазинах представлен огромный ассортимент интересных книг для развития ребенка дошкольного возраста. Старайтесь выбирать учебное пособие, написанное простым и понятным языком для малыша, чтобы в ваше отсутствие он мог сам продолжать учиться считать предметы.
Следите за тем, чтобы мозг ребенка не перезагружался во время занятий. Слишком большой объем информации способен утомить малыша и не принесет желаемого результата. В начале занятий учите его считать примеры до 10, уделяйте этому не более 10-15 минут, в дальнейшем можете заниматься с малышом до 30 минут. Во время каждого нового занятия повторяйте ранее пройденный материал.
Учимся считать до 10
Начинать малыша учить счету до 10 можно уже в два-три года. Сначала он должен обучиться считать до 5, а потом до 10. В таком возрасте малыши уже знают, что у них есть две ножки и значит надо надеть два носка. В 3-4 года можно ребенку давать более сложные задания. Самое главное, чтобы ребенок стал понимать значение слов «поровну», «больше», «меньше». Можете приводить ему простые примеры: «У Маши было три мандарина, а Кати – два. У какой девочки больше фруктов, а у какой меньше?»
Чтобы малышу было легче освоить счет до 10, предложите ему посчитать свои пальчики. Дайте крохе задание сложить 2+1, пусть он поднимет один пальчик на левой руке и два на правой, а затем посчитает общее количество поднятых пальчиков.
Такие же манипуляции можно проводить, чтобы малыш научился вычитать: ребенок загибает несколько пальчиков, а потом считает количество оставшихся в поднятом положении. То же самое можно проделывать с различными предметами: карандашами, ручками и т. д.
Учимся считать до 20
Когда малыш научится счету до 10, переходите к обучению счета до 20. В качестве материала для счета хорошо подойдут машины на улицы. По дороге в детский сад можете предложить посчитать их количество. Когда ребенок хорошо освоит урок, попробуйте посчитать автомобили в обратном порядке.
Малышу может показать довольно трудным складывать числа от 1 до 20, поэтому занятия нужно проводить с игровым уклоном. К примеру, можно сказать: восьмерка решила прибавить к себе тройку. Она сначала взяла у тройки двойку и превратилась в десятку. Тройка стала единичкой. Сколько же будет, если восьмерка прибавит к себе тройку?
Мозгу малыша требуются ежедневные тренировки. Если малыш в раннем возрасте начнет заниматься устным счетом, то будет обладать хорошо развитыми умственными способностями.
Обучение устному счету
Когда малышу исполнится 5 лет, старайтесь отучать его от использования счетного материала, в том числе и своих пальцев. Пусть он учиться устному счету. Если в первое время ему это очень помогало, то в дальнейшем только будет мешать процессу приобретения новых знаний.
После пяти лет детей необходимо учить сложению и вычитанию чисел в пределах до 10 на автомате, т.е. нужно добиться того, чтобы малыш запоминал результаты вычислений. Для достижения этих целей хорошо помогает использование математических цепочек. Не забывайте, что в процессе получения знаний должен сохраняться игровой характер. Для больших чисел есть отдельные методики.
Учимся считать в 1 классе
Для каждого малыша наступает важный момент в жизни - он идет в 1 класс. Это время, когда формируется основа всех знаний о будущем. В первом классе у ребенка происходит смена деятельности, но особенность познавать все с помощью игр не исчезает. Малыш примеряет на себя роль ученика, развивает умения самоорганизации. Ему необходимо освоить навыки планирования своей работы, контроля и оценки своих поступков, общения со сверстниками и учителем.
Большое внимание у первоклассников уделяется устной работе. Для обучения первоклассников счету в уме и закрепления полученных ранее знаний педагоги применяют некоторые способы с игровым уклоном:
- Метод кубиков Зайцева. Является очень распространенным методом игрового характера, цель которого – быстро обучиться счету. Малыши с большим интересом набираются знаний, используя кубики. Суть метода состоит в использовании нескольких таблиц, с помощью которых дети намного проще и быстрее обучаются сложению и вычитанию чисел в уме. Данный способ можно применять и родителям во время развивающих занятий с чадом в дошкольном возрасте. В наборе кубиков Зайцева есть обучающее пособие и диск с песнями, что позволяет стать процессу приобретения новых знаний очень интересным и простым.
- Метод Глена Домана. Этот метод заключается в том, что дети учатся считать с помощью специальных карточек, на которых изображены точки. Способ позволяет развивать зрительную память малыша, и умение считать количество предметов.
Учителя в своей практике могут применять и другие методики обучения счету, поэтому родителям желательно заранее уточнить, каким способом будет проходить процесс обучения в школе. Чтобы достичь высокого результата, специалисты советуют не использовать разные методы обучения - это может не лучшим образом сказаться на ребенке.
Методика Домана может применяться и для раннего возраста, но во время подготовки к школе она особенно эффективна
Учимся считать во 2 классе
Следующее важное испытание для малыша – поступление во второй класс. Некоторые педагоги следуют выполнению только школьной программы и не оказывают должного внимания процессу обучению своих учеников. Получается так, что ребенок вроде и умеет складывать и вычитать, но в то же время он неспособен понять, почему из одного числа получается другое.
В математике очень важно соблюдать последовательность действий и регулярно тренировать память. Только в таком случае малыш сможет уверенно считать в уме двузначные числа.
Если же родители столкнулись с проблемой неуспеваемости их ребенка в школе, педагоги советуют больше заниматься с ним дома. Примеры для домашних занятий:
- Сложить в уме двузначные числа 30+34. Можно предложить малышу разбить 34 на 30 и 4. Так малышу будет проще выполнить сложение. Как можно чаще тренируйте зрительную память при выполнении повседневных дел.
- Выполнить сложение 40+35. Некоторым детям намного легче выполнять сложение в обратную сторону. Для этого нужно округлить меньшее число до ближайшего десятка: 40+40. Затем просто отнять лишнюю часть: 80-5=75.
- Тренируйтесь складывать и вычитать в уме простые примеры. Например: 2+3 или 2+2. Потом начинайте усложнять задачи: 3+7=10, 10-2=8, 10-8=2. Если малыш будет хорошо уметь решать простые задачи, то для него не составят труда задания с двузначными и трехзначными числами.
- Если у ребенка богатая фантазия, можно предложить ему считать предметы или животных в уме. Каждый малыш индивидуален, поэтому родители должны выбрать наиболее подходящую методику обучения, исходя из его особенностей.
Устный счет будет легче освоить ребенку-фантазеру, который заменит скучные числа животными или игрушками
Не стоит думать, что желаемый результат будет достигнут быстро, наберитесь терпения. Малышу не так просто обучиться счету, как может показаться на первый взгляд.
В устном счете, как и везде, есть свои хитрости, и чтобы научиться быстрее считать нужно, знать эти хитрости и уметь применять на практике.
Сегодня мы этим и займемся!
1. Как быстро складывать и вычитать числа
Рассмотрим три случайных примера:
- 25 – 7 =
- 34 – 8 =
- 77 – 9 =
Типа 25 – 7 = (20 + 5) – (5- 2) = 20 – 2 = (10 + 10) – 2 = 10 + 8 = 18
Согласитесь, что такие операции сложно проворачивать в голове.
Но есть более простой способ:
25 – 7 = 25 – 10 + 3, так как -7 = -10 + 3
Намного проще вычесть из числа 10 и прибавить 3, чем городить сложные вычисления.
Вернемся к нашим примерам:
- 25 – 7 =
- 34 – 8 =
- 77 – 9 =
Оптимизируем вычитаемые числа:
- Вычесть 7 = вычесть 10 прибавить 3
- Вычесть 8 = вычесть 10 прибавить 2
- Вычесть 9 = вычесть 10 прибавить 1
Итого получим:
- 25 – 10 + 3 =
- 34 – 10 + 2 =
- 77 – 10 + 1 =
Вот теперь намного интересней и проще!
Посчитайте сейчас представленные ниже примеры этим способом:
- 91 – 7 =
- 23 – 6 =
- 24 – 5 =
- 46 – 8 =
- 13 – 7 =
- 64 – 6 =
- 72 – 19 =
- 83 – 56 =
- 47 – 29 =
2. Как быстро умножать на 4, 8 и 16
В случае умножения мы тоже разбиваем числа на более простые, например:
Если помните таблицу умножения, то все просто. А если нет?
Тогда нужно упростить операцию:
Наибольшее число ставим первым, а второе раскладываем на более простые:
8 * 4 = 8 * 2 * 2 = ?
Удваивать числа гораздо легче, нежели чем учетверять или увосьмирять их.
Получаем:
8 * 4 = 8 * 2 * 2 = 16 * 2 = 32
Примеры раскладывания чисел на более простые:
- 4 = 2*2
- 8 = 2*2 *2
- 16 = 22 * 2 2
Отработайте этот способ на следующих примерах:
- 3 * 8 =
- 6 * 4 =
- 5 * 16 =
- 7 * 8 =
- 9 * 4 =
- 8 * 16 =
3. Деление числа на 5
Возьмем следующие примеры:
- 780 / 5 = ?
- 565 / 5 = ?
- 235 / 5 = ?
Деление и умножение с числом 5 всегда очень простые и приятные, ведь пять это половина от десяти.
И как их быстро решить?
- 780 / 10 * 2 = 78 * 2 = 156
- 565 /10 * 2 = 56,5 * 2 = 113
- 235 / 10 * 2 = 23,5 *2 = 47
Для того чтобы проработать этот способ решите следующие примеры:
- 300 / 5 =
- 120 / 5 =
- 495 / 5 =
- 145 / 5 =
- 990 / 5 =
- 555 / 5 =
- 350 / 5 =
- 760 / 5 =
- 865 / 5 =
- 1270 / 5 =
- 2425 / 5 =
- 9425 / 5 =
4. Умножение на однозначные числа
С умножением немного сложнее, но не сильно, как бы Вы решили следующие примеры?
- 56 * 3 = ?
- 122 * 7 = ?
- 523 * 6 = ?
Без специальных фишек решать их не очень приятно, но благодаря методу «Разделяй и властвуй» мы можем сосчитать их гораздо быстрее:
- 56 * 3 = (50 + 6)3 = 50 3 + 6*3 = ?
- 122 * 7 = (100 + 20 + 2)7 = 100 7 + 207 + 2 7 = ?
- 523 * 6 = (500 + 20 + 3)6 = 500 6 + 206 + 3 6 =?
Нам остается только перемножить однозначные числа, некоторые из которых с нулями и сложить полученные результаты.
Для проработки этой техники решите следующие примеры:
- 123 * 4 =
- 236 * 3 =
- 154 * 4 =
- 490 * 2 =
- 145 * 5 =
- 990 * 3 =
- 555 * 5 =
- 433 * 7 =
- 132 * 9 =
- 766 * 2 =
- 865 * 5 =
- 1270 * 4 =
- 2425 * 3 =
Делимость числа на 2, 3, 4, 5, 6 и 9
Проверьте числа: 523, 221, 232
Число делится на 3, если сумма его цифр делится на 3.
Например, возьмем число 732, представим его как 7 + 3 + 2 = 12. 12 делится на 3, а значит, число 372 делится на 3.
Проверьте, какие из следующих чисел делятся на 3:
12, 24, 71, 63, 234, 124, 123, 444, 2422, 4243, 53253, 4234, 657, 9754
Число делится на 4, если число, состоящее из последних двух его цифр, делится на 4.
Например, 1729. Последние две цифры образуют 20, которое делится на 4.
Проверьте, какие из следующих чисел делятся на 4:
20, 24, 16, 34, 54, 45, 64, 124, 2024, 3056, 5432, 6872, 9865, 1242, 2354
Число делится на 5, если его последняя цифра 0 или 5.
Проверьте, какие из следующих чисел делятся на 5 (самое легкое упражнение):
3, 5, 10, 15, 21, 23, 56, 25, 40, 655, 720, 4032, 14340, 42343, 2340, 243240
Число делится на 6, если оно делится и на 2 и на 3.
Проверьте, какие из следующих чисел делятся на 6:
22, 36, 72, 12, 34, 24, 16, 26, 122, 76, 86, 56, 46, 126, 124
Число делится на 9, если сумма его цифр, делится на 9.
Например, возьмем число 6732, представим его как 6 + 7 + 3 + 2 = 18. 18 делится на 9, а значит, число 6732 делится на 9.
Проверьте, какие из следующих чисел делятся на 9:
9, 16, 18, 21, 26, 29, 81, 63, 45, 27, 127, 99, 399, 699, 299, 49
Игра «Быстрое сложение»
- Ускоряет устный счет
- Тренирует внимание
- Развивает творческое мышление
Отличный тренажер для развития быстрого счета. На экране дана таблица 4х4, а над ней показаны числа. Самое большое число нужно собрать в таблице. Для этого нажмите мышкой на два числа, сумма которых равна этому числу. Например, 15+10 = 25.
Игра "Быстрый счет"
Игра «быстрый счет» поможет вам усовершенствовать свое мышление . Суть игры в том, что на представленной вам картинке, потребуется выбрать ответ «да» или «нет» на вопрос «есть ли 5 одинаковых фруктов?». Идите за своей целью, а поможет вам в этом данная игра.
Игра "Угадай операцию"
Игра «Угадай операцию» развивает мышление и память. Главная суть игры надо выбрать математический знак, чтобы равенство было верным. На экране даны примеры, посмотрите внимательно и поставьте нужный знак «+» или «-», так чтобы равенство было верным. Знак «+» и «-» расположены внизу на картинке, выберите нужный знак и нажмите на нужную кнопку. Если вы ответили правильно, вы набираете очки и продолжаете играть дальше.
Игра "Упрощение"
Игра «Упрощение» развивает мышление и память. Главная суть игры надо быстро выполнить математическую операцию. На экране нарисован ученик у доски, и дано математическое действие, ученику надо посчитать этот пример и написать ответ. Внизу даны три ответа, посчитайте и нажмите нужное вам число с помощью мышки. Если вы ответили правильно, вы набираете очки и продолжаете играть дальше.
Задание на сегодня
Решить все примеры и тренироваться минимум 10 минут в игре Быстрое сложение.
Очень важно отработать все задания этого урока. Чем лучше Вы будете выполнять задания, тем больше будет пользы. Если Вы чувствуете, что Вам мало заданий - можете сами составлять себе примеры и решать их и тренироваться в математические развивающие игры.
Урок взят из курса "Устный счет за 30 дней"
Научитесь быстро и правильно складывать, вычитать, умножать, делить, возводить числа в квадрат и даже извлекать корни. Научу использовать легкие приемы для упрощения арифметических операций. В каждом уроке новые приемы, понятные примеры и полезные задания.
Другие развивающие курсы
Деньги и мышление миллионера
Почему бывают проблемы с деньгами? В этом курсе мы подробно ответим на этот вопрос, заглянем вглубь проблемы, рассмотрим наши взаимоотношения с деньгами с психологической, экономической и эмоциональных точек зрения. Из курса Вы узнаете, что нужно делать, чтобы решить все свои финансовые проблемы, начать накапливать деньги и в дальнейшем инвестировать их.
Знание психологии денег и способов работы с ними делает человека миллионером. 80% людей при увеличении доходов берут больше кредитов, становясь еще беднее. С другой стороны миллионеры, которые всего добились сами, снова заработают миллионы через 3-5 лет, если начнут с нуля. Этот курс учит грамотному распределению доходов и уменьшению расходов, мотивирует учиться и добиваться целей, учит вкладывать деньги и распознавать лохотрон.
Скорочтение за 30 дней
Увеличьте скорость чтения в 2-3 раза за 30 дней. Со 150-200 до 300-600 слов в минуту или с 400 до 800-1200 слов в минуту. В курсе используются традиционные упражнения для развития скорочтения, техники ускоряющие работу мозга, методика прогрессивного увеличения скорости чтения, разбирается психология скорочтения и вопросы участников курса. Подходит детям и взрослым, читающим до 5000 слов в минуту.
Развитие памяти и внимания у ребенка 5-10 лет
В курс входит 30 уроков с полезными советами и упражнениями для развития детей. В каждом уроке полезный совет, несколько интересных упражнений, задание к уроку и дополнительный бонус в конце: развивающая мини-игра от нашего партнера. Длительность курса: 30 дней. Курс полезно проходить не только детям, но и их родителям.
Супер-память за 30 дней
Запоминайте нужную информацию быстро и надолго. Задумываетесь, как открывать дверь или помыть голову? Уверен, что нет, ведь это часть нашей жизни. Легкие и простые упражнения для тренировки памяти можно сделать частью жизни и выполнять понемногу среди дня. Если съесть суточную норму еды за раз, а можно есть порциями в течение дня.
Секреты фитнеса мозга, тренируем память, внимание, мышление, счет
Мозгу, как и телу нужен фитнес. Физические упражнения укрепляют тело, умственные развивают мозг. 30 дней полезных упражнений и развивающих игр на развитие памяти, концентрации внимания, сообразительности и скорочтения укрепят мозг, превратив его в крепкий орешек.
Умение быстро анализировать ситуацию, просчитывать варианты развития и составлять единое изображение реальности - это одно из ключевых умений высокоэффективных людей. Личностное развитие невозможно без интеллектуального, чему способствует быстрый счет в уме. В общем, о технике увеличения скорости мышления мы и поговорим в статье.
Как нас обманывает наш мозг
Исследования в области работы мозга приводят такие данные, в которые сложно поверить. Большая часть населения считает себя куратором мозга. Но это иллюзорное представление. На самом деле мозг уже принял решение за вас и посредством нервных импульсов передал его в сознание.
Мышление человека практически не изучено, составлена лишь малая картина происходящего в мозге. Грубо говоря, наши действия не определяются собственным "Я", хотя и это весьма расплывчатая формулировка. И зная это, можно приступать к изучению техники быстрого счета в уме.
Как эффективнее обучаться
Память дифференцируется на долговременную и краткосрочную, в первом случае знания откладываются в мозг навсегда. А второй вид необходим для зазубривания информации, чтения.
Современный молодой человек - это мультимедийная личность с клиповым мышлением. Отложить данные в долговременной памяти для него крайне сложно, ведь постоянное поступление информации захламляет его "жесткий диск".
Поэтому обучение методике быстрого счета в уме должно происходить в спокойном состоянии, когда человек не отвлекается на внешние раздражители. Иначе через несколько часов он все забудет.
А зачем мне это учить?
Да, в настоящий момент складывать цифры в уме нет надобности. Для этого придуманы специальные технические средства, но неиспользование мозга приводит к деградации личности.
А стремление к знаниям - это вечность. Такие люди уверены в себе, надеются только на собственные силы, а приобретенные навыки используются по назначению, тем самым обогащая индивида духовно и материально. Быстрый счет в уме развивает в человеке чувство контроля, увеличивает концентрацию внимания.
Способ первый. Для ленивых
Обладатели устройств на платформе Andorod и IOS могут скачать развивающие приложения и игры. Нейробиологи советуют комплексно подходить к быстрому счету в уме. Обучение происходит в несколько этапов, описанных ниже:
- Загружаются приложения для развития внимания, концентрации т. п.
- Затем пользователь скачивает развивалки для памяти.
В первом действии человек подготавливает свой мозг, так сказать, разогревает его для усиленных занятий. После чего приступает к работе над счетом в уме. Обратите внимание, приложения должны легко регулироваться, как снижение или повышение уровня сложности заданий, так и изменение времени на работу над ним.
Способ второй. Базовые знания
Для быстрого старта подобраны задания начального уровня. Сложение и вычитание небольших цифр, например 3 и 10. Техника называется «Опора на десяток».
Порядок действий:
- Задавайте вопросы простого характера, типа сколько 3 + 8 или 9 + 1. Ответ: 11 и 10.
- Сколько не хватает числу 10, чтобы стать 14? Ответ: 4.
- Затем возьмите любое число, к примеру, 9, и узнайте, сколько 2 в этом числе, и при нехватке добавьте недостающие цифры. Ответ: четыре двоек + 1.
- Прибавьте число из второго действия (4) к той части, которой недоставало для получения (1) девяти и сложите их. Ответ: 5.
Отточите свой навык до совершенства и только потом приступайте к более сложным тестам.
Способ третий. Многозначные числа
Здесь используются навыки, которые приобретены в школе. Сложение в столбик или в строчку - самое популярное среди школьников и студентов без вычислительных средств. Разберем на примере двух чисел: 1345 и 6789. Для начала дифференцируем их:
- Число 1234 - состоит из 1000, 200, 30 и 4.
- А 6789 - из 6000, 700, 80 и 9.
Быстрый счет в уме проходит по следующим действиям:
- Изначально складываются однозначные значения, это 4 + 9 = 13.
- Складывается 30 + 80 = 110.
- Переходим к трехзначным, 700 + 200 = 900.
- И затем считаем четырехзначные: 1000 + 6000 = 7000.
- Суммируем: 7000 + 900 + 110 + 13 = 8023 и проверяем на калькуляторе.
И более быстрый, но требующий фантазии способ:
- Представляем в голове одно число над другим.
- Складываем числа, начиная с их конца.
- Если 4 + 9 = 13, то откладываем единицу в голове и прибавляем к итоговому значению следующие числа.
На скриншоте этот способ представляется так, в ваших мыслях он должен иметь аналогичную структуру.
Способ четыре. Вычитание
Как и со сложением, вычитание начинается с вводного урока. Внимание человека должно быть сконцентрировано исключительно на подсчете числовых значений. Отвлекаться на посторонние шумы нельзя, иначе ничего не выйдет. На этот раз вычтем из 10 8 и посмотрим, что из этого выйдет:
- Для начала узнаем, сколько надо вычесть из десяти, чтобы получить восемь. Ответ: два.
- Из десяти вычитаем восемь по частям - для начала эту двойку, а затем остальные числа. И посчитаем, сколько надо раз отнять, чтобы получить ноль. Ответ: пять.
- Вычитаем из десяти пятерку. Ответ: пять.
- И от восьми отнимаем полученный ответ. Ответ: три.
Способ пять. Комбинированный
Появился в результате взаимодействия сложения и вычитания. Суть простая, необходимо взять число и начать отнимать от него различные числа или прибавлять с некоторыми реформациями. За исходное принимается число 9, начнем:
- От девяти отнимается шесть и одновременно прибавляется четыре. Ответ: семь.
- Семь разбивается на составные части, к примеру: 2 + 3 + 2.
- И к каждому прибавляется рандомное значение, возьмем 2. Получается, 2 + 2 = 4, 3 + 2 = 5 и 2 + 2 = 4.
- Суммируем полученные числа: 4 + 5 + 4 = 13.
- Вновь располагаем значение по частям и повторяем действия, используя только вычитание.
А с вычитанием больших чисел ситуация аналогична сложению. Все действия проговаривайте вслух, чтобы работало несколько видов памяти и ускорялся быстрый счет в уме.
За какой период времени можно стать сверхчеловеком?
Основных математических действий четыре:
- Вычитание.
- Сложение.
- Умножение.
- Деление.
И все будет зависеть от того, насколько часто человек занимается тренировками мозга. При плодотворной работе в течении 15-20 минут в день заметный результат наступит через два или три месяца. Для сохранения эффекта скоростного вычисления сверхчеловеку надо будет уделять всего 2-3 минуты в день на повторение пройденного. А через несколько лет это войдет в привычку, и индивид и замечать не будет, как он считает в уме.
ВВЕДЕНИЕ
Во все времена математика была и остается одним из основных предметов в школе, потому что математические знания необходимы всем людям. Не каждый школьник, обучаясь в школе, знает, какую профессию он выберет в будущем, но каждый понимает, что математика необходима для решения многих жизненных задач: расчеты в магазине, оплата за коммунальные услуги, расчет семейного бюджета и т.д. Кроме того, всем школьникам необходимо сдавать экзамены в 9-м классе и в 11-м классе, а для этого, обучаясь с 1-го класса, необходимо качественно осваивать математику и прежде всего, нужно научиться считать.
Можно ли представить себе мир без чисел? Без чисел ни покупки не сделаешь, ни времени не узнаешь, ни номера телефона не наберёшь. А космические корабли, лазеры и все другие технические достижения?! Они были бы попросту невозможны, если бы не наука о числах.
Две стихии господствуют в математике – числа и фигуры с их бесконечным многообразием свойств и взаимосвязей. В моей работе предпочтение отдано стихии чисел и действий с ними.
Сейчас, на этапе стремительного развития информатики и вычислительной техники, современные школьники не хотят утруждать себя счетом в уме. Поэтому я решил показать не только то, что сам процесс выполнения действия может быть важным, но и интересным занятием.
Цель: изучить приемы быстрого счета, показать необходимость их применения для упрощения вычислений.
В соответствии с поставленной целью были определены задачи:
- Исследовать, применяют ли школьники приемы быстрого счета.
- Изучить приемы быстрого счета, которые можно использовать, упрощая вычисления.
- Составить памятку для учащихся 5-6 классов для применения приемов быстрого счета.
Объект исследования: приемы быстрого счета.
Предмет исследования : процесс вычислений.
Гипотеза исследования: если показать, что применение приемов быстрого счета, облегчает вычисления, то можно добиться того, что повысится вычислительная культура учащихся, и им будет легче решать практические задачи.
При выполнении работы были использованы следующие приемы и методы : опрос (анкетирование), анализ (статистическая обработка данных), работа с источниками информации, практическая работа, наблюдения.
Данная работа относится к прикладным исследованиям , т.к. в ней показывается роль применения приемов быстрого счета для практической деятельности.
При работе над докладом я пользовался следующими методами:
- поисковый метод с использованием научной и учебной литература, а также поиск необходимой информации в сети Интернет;
- практический метод выполнения вычислений с применением нестандартных алгоритмов счета;
- анализ полученных в ходе исследования данных.
Актуальность моего исследования состоит в том, что в наше время все чаще на помощь ученикам приходят калькуляторы, и все большее количество учеников не может считать устно. А ведь изучение математики развивает логическое мышление, память, гибкость ума, приучает человека к точности, к умению видеть главное, сообщает необходимые сведения для понимания сложных задач, возникающих в различных областях деятельности современного человека. Поэтому в своей работе я хочу показать, как можно считать быстро и правильно и что процесс выполнения действий может быть не только полезным, но и интересным занятием. Именно использование нестандартных приемов в формировании вычислительных навыков усиливает интерес учащихся к математике и содействует развитию математических способностей.
За простыми действиями сложения, вычитания, умножения и деления скрываются тайны истории математики. Случайно услышанные слова «умножение решеткой», «шахматным способом» заинтриговали. Захотелось узнать эти и другие способы вычислений, а также сравнить их с сегодняшними.
Умеете ли вы считать? Вопрос, пожалуй, даже обидный для человека старше трехлетнего возраста. Кто не умеет считать? Каждый ответит, что для этого, особого искусства не требуется. И будет прав. Но вопрос – как считать? Можно считать на калькуляторе, можно считать столбиком в тетради, а можно считать устно, используя приемы быстрого счета. Я очень быстро считаю устно, практически никогда не решаю столбиком, письменно, все потому, что знаю и применяю различные приемы быстрого счета. Из моих одноклассников мало кто умеет считать быстро устно и мне захотелось выяснить, а знают ли они приемы быстрого счета, если нет, то помочь им освоить эти приемы, с этой целью составить для них памятку с приемами быстрого счета.
Для того чтобы выяснить, знают ли современные школьники другие способы выполнения арифметических действий, кроме умножения, сложения, вычитания столбиком и деления «уголком» и хотели бы узнать новые способы, был проведен тестовый опрос.
Для начала, я провел анкетирование в 6-х классах нашей школы. Задавал ребятам простые вопросы. Зачем вообще нужно уметь считать? При изучении каких школьных предметов требуется правильный счет? Знают ли они приемы быстрого счета? Хотели бы научиться быстро считать устно? (Приложение I).
В опросе приняли участие 61 человек. Проанализировав результаты, я сделал вывод, что большинство учеников считает, что умение считать пригодится в жизни и необходимо в школе, особенно при изучении математики, физики, химии, информатики и технологии. Приемы быстрого счета знают несколько учеников и почти все хотели бы научиться быстро считать. (Результаты анкетирования отражены в диаграммах) (Приложение II).
Проведя статистическую обработку данных, я сделал вывод, что не все учащиеся знают приемы быстрого счета, поэтому необходимо сделать для учеников 5-6-х классов памятки с приемами быстрого счета, чтобы использовать их при выполнении вычислений.
Результаты анкетирования:
Вопрос | 5 класс | 6 классы | Всего | ||||
да | нет | не знаю | да | нет | не знаю | ||
А хотели бы узнать? |
Сводная таблица анкетирования:
Вопрос | 5, 6 классы | ||
да | нет | не знаю |
|
Нужно ли уметь выполнять арифметические действия с натуральными числами современному человеку? | |||
Умеете ли вы умножать, складывать, вычитать числа столбиком, делить «уголком»? | |||
Знаете ли вы другие способы выполнения арифметических действий? | |||
А хотели бы узнать? |
По результатам опроса можно сделать вывод, что в большинстве случаев современные школьники не знают других способов выполнения действий кроме таких как умножения, сложения, вычитания столбиком и деления «уголком», так как редко обращаются к материалу, находящемуся за пределами школьной программы.
Глава I. ИСТОРИЯ СЧЁТА
1. КАК ВОЗНИКЛИ ЧИСЛА
Подсчитывать предметы люди научились ещё в древнем каменном веке - палеолите, десятки тысяч лет назад. Как это происходило? Сначала люди лишь на глаз сравнивали разные количества одинаковых предметов. Они могли определить, в какой из двух куч больше плодов, в каком стаде больше оленей и т.д. Если одно племя меняло пойманных рыб на сделанные людьми другого племени каменные ножи, не нужно было считать, сколько принесли рыб и сколько ножей. Достаточно было положить рядом с каждой рыбой по ножу, чтобы обмен между племенами состоялся.
Чтобы с успехом заниматься сельским хозяйством, понадобились арифметические знания. Без подсчета дней трудно было определить, когда надо засевать поля, когда начинать полив, когда ждать потомства от животных. Надо было знать, сколько овец в стаде, сколько мешков зерна положено в амбары.
И вот более восьми тысяч лет назад древние пастухи стали делать из глины кружки – по одному на каждую овцу. Чтобы узнать, не пропала ли за день хоть одна овца, пастух откладывал в сторону по кружку каждый раз, когда очередное животное заходило в загон. И только убедившись, что овец вернулось столько же, сколько было кружков, он спокойно шел спать. Но в его стаде были не только овцы – он пас и коров, и коз, и ослов. Поэтому пришлось сделать из глины и другие фигурки. А земледельцы с помощью глиняных фигурок вели учет собранного урожая, отмечая, сколько мешков зерна положено в амбар, сколько кувшинов масла выжато из оливок, сколько соткано кусков льняного полотна. Если овцы приносили приплод, пастух прибавлял к кружкам новые, а если часть овец шла на мясо, несколько кружков приходилось убирать. Так, еще не умея считать, занимались древние люди арифметикой.
Затем в человеческом языке появились числительные, и люди смогли называть число предметов, животных, дней. Обычно таких числительных было мало. Например, у племени реки Муррей в Австралии было два простых числительных: энэа (1) и петчевал (2). Другие числа они выражали составными числительными: 3= «петчевал–энэа», 4 «петчевал–петчевал» и т. д. Ещё одно австралийское племя – камилороев имело простые числительные мал (1), булан (2), гулиба (3) . И здесь другие числа получались сложением меньших: 4=«булан–булан», 5=«булан–гулиба», 6=«гулиба–гулиба» и т.д.
У многих народов название числа зависело от подсчитываемых предметов. Если жители островов Фиджи считали лодки, то число 10 называли «боло»; если они считали кокосовые орехи, то число 10 называли «каро». Точно так же поступали живущие на Сахалине у берегах Амура нивхи. Ещё в XIX веке одно и то же число они называли разными словами, если считали людей, рыб, лодки, сети, звёзды, палки.
Мы и сейчас используем разные неопределённые числительные со значением «много»: «толпа», «стадо», «стая», «куча», «пучок» и другие.
С развитием производства и торгового обмена люди стали лучше понимать, что общего у трёх лодок и трёх топоров, десяти стрел и десяти орехов. Племена часто вели обмен «предмет за предмет»; к примеру, обменивали 5 съедобных кореньев на 5 рыб. Становилось ясно, что 5 одно и то же и для кореньев, и для рыб; значит, и называть его можно одним словом.
Похожие способы счёта применяли и другие народы. Так возникли нумерации, основанные на счёте пятёрками, десятками, двадцатками.
До сих пор я рассказывал об устном счёте. А как записывали числа? Поначалу, ещё до возникновения письменности, использовали зарубки на палках, насечки на костях, узелки на верёвках. Найденная волчья кость в Дольни – Вестонице (Чехословакия), имела 55 насечек, сделанных более 25 000 лет назад.
Когда появилась письменность, появились и цифры для записи чисел. Сначала цифры напоминали зарубки на палках: в Египте и Вавилоне, в Этрурии и Финики, в Индии и Китае небольшие числа записывали палочками или чёрточками. Например, число 5 записывали пятью палочками. Индейцы ацтеки и майя вместо палочек использовали точки. Затем появились специальные знаки для некоторых чисел, таких, как 5 и 10 .
В то время почти все нумерации были не позиционными, а похожими на римскую нумерацию. Лишь одна вавилонская шестидесятеричная нумерация была позиционной. Но и в ней долго не было нуля, а также запятой, отделяющей целую часть от дробной. Поэтому одна и та же цифра могла означать и 1, и 60, и 3600. Угадывать значение числа приходилось по смыслу задачи.
За несколько столетий до новой эры изобрели новый способ записи чисел, при котором цифрами служили буквы обычного алфавита. Первые 9 букв обозначали числа десятки 10, 20,…, 90, а ещё 9 букв обозначали сотни. Такой алфавитной нумерацией пользовались до 17 в. Чтобы отличить «настоящие» буквы от чисел, над буквами–числами ставили чёрточку (на Руси эта чёрточка называлась «титло»).
Во всех этих нумерациях было очень трудно выполнить арифметические действия. Поэтому изобретение в VI веке индийцами десятичной позиционной нумерации по праву считается одним из крупнейших достижений человечества. Индийская нумерация и индийские цифры стали известны в Европе от арабов, и обычно их называют арабскими.
При записи дробей ещё долгое время целую часть записывали в новой десятичной нумерации, а дробную – в шестидесятеричной. Но в начале XV в. самаркандский математик и астроном аль–Каши стал употреблять в вычислениях десятичные дроби.
Числа, с которыми мы работаем с положительными и отрицательными числами. Но, оказывается, что это не все числа, которые используют в математике и других науках. И узнать о них можно не дожидаясь старшей школы, а гораздо раньше, если изучать историю возникновения чисел в математике.
Глава II. СТАРИННЫЕ СПОСОБЫ ВЫЧИСЛЕНИЯ
2.1. РУССКИЙ КРЕСТЬЯНСКИЙ СПОСОБ УМНОЖЕНИЯ
В России несколько веков назад среди крестьян некоторых губерний был распространен способ, который не требовал знание всей таблицы умножения. Надо было лишь уметь умножать и делить на 2. Этот способ получил название КРЕСТЬЯНСКИЙ (существует мнение, что он берет начало от египетского).
Пример: умножим 47 на 35,
- запишем числа на одной строчке, проведём между ними вертикальную черту;
- левое число будем делить на 2, правое – умножать на 2 (если при делении возникает остаток, то остаток отбрасываем);
- деление заканчивается, когда слева появится единица;
- вычёркиваем те строчки, в которых стоят слева чётные числа; 35 + 70 + 140 + 280 + 1120 = 1645
- далее оставшиеся справа числа складываем – это результат.
2.2. МЕТОД «РЕШЕТКИ»
Выдающийся арабский математик и астроном Абу Абдалах Мухаммед Бен Мусса аль – Хорезми жил и работал в Багдаде. Учёный работал в Доме мудрости, где были библиотека и обсерватория, здесь работали почти все крупные арабские учёные.
Сведений о жизни и деятельности Мухаммеда аль – Хорезми очень мало. Сохранились лишь две его работы – по алгебре и по арифметике. В последний из этих книг даны четыре правила арифметических действий, почти такие же, что используются в наше время.
1 | 3 | ||
0 | 1 | ||
В своей «Книге об индийском счете» учёный описал способ, придуманный в Древней Индии, а позже названный «МЕТОДОМ РЕШЁТКИ» . Этот метод даже проще, чем применяемый сегодня.
Пример: умножим 25 и 63.
Начертим таблицу, в которой две клетки по длине и две по ширине запишем одно число по длине другое по ширине. В клетках запишем результат умножения данных цифр, на их пересечении отделим десятки и единицы диагональю. Полученные цифры сложим по диагонали, и полученный результат можно прочитать по стрелке (вниз и вправо).
Мною рассмотрен простой пример, однако, этим способом можно умножать любые многозначные числа.
Рассмотрю еще один пример: перемножим 987 и 12:
- рисуем прямоугольник 3 на 2 (по количеству десятичных знаков у каждого множителя);
- затем квадратные клетки делим по диагонали;
- вверху таблицы записываем число 987;
- слева таблицы число 12;
- теперь в каждый квадратик впишем произведение цифр, расположенных в одной строчке и в одном столбце с этим квадратиком, десятки ниже диагонали, единицы выше;
- после заполнения всех треугольников, цифры в них складывают вдоль каждой диагонали справой стороны;
- результат читаем по стрелке.
Этот алгоритм умножения двух натуральных чисел был распространен в средние века на Востоке и Италии.
Неудобство этого способа мне хотелось бы отметить в трудоемкости подготовки прямоугольной таблицы, хотя сам процесс вычисления интересен и заполнение таблицы напоминает игру.
2.3. УМНОЖЕНИЕ НА ПАЛЬЦАХ
Древние египтяне были очень религиозны и считали, что душу умершего в загробном мире подвергают экзамену по счёту на пальцах. Уже это говорит о том значении, которое придавали древние этому способу выполнения умножения натуральных чисел (он получил название ПАЛЬЦЕВОГО СЧЕТА ).
Умножали на пальцах однозначные числа от 6 до 9. Для этого на одной руке вытягивали столько пальцев, насколько первый множитель превосходил число 5, а на второй делали то же самое для второго множителя. Остальные пальцы загибали. После этого брали столько десятков, сколько вытянуто пальцев на обеих руках, и прибавляли к этому числу произведение загнутых пальцев на первой и второй руке.
Пример: 8 ∙ 9 = 72
Позже пальцевой счёт усовершенствовали – научились показывать с помощь пальцев числа до 10000.
Движение пальца – это еще один из способов помочь памяти: с помощью пальцев рук запомнить таблицу умножения на 9. Положив обе руки рядом на стол, по порядку занумеруем пальцы обеих рук следующим образом: первый палец слева обозначим 1, второй за ним обозначим цифрой 2, затем 3, 4… до десятого пальца, который означает 10. Если надо умножить на 9 любое из первых девяти чисел, то для этого, не двигая рук со стола, надо приподнять вверх тот палец, номер которого означает число, на которое умножается девять; тогда число пальцев, лежащих налево от поднятого пальца, определяет число десятков, а число пальцев, лежащих справа от поднятого пальца, обозначает число единиц полученного произведения (убедитесь в этом самостоятельно).
Итак, рассмотренные нами старинные способы умножения показывают, что используемый в школе алгоритм умножения натуральных чисел - не единственный и известен он был не всегда.
Однако, он достаточно быстр и наиболее удобен.
Глава III. УСТНЫЙ СЧЕТ – ГИМНАСТИКА УМА
3.1. РАЗЛИЧНЫЕ СПОСОБЫ СЛОЖЕНИЯ И ВЫЧИТАНИЯ
СЛОЖЕНИЕ
Основное правило для выполнения сложения в уме звучит так:
Чтобы прибавить к числу 9, прибавьте к нему 10 и отнимите 1;чтобы прибавить 8, прибавьте 10 и отнимите 2; чтобы прибавить 7, прибавьте10 и отнимите 3 и т.д. Например:
56+8=56+10-2=64;
65+9=65+10-1=74.
СЛОЖЕНИЕ В УМЕ ДВУЗНАЧНЫХ ЧИСЕЛ
Если цифра единиц в прибавляемом числе больше5, то число необходимо округлить в сторону увеличения, а затем вычесть ошибку округления из полученной суммы. Если же цифра единиц меньше, то прибавляем сначала десятки, а потом единицы. Например:
34+48=34+50-2=82;
27+31=27+30+1=58.
СЛОЖЕНИЕ ТРЕХЗНАЧНЫХ ЧИСЕЛ
Складываем слева на право, то есть сначала сотни, потом десятки, а затем единицы. Например:
359+523= 300+500+50+20+9+3=882;
456+298=400+200+50+90+6+8=754.
ВЫЧИТАНИЕ
Чтобы вычесть два числа в уме, нужно округлить вычитаемое, а затем подкорректируйте полученный ответ.
56-9=56-10+1=47;
436-87=436-100+13=349.
ВЫЧИТАНИЕ ЧИСЛА МЕНЬШЕ 100 ИЗ ЧИСЛА БОЛЬШЕ 100
Если вычитаемое меньше 100, а уменьшаемое больше 100, но меньше 200, есть простой способ вычислить разность в уме. 134-76=58
76 на 24меньше 100. 134 на 34 больше 100. Прибавим 24 к 34 и получим ответ: 58.
152-88=64
88 на 12 меньше 100,а 152 больше 100 на 52, значит
152-88=12+52=64
3.2. РАЗЛИЧНЫЕ СПОСОБЫ УМНОЖЕНИЯ И ДЕЛЕНИЯ
Изучив литературу по данной теме, мною был сделан отбор, из множества приемов быстрого счета, я выбрал приемы умножения и деления, которые просты в понимании и применении для любого ученика. Эти приемы я и включил в памятку (Приложение III), которая будет полезна для учеников 5-6-х классов.
- Умножение и деление числа на 4.
Чтобы умножить число на 4, нужно его дважды умножить на 2.
Например:
26·4=(26·2)·2=52·2=104;
417·4=(417·2)·2=834·2=1668.
Чтобы разделить число на 4, нужно его дважды разделить на 2.
Например:
324:4=(324:2):2=162:2=81.
- Умножение и деление числа на 5.
Чтобы умножить число на 5, нужно его умножить на 10 и разделить на 2.
Например:
236·5=(236·10):2=2360:2=1180.
Чтобы разделить число на 5, нужно умножить 2 и разделить на 10, т.е. отделить запятой последнюю цифру.
Например:
236:5=(236·2):10=472:10=47,2.
- Умножение числа на 1,5.
Чтобы умножить число на 1,5, нужно к исходному числу прибавить его половину.
Например: 34·1,5=34+17=51;
146·1,5=146+73=219.
- Умножение числа на 9.
Чтобы умножить число на 9, нужно к нему приписать 0 и отнять исходное число.
Например: 72·9=720-72=648.
- Умножение на 25 числа, делящегося на 4.
Чтобы умножить на 25 число, делящееся на 4, нужно его разделить на 4 и получившееся число умножить на 100.
Например: 124·25=(124:4)·100=31·100=3100.
- Умножение двузначного числа на 11
При умножении двузначного числа на 11, нужно между цифрой единиц и цифрой десятков вписать сумму этих цифр, причем, если сумма цифр больше 10, то единицу нужно прибавить к старшему разряду (первой цифре).
Например:
23·11=253, т.к. 2+3=5, поэтому между 2 и 3 ставим цифру 5;
57·11=627, т.к. 5+7=12, цифру 2 ставим между 5 и 7, а к 5 прибавляем 1, вместо 5 пишем 6.
«Краешки сложи, в серединку положи» - эти слова помогут легко запомнить данный способ умножения на 11.
Такой способ подходит только для умножения двузначных чисел.
- Умножение двузначного числа на 101.
Для того, чтобы число умножить на 101, нужно приписать данное число к самому себе.
Например:34·101 = 3434.
Поясним, 34·101 = 34·100+34·1=3400+34=3434.
- Возведение в квадрат двузначного числа, оканчивающегося на 5.
Чтобы возвести в квадрат двузначное число, оканчивающееся на 5, нужно цифру десятков умножить на цифру, большую на единицу, и к полученному произведению приписать справа число 25.
Например: 35
2
=1225, т.е. 3·4=12 и к 12 приписываем 25, получаем 1225.
- Возведение в квадрат двузначного числа, начинающегося на 5.
Для возведения в квадрат двузначного числа, начинающегося на пять, нужно прибавить к 25 вторую цифру числа и приписать справа квадрат второй цифры, причем если квадрат второй цифры – однозначное число, то перед ним надо приписать цифру 0.
Например:
52
2
= 2704, т.к. 25+2=28 и 2
2
=04;
58
2
= 3364, т.к. 25+8=33 и 8
2
=64.
3.3. ИГРЫ
Отгадывание полученного числа.
- Задумайте какое-нибудь число. Прибавьте к нему 11; умножьте полученную сумму на 2; от этого произведения отнимите 20; умножьте полученную разность на 5 и от нового произведения отнимите число, в 10 раз больше задуманного вами числа. Я отгадываю: вы получили 10. Верно?
- Задумайте число. Утрой его. Вычти из полученного 1. Полученное умножьте на 5. К полученному прибавьте 20. Разделите полученное на 15. Из полученного результата вычтите задуманное. У вас получилось 1.
- Задумайте число. Умножьте его на 6. Вычтите 3. Умножьте на 2. Прибавьте 26. Вычтите удвоенное задуманное. Разделите на 10. Вычтите задуманное. У вас получилось 2.
- Задумайте число. Утройте его. Вычтите 2. Умножьте на 5. Прибавьте 5. Разделите на 5. Прибавьте 1. Разделите на задуманное. У вас получилось 3.
- Задумайте число, удвойте его. Прибавьте 3. Умножьте на 4. Вычтите 12. Разделите на задуманное. У вас получилось 8.
Угадывание задуманных чисел.
- Предложите своим друзьям задумать любые числа. Пусть каждый прибавит к своему задуманному числу 5.
- Полученную сумму пусть умножит на 3.
- От произведения пусть отнимет 7.
- Из полученного результата пусть вычтет ещё 8.
- Листок с окончательным результатом пусть каждый отдаст вам. Глядя на листок, вы тут же говорите каждому, какое число он задумал.
(Чтобы угадать задуманное число, результат, написанный на бумажке или сказанный вам устно, разделить на 3).
ЗАКЛЮЧЕНИЕ
Мы вступили в новое тысячелетие! Грандиозные открытия и достижения человечества. Мы много знаем, многое умеем. Кажется чем-то сверхъестественным, что с помощью чисел и формул можно рассчитать полёт космического корабля, «экономическую ситуацию» в стране, погоду на «завтра», описать звучание нот в мелодии. Нам известно высказывание древнегреческого математика, философа, жившего в IV веке д.н.э. – Пифагора– «Всё есть число!».
Описывая старинные способы вычислений и современные приёмы быстрого счёта, я попытался показать, что как в прошлом, так и в будущем, без математики, науки созданной разумом человека, не обойтись.
Изучение старинных способов вычислений показало, что это арифметические действия были трудными и сложными из-за многообразия способов и их громоздкости выполнения.
Современные способы вычислений просты и доступны всем.
При знакомстве с научной литературой обнаружил более быстрые и надежные способы вычислений.
Возможно, что с первого раза у многих не получится быстро, с ходу выполнять эти или другие подсчеты. Пусть сначала не получится использовать прием, показанный в работе. Не беда. Нужна постоянная вычислительная тренировка. Из урока в урок, из года в год. Она поможет приобрести полезные навыки устного счета.
Немецкого ученого Карла Гаусса называли королем математиков. Его математическое дарование проявилось уже в детстве. Однажды в школе (Гауссу было 10 лет) учитель предложил классу сложить все числа от 1 до 100. Пока он диктовал задание, у Гаусса уже был готов ответ. На его грифельной доске было написано: 101·50=5050. Как он вычислил? Очень просто – он применил прием быстрого счета, он складывал первое число с последним, второе с предпоследним и т.д. таких сумм всего 50 и каждая равна 101, поэтому он смог почти мгновенно дать правильный ответ.
1+2+…+50+51+...+99+100=(1+100)+(2+99)+…+(50+51)=101·50=5050. Этот пример, лучше всего показывает, что можно считать быстро и правильно практически устно всем школьникам, для этого всего лишь нужно знать приемы быстрого счета.
Результаты своей работы я оформил в памятку, которую предложу всем своим одноклассникам, также размещу её на школьном тематическом стенде «Это интересно!». Возможно, что с первого раза не у всех получится быстро, с ходу выполнять вычисления с применением этих приемов, даже если сначала не получится использовать прием, показанный в памятке, ничего страшного, просто нужна постоянная вычислительная тренировка. Она и поможет приобрести полезные навыки быстрого счета.
Проведя статистическую обработку данных, были получены следующие результаты:
- Уметь считать нужно, потому, что это пригодится в жизни, считают 93% учащихся, чтобы хорошо учиться в школе – 72%, чтобы быстро решать – 61%, чтобы быть грамотным – 34% и не обязательно уметь считать – всего 3%.
- Навыки хорошего счета необходимы при изучении математики, считают 100% учащихся, а также при изучении физики – 90%, химии – 80%, информатики – 44%, технологии – 36%.
- Приемы быстрого счета знают 16% (много приемов), 25% (несколько приемов), не знают приемов быстрого счета – 59% учащихся.
- Применяют приемы быстрого счета 21% учащихся, иногда применяют – 15%.
- Хотели бы узнать приемы быстрого счета 93% учащихся.
Выводы:
- Знание приемов быстрого счета позволяет упрощать вычисления, экономить время, развивает логическое мышление и гибкость ума.
- В школьных учебниках практически нет приемов быстрого счета, поэтому результат данной работы – памятка для быстрого счета будет очень полезной для учащихся 5-6 классов.
СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ
- Ванцян А.Г. Математика: Учебник для 5 класса. - Самара: Издательский дом «Фёдоров», 1999г.
- Кордемский Б.А., Ахадов А.А. Удивительный мир чисел: Книга учащихся,- М. Просвещение, 1986г.
- Минских Е.М. «От игры к знаниям», М., «Просвещение», 1982г.
- Свечников А.А. Числа, фигуры, задачи. М., Просвещение, 1977г. Да Нет Не знаю https://accounts.google.com